CN105914049A - 一种MnO2/碳纤维管复合电极材料的制备方法 - Google Patents

一种MnO2/碳纤维管复合电极材料的制备方法 Download PDF

Info

Publication number
CN105914049A
CN105914049A CN201610334958.3A CN201610334958A CN105914049A CN 105914049 A CN105914049 A CN 105914049A CN 201610334958 A CN201610334958 A CN 201610334958A CN 105914049 A CN105914049 A CN 105914049A
Authority
CN
China
Prior art keywords
carbon fiber
electrode material
fiber tube
preparation
mno2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610334958.3A
Other languages
English (en)
Other versions
CN105914049B (zh
Inventor
张军
刘相红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610334958.3A priority Critical patent/CN105914049B/zh
Publication of CN105914049A publication Critical patent/CN105914049A/zh
Application granted granted Critical
Publication of CN105914049B publication Critical patent/CN105914049B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明属于超级电容器电极材料制备技术领域,涉及一种MnO2/碳纤维管复合电极材料的制备方法,以KMnO4和碳纤维管为反应原料,去离子水为溶剂,利用微波辐射合成技术制备MnO2/碳纤维管复合电极材料,合成时间很短,步骤简单,产率高,适合批量制备MnO2/碳复合电极材料;制备的MnO2/碳纤维管复合电极材料中MnO2为纳米棒状结构,均匀附着于碳纤维管表面,具有高度分散性,在电解液中提供较大接触面积,利于发挥赝电容效应;碳纤维管增强材料的导电性,提升反应过程中的电子传导效率,从而提高材料的电容特性。

Description

一种MnO2/碳纤维管复合电极材料的制备方法
技术领域:
本发明属于超级电容器电极材料制备技术领域,涉及一种MnO2/碳纤维管复合电极材料的制备方法,具体涉及一种狼牙棒状的MnO2/碳纤维管超级电容器复合电极材料的制备方法。
背景技术:
超级电容器作为一种储能器件,具有结构简单、功率密度高、充放电快速、循环寿命长、工作温度范围宽等特点,在电动汽车、航空航天飞行器、军事等诸多领域有广阔的应用前景,引起了国内外研究者的广泛关注,成为当前化学电源领域的研究热点之一。
超级电容器储能机理可分为三类:基于吸附的双电层电容、涉及氧化还原反应的赝电容、以双电层和赝电容为储能机制的混合电容器。电极材料是超级电容器的关键,它直接决定了超级电容器的诸多性能指标。近年来,金属氧化物赝电容材料吸引了众多研究者的注意力,这是因为金属氧化物制备简单、结构丰富、比表面大、金属离子价态丰富,非常适合用作电容器的电极材料,其中,MnO2纳米电极材料的研究最为广泛,但是MnO2导电性不佳,这会直接影响电容器的性能,为提高导电性,研究者将MnO2与各种碳材料进行复合,从而提高电容器性能,例如,文献“J.Mater.Chem.,2012,22,153-160”报道了在石墨化的碳空心球表面生长一层MnO2,表现出较高的比电容;文献“J.Mater.Chem.,2012,22,16939”则报道了将MnO2与聚苯胺复合后,在0.5A g-1的电流密度下比电容高达383F g-1;Lu等人(Nanoscale Research Letters 2012,7:33)也报道了在碳纳米管上负载MnO2后可以显著提高电容器性能;此外,Wang等人(ACS Nano 2010,4,2822–2830)报道了MnO2与石墨烯复合,也表现出较好的性能。然而,从上述公开的文献中可以发现其制备过程需要时间较长,严重降低了材料的合成效率,因而,发展一种快速、高效的超级电容器电极材料制备方法具有重要研究意义。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计提供一种利用微波合成技术高效、快速制备MnO2/碳纤维管复合电极材料的方法,该方法合成时间很短,步骤简单,产率高,适合批量制备MnO2/碳纤维复合电极材料,制备的MnO2/碳纤维管复合电极材料作为超级电容器电极材料表现出较高的比电容。
为了实现上述发明目的,本发明以KMnO4和碳纤维管为反应原料,去离子水为溶剂,利用微波辐射合成技术制备MnO2/碳纤维管复合电极材料,具体包括以下步骤:
(1)将20-50mg碳纤维管、17-51mg KMnO4依次加入到20ml去离子水中,超声分散10min后转移至反应瓶中;
(2)将步骤(1)的反应瓶放入微波合成仪器,温度设置为160-185℃,反应时间为5-20min;
(3)反应结束后,将步骤(2)得到的样品在6000rpm条件下离心收集,依次用去离子水、乙醇分别洗涤2次,再在60℃干燥12h,制备得到MnO2/碳纤维管复合电极材料。
本发明与现有技术相比,合成时间很短,步骤简单,产率高,适合批量制备MnO2/碳复合电极材料;制备的MnO2/碳纤维管复合电极材料中MnO2为纳米棒状结构,均匀附着于碳纤维管表面,具有高度分散性,在电解液中提供较大接触面积,利于发挥赝电容效应;碳纤维管增强材料的导电性,提升反应过程中的电子传导效率,从而提高材料的电容特性。
附图说明:
图1为本发明实施例1制备的MnO2/碳纤维管复合电极材料的透射电镜照片。
图2为本发明实施例2制备的MnO2/碳纤维管复合电极材料的透射电镜照片。
图3为本发明实施例3制备的MnO2/碳纤维管复合电极材料的透射电镜照片。
图4为本发明实施例2制备的MnO2/碳纤维管复合电极材料在50mV/s扫速下得到的循环伏安曲线。
具体实施方式:
下面通过具体实施例并结合附图做进一步说明。
实施例1:
本实施例将33mg碳纤维管、17mg KMnO4先后加入到20ml去离子水中,超声分散10min后转移至反应瓶中,再将反应瓶放入微波合成仪器,温度设置为185℃,反应时间为10min;反应结束后,将得到的样品进行离心(6000rpm)收集后,依次用去离子水和乙醇分别洗涤2次,在60℃干燥12h,制备得到的MnO2/碳纤维管复合电极材料。
本实施例对制备的MnO2/碳纤维管复合电极材料进行TEM表征,如图1所示,MnO2为纳米棒状结构,直径为6-8nm,长度为20-70nm,均匀附着于碳纤维管表面。
实施例2:
本实施例将33mg碳纤维管、34mg KMnO4先后加入到20ml去离子水中,超声分散10min后转移至反应瓶中,再将反应瓶放入微波合成仪器,温度设置为185℃,反应时间为10min;反应结束后,将得到的样品进行离心(6000rpm)收集后,依次用去离子水和乙醇分别洗涤2次,在60℃干燥12h,即制备得到MnO2/碳纤维管复合电极材料。
本实施例对制备的MnO2/碳纤维管复合电极材料进行TEM表征,如图1所示,MnO2为纳米棒状结构,直径为6-8nm,长度为20-70nm,密集附着于碳纤维管表面,与实施例1中得到的样品相比,MnO2含量显著增大。
本实施例将制备的MnO2/碳纤维管复合电极材料与聚偏二氟乙烯(polyvinylidenefluoride,PVDF)和碳黑按照85:10:5的重量百分比混合后加入0.5mL N-甲基吡咯烷酮(NMP),制作成浆料后涂敷于不锈钢网上,在60℃干燥12h后经压片机压片,即得超级电容器工作电极,采用三电极体系测试超级电容器工作电极的超电容性能,其中采用的电解液为1mol L-1Na2SO4水溶液,Pt片为对电极,Ag/AgCl为参比电极,其在50mV/s扫速下得到的循环伏安曲线如图4所示,经计算比电容为49.7F/g。
实施例3:
本实施例将33mg碳纤维管、51mg KMnO4先后加入到20ml去离子水中,超声分散10min后转移至反应瓶中,再将反应瓶放入微波合成仪器,温度设置为185℃,反应时间为10min;反应结束后,将得到的样品经离心(6000rpm)收集后,依次用去离子水和乙醇分别洗涤2次,在60℃干燥12h,即制备得到MnO2/碳纤维管复合电极材料。
本实施例对制备的MnO2/碳纤维管复合电极材料进行TEM表征,如图3所示,MnO2为纳米棒状结构,直径为6-10nm,长度为50-150nm,密集附着于碳纤维管表面,与实施例2中得到的样品相比,MnO2含量进一步增大,生长更为密集。

Claims (1)

1.一种MnO2/碳纤维管复合电极材料的制备方法,其特征在于以KMnO4和碳纤维管为反应原料,去离子水为溶剂,利用微波辐射合成技术制备MnO2/碳纤维管复合电极材料,具体包括以下步骤:
(1)将20-50mg碳纤维管、17-51mg KMnO4依次加入到20ml去离子水中,超声分散10min后转移至反应瓶中;
(2)将步骤(1)的反应瓶放入微波合成仪器,温度设置为160-185℃,反应时间为5-20min;
(3)反应结束后,将步骤(2)得到的样品在6000rpm条件下离心收集,依次用去离子水、乙醇分别洗涤2次,再在60℃干燥12h,制备得到MnO2/碳纤维管复合电极材料。
CN201610334958.3A 2016-05-19 2016-05-19 一种MnO2/碳纤维管复合电极材料的制备方法 Expired - Fee Related CN105914049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610334958.3A CN105914049B (zh) 2016-05-19 2016-05-19 一种MnO2/碳纤维管复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610334958.3A CN105914049B (zh) 2016-05-19 2016-05-19 一种MnO2/碳纤维管复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN105914049A true CN105914049A (zh) 2016-08-31
CN105914049B CN105914049B (zh) 2018-03-30

Family

ID=56749482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610334958.3A Expired - Fee Related CN105914049B (zh) 2016-05-19 2016-05-19 一种MnO2/碳纤维管复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN105914049B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107761195A (zh) * 2017-10-26 2018-03-06 青岛大学 一种用于超级电容器电极的木质素基纳米碳纤维制备方法
CN107946085A (zh) * 2017-11-22 2018-04-20 湖南科技大学 一种表面修饰的氮掺杂碳空心球负载的二氧化锰产品、制备方法及其应用
CN111554932A (zh) * 2020-05-11 2020-08-18 中科廊坊过程工程研究院 一种高性能复合正极材料、其制备方法和用途
CN114899385A (zh) * 2022-06-10 2022-08-12 江西省纳米技术研究院 碳/二氧化锰复合材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599370A (zh) * 2009-04-23 2009-12-09 哈尔滨工程大学 一种快速制备导电碳/二氧化锰复合电极材料的方法
US20120236467A1 (en) * 2011-03-16 2012-09-20 Vanderbilt University, Center For Technology Transfer And Commercialization Ultracapacitor, methods of manufacturing and applications of the same
CN104465130A (zh) * 2014-12-16 2015-03-25 吉林大学 一种超级电容器电极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599370A (zh) * 2009-04-23 2009-12-09 哈尔滨工程大学 一种快速制备导电碳/二氧化锰复合电极材料的方法
US20120236467A1 (en) * 2011-03-16 2012-09-20 Vanderbilt University, Center For Technology Transfer And Commercialization Ultracapacitor, methods of manufacturing and applications of the same
CN104465130A (zh) * 2014-12-16 2015-03-25 吉林大学 一种超级电容器电极材料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107761195A (zh) * 2017-10-26 2018-03-06 青岛大学 一种用于超级电容器电极的木质素基纳米碳纤维制备方法
CN107946085A (zh) * 2017-11-22 2018-04-20 湖南科技大学 一种表面修饰的氮掺杂碳空心球负载的二氧化锰产品、制备方法及其应用
CN111554932A (zh) * 2020-05-11 2020-08-18 中科廊坊过程工程研究院 一种高性能复合正极材料、其制备方法和用途
CN111554932B (zh) * 2020-05-11 2021-12-28 廊坊绿色工业技术服务中心 一种高性能复合正极材料、其制备方法和用途
CN114899385A (zh) * 2022-06-10 2022-08-12 江西省纳米技术研究院 碳/二氧化锰复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN105914049B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
Chen et al. Preparation of activated carbon from cotton stalk and its application in supercapacitor
CN102468057B (zh) 由石墨烯和二氧化锰组成的复合电极材料的制备方法
CN105914049A (zh) 一种MnO2/碳纤维管复合电极材料的制备方法
CN105948038B (zh) 一种活性炭微球及其制备方法
CN104409222A (zh) 一种石墨烯/二氧化锰纳米片/聚苯胺纳米棒三元复合材料的制备方法
CN101733985A (zh) 一种石墨烯/氧化镍层状结构复合薄膜及其制备方法
Altin et al. Polyacrylonitrile/polyvinyl alcohol‐based porous carbon nanofiber electrodes for supercapacitor applications
Cao et al. Hierarchical core/shell structures of ZnO nanorod@ CoMoO 4 nanoplates used as a high-performance electrode for supercapacitors
CN108807007B (zh) 三维纳米线状孔碳材料以及高电压微型超级电容器的制作工艺
CN106971860A (zh) 一种MnO2@石墨烯纤维超级电容器电极材料的制备方法
Zeng et al. Nitrogen-doped hierarchical porous carbon for supercapacitor with well electrochemical performances
CN104176783A (zh) 一种氮碳材料包覆二氧化锰纳米线的制备及应用方法
CN109786135A (zh) 一种氧化铜@钼酸镍/泡沫铜复合电极材料及其制备方法
CN104715936A (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
Yang et al. Optimizing hierarchical porous carbon from biomass waste for high-performance supercapacitors
CN111029162B (zh) 一种石墨烯/聚吡咯复合电极材料及制备与其在超级电容器中的应用
CN107221458B (zh) 镍配合物为前躯体的掺碳氧化镍复合电极材料及其制备方法
CN106067385A (zh) 用作超级电容器的二氧化锰/导电聚合物纳米网络结构电极材料的制备方法
Xie et al. In-situ synthesis of fluorine-free MXene/TiO2 composite for high-performance supercapacitor
CN104437277A (zh) 五氧化二钒/石墨烯复合气凝胶材料的制备方法
CN106409528B (zh) 一种ZnFe2O4纳米颗粒/炭纤维复合超级电容器电极材料及其制备方法
CN107658148A (zh) 一种制备石墨烯‑二氧化锡复合材料的方法及其在储能方面的应用
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN103839691A (zh) 氮掺杂石墨烯复合材料、其制备方法、电极片以及超级电容器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180330

Termination date: 20190519

CF01 Termination of patent right due to non-payment of annual fee