CN105908142B - 一种高温薄膜应变计及其制作方法 - Google Patents

一种高温薄膜应变计及其制作方法 Download PDF

Info

Publication number
CN105908142B
CN105908142B CN201610239871.8A CN201610239871A CN105908142B CN 105908142 B CN105908142 B CN 105908142B CN 201610239871 A CN201610239871 A CN 201610239871A CN 105908142 B CN105908142 B CN 105908142B
Authority
CN
China
Prior art keywords
film
sensitive grid
strain gauge
sio
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610239871.8A
Other languages
English (en)
Other versions
CN105908142A (zh
Inventor
崔云先
张子超
张启翔
李东明
费继友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Jiaotong University
Original Assignee
Dalian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Jiaotong University filed Critical Dalian Jiaotong University
Priority to CN201610239871.8A priority Critical patent/CN105908142B/zh
Publication of CN105908142A publication Critical patent/CN105908142A/zh
Application granted granted Critical
Publication of CN105908142B publication Critical patent/CN105908142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance

Abstract

本发明公开了一种高温薄膜应变计及其制作方法,包括SiO2绝缘薄膜、应变计敏感栅薄膜、敏感栅遮挡薄膜、焊盘遮挡薄膜,所述应变计敏感栅的区域覆盖有敏感栅遮挡薄膜,所述应变计敏感栅以外的区域覆盖有焊盘遮挡薄膜,所述应变计敏感栅为NiCr合金敏感栅,所述敏感栅遮挡薄膜为SiOxNy薄膜,所述焊盘遮挡薄膜为ITO薄膜。本发明采用SiOxNy薄膜作为薄膜应变计的抗氧化保护薄膜,因而延长了薄膜应变计的寿命;ITO薄膜作为焊盘部分的保护膜,有效的提高了薄膜应变计在高温工作环境下的可靠性和寿命;本发明制备的NiCr高温薄膜应变计在600℃范围内其结构、物理性能均不改变,具有良好的应力应变测试性能。

Description

一种高温薄膜应变计及其制作方法
技术领域
本发明涉及一种薄膜应变计,具体涉及一种高温薄膜应变计及其制作方法。
背景技术
由于处于薄膜形态的物质具有许多独特的性质,因而薄膜器件已经成为现代科学技术领域中广泛应用的器件,特别是现代化仪器设备和各类新型的传感器不断要求向微型化方向发展,所以薄膜器件、薄膜技术将发挥越来越大的作用。薄膜电阻应变计是目前最常用的应力分析敏感元件,它主要是是利用膜材料在收到外界的应力时其电阻会发生响应变化的特征,将电阻值的变化转化为电压值的变化。
对应力应变测量可以使用接触式与非接触式方法,非接触式方法主要有光学测量方法构成,然而,对充满蒸汽的管道进行光学测量必定会造成很大的误差。接触式测量的方法主要是应变片法,传统的直接粘贴式箔式应变片普遍用于中低温领域的测量,在高温(>350℃)领域,由于基底、粘接剂材料的限制,将难以使用;若使用铠装式,即把应变计封装在耐高温合金内部,则会大大降低应变片使用的灵活性。
近年来,科学技术的飞速发展,特别是微电子技术、计算机技术、信息处理技术及材料科学的发展,MEMS技术的不断革新,其加工技术,如镀膜、刻蚀,微细加工的进步,过去难加工工艺现得以实现。通过镀膜工艺可以实现厚度仅为几百纳米的薄膜的制作,金属薄膜的温度特性良好,使得空间技术领域中高电平输出、低能源消耗的目标得以实现。镀膜技术使人们可以选择直接在弹性元件上附着敏感薄膜,或者选择粘接的方式把薄膜传感器固定在弹性体上,前者更加有利于准确测量结构的形变,通过选择适当的过渡薄膜可在复杂曲面上制备功率耗散高、测量误差更小的传感器。合适的光刻工艺可制作任意形状的尺寸微小的花样,与镀膜工艺相结合可使敏感薄膜和电路集成于一体,有利于传感器的小型化与集成化。作为薄膜传感器中的一员,薄膜应变计具有箔式应变计的优点,加上灵活的制备工艺,其在恶劣环境中的应用有着巨大潜力。
发明内容
本发明针对以上问题的提出,而研究设计一种高温薄膜应变计及其制作方法。本发明采用的技术手段如下:
一种高温薄膜应变计,包括SiO2绝缘薄膜、应变计敏感栅薄膜、焊盘遮挡薄膜和敏感栅遮挡薄膜,所述应变计敏感栅的区域覆盖有敏感栅遮挡薄膜,所述应变计敏感栅以外的区域覆盖有焊盘遮挡薄膜,所述应变计敏感栅为NiCr合金敏感栅,所述敏感栅遮挡薄膜为SiOxNy薄膜,所述焊盘遮挡薄膜为ITO薄膜。
一种高温薄膜应变计的制作方法,包括以下步骤:
步骤1:依次采用无水乙醇、丙酮对合金基板表面进行清洗;
步骤2:在经过清洗的铜合基板金的表面制备SiO2绝缘薄膜;
步骤3:在已经沉积SiO2绝缘薄膜的铜合金基板上旋涂光刻胶,图形化应变计图形;
步骤4:在步骤3的基础上采用磁控溅射的方法制备NiCr功能薄膜,去除光刻胶得到应变计敏感栅薄膜;
步骤5:在步骤4形成的图形上旋涂光刻胶,图形化敏感栅遮挡薄膜,磁控溅射SiOxNy薄膜,去除光刻胶,得到敏感栅遮挡薄膜;
步骤6:在步骤5形成的图形上旋涂光刻胶,图形化焊盘遮挡薄膜,磁控溅射ITO薄膜,去除光刻胶,得到焊盘遮挡薄膜。
进一步地,步骤2中,将清洗干净的铜合金基板置于真空度为5.0×10-3~5.5×10-3Pa的真空环境中,以Si为靶材,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.6~0.8Pa、偏压80~100V条件下采用直流磁控溅射方法得到沉积厚度为550~600nm的SiO2绝缘薄膜,溅射时间为60~90min。
进一步地,步骤4中,将已经进行光刻处理的铜合金基板,置于真空度为5.0×10-3~5.5×10-3Pa的真空环境中,以Ni90Cr10合金为靶材,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.7~0.8Pa、偏压150~200V的条件下采用直流磁控溅射方法将NiCr合金沉积于铜合金基板表面上,沉积厚度为300~400nm得到NiCr功能薄膜,去除光刻胶。
进一步地,步骤5中,将步骤4得到的铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.7~0.8Pa,沉积时间为15~25min,采用磁控溅射的方法将SiOxNy沉积于铜合金基板表面上,得到沉积厚度为500~700nm的焊盘遮挡薄膜,去除光刻胶;
进一步地,步骤6中,将步骤5得到的铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.7~0.8Pa,沉积时间为10~20min,采用直流磁控溅射方法将ITO沉积于铜合金基板上,得到沉积厚度为300~500nm的ITO薄膜,去除光刻胶。
与现有技术比较,本发明所述的高温薄膜应变计及其制作方法具有以下优点:
1、SiOxNy薄膜作为薄膜应变计的抗氧化保护薄膜,即敏感栅遮挡薄膜,在高温下会发生氧化,导致薄膜结构更致密,有利于提高SiOxNy薄膜对NiCr薄膜的抗氧化保护性能,因而延长了薄膜应变计的寿命;
2、ITO薄膜作为焊盘部分的保护膜,即焊盘遮挡薄膜,具有良好的导电性,硬度高,耐磨性高和耐化学腐蚀的性能,在高温下能够改变膜薄膜的均匀性,有效的提高了薄膜应变计在高温工作环境下的可靠性和寿命;
3、本发明制备的NiCr高温薄膜应变计在600℃范围内其结构、物理性能均不改变,具有良好的应力应变测试性能。
附图说明
图1是本发明实施例所述的高温薄膜应变计的制备的流程图。
图2是本发明实施例所述的高温薄膜应变计的掩膜图形。
具体实施方式
如图1和图2所示,一种高温薄膜应变计,包括铜合金基板1、SiO2绝缘薄膜2、应变计敏感栅薄膜3、焊盘遮挡薄膜4和敏感栅遮挡薄膜5,所述应变计敏感栅3的区域覆盖有敏感栅遮挡薄膜5,所述应变计敏感栅3以外的区域覆盖有焊盘遮挡薄膜4,所述应变计敏感栅3为NiCr合金敏感栅,所述敏感栅遮挡薄膜5为SiOxNy薄膜,所述焊盘遮挡薄膜4为ITO薄膜。
如图1所示,一种高温薄膜应变计的制作方法,包括以下步骤:
步骤1:对基板的预处理先根据应变计敏感栅的尺寸,选用20mm×18mm×1mm铜合金基板作为基底。然后用依次采用丙酮、无水乙醇对铜合金基板表面进行清洗,去除上面的有机物以及其他的污染物,再用气枪吹干。
步骤2:在JZFZJ-500S高真空多功能复合镀膜机上,将清洗干净的铜合金基板置于真空度为5.0×10-3~5.5×10-3Pa的真空(背底真空)环境中,以Si为靶材,通入纯度为99.999%(体积百分比)的氩气作为工作介质,在功率为300~500W、溅射气压(工作压力)为0.6~0.8Pa、偏压80~100V、通入Ar流量为20~25sccm、O2流量为5~7sccm,溅射时间为60~70min,采用直流磁控溅射方法得到沉积厚度为550~600nm的SiO2绝缘薄膜。
步骤3:在步骤2的基础上对已经沉积绝缘薄膜SiO2的铜合金基板进行光刻工艺的处理。首先铜合金基板正面旋涂SUN-125PSS正性光刻胶,然后将已经旋涂光刻胶的铜合金基板置于转速为900~3500r/min的台式匀胶机上,匀胶时间为15~20s,接着在电热恒温鼓风干燥箱温度为100℃进行烘干,时间为90~120s,烘干后进行冷却。曝光是在INTELLIRAY—400全功能紫外固化箱,光照强度为50~60mw/cm2,曝光时间为7~10s,紧接着进行后烘,在电热恒温鼓风干燥箱在温度为100℃进行烘干,时间为90~120s,冷却后用KMP PD2384-Ⅱ显影液进行显影,显影时间为25~35s,得到干净的SUN-125PSS正性光刻胶胶膜板,得到相应光刻工艺的铜合金基板。
步骤四:在JZFZJ-500S高真空多功能复合镀膜机上,将已经进行光刻处理的铜合金基板上沉积NiCr功能薄膜,将铜合金基板置于真空度为5.0×10-3Pa的真空(背底真空)环境中,以Ni90Cr10合金为靶材,通入纯度为99.999%(体积百分比)的氩气作为工作介质,在功率为300W、溅射气压(工作压力)为0.7Pa、偏压150V的条件下采用直流磁控溅射方法将NiCr合金沉积于铜合金基板表面上,沉积厚度为300nm得到NiCr功能薄膜,去除光刻胶,得到应变计敏感栅。
步骤5:在步骤4的基础上选用星泰客型号为SUN-125PSS的正性光刻胶在铜合金基板上旋涂光刻胶,图形化焊盘遮挡薄膜,在JZFZJ-500S高真空多功能复合镀膜机上,将步骤5得到的铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度为99.999%(体积百分比)的氩气作为工作介质,在功率为300~500W、溅射气压(工作压力)为0.7~0.8Pa,Ar流量为15~20sccm,N2流量为5~10sccm,沉积时间为15~25min,采用磁控溅射的方法将SiOxNy沉积于铜合金基板表面上,得到沉积厚度为500~700nm的SiOxNy抗氧化保护薄膜,去除光刻胶;
步骤6:在步骤5的基础上选用星泰客型号为SUN-125PSS的正性光刻胶在铜合金基板上进行旋涂光刻胶,图形化敏感栅遮挡薄膜,在JZFZJ-500S高真空多功能复合镀膜机上,将铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度为99.999%(体积百分比)的氩气作为工作介质,在功率为300~500W、溅射气压(工作压力)为0.7~0.8Pa,Ar流量为20~25sccm,沉积时间为10~20min,采用直流磁控溅射方法将ITO沉积于铜合金基板上,得到沉积厚度为300~500nm的ITO薄膜,去除光刻胶。
NiCr合金薄膜应变计与传统的应变计相比具有高的电阻率、低的电阻温度系数小、较高的灵敏度、稳定性好以及对于温度依赖小的特点,因此常用于制备薄膜应变计。NiCr薄膜应变计很少在高温领域下使用,本发明制备的NiCr高温薄膜应变计能够在600℃的范围内正常工作,为薄膜应变计在高温条件下工作提供了依据。
ITO薄膜作为焊盘部分的保护膜,是一种半导体的材料,具有良好的导电性能,具有硬度高,耐磨性高和耐化学腐蚀的性能,ITO薄膜薄膜具有良好的酸刻和光刻的性能,可以用来刻出不同电极的图案。ITO薄膜在高温下能够改变膜薄膜的均匀性,而且在600℃-800℃的高温下还具有导电性,有效的提高了薄膜应变计在高温工作环境下使用的可靠性和寿命。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种高温薄膜应变计的制作方法,包括以下步骤:
步骤1:依次采用无水乙醇、丙酮对合金基板表面进行清洗;
步骤2:在经过清洗的铜合基板金的表面制备SiO2绝缘薄膜;
步骤3:在已经沉积SiO2绝缘薄膜的铜合金基板上旋涂光刻胶,图形化应变计图形;
步骤4:在步骤3的基础上采用磁控溅射的方法制备NiCr功能薄膜,去除光刻胶得到应变计敏感栅薄膜;
步骤5:在步骤4形成的图形上旋涂光刻胶,图形化敏感栅遮挡薄膜,磁控溅射SiOxNy薄膜,去除光刻胶,得到敏感栅遮挡薄膜;
步骤6:在步骤5形成的图形上旋涂光刻胶,图形化焊盘遮挡薄膜,磁控溅射ITO薄膜,去除光刻胶,得到焊盘遮挡薄膜。
2.根据权利要求1所述的高温薄膜应变计的制作方法,其特征在于:将清洗干净的铜合金基板置于真空度为5.0×10-3~5.5×10-3Pa的真空环境中,以Si为靶材,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.6~0.8Pa、偏压80~100V条件下采用直流磁控溅射方法得到沉积厚度为550~600nm的SiO2绝缘薄膜,溅射时间为60~90min。
3.根据权利要求1所述的高温薄膜应变计的制作方法,其特征在于:步骤4中,将已经进行光刻处理的铜合金基板,置于真空度为5.0×10-3~5.5×10-3Pa的真空环境中,以Ni90Cr10合金为靶材,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.7~0.8Pa、偏压150~200V的条件下采用直流磁控溅射方法将NiCr合金沉积于铜合金基板表面上,沉积厚度为300~400nm得到NiCr功能薄膜,去除光刻胶。
4.根据权利要求1所述的高温薄膜应变计的制作方法,其特征在于:步骤5中,将步骤4得到的铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W,溅射气压为0.7~0.8Pa,沉积时间为15~25min,采用磁控溅射的方法将SiOxNy沉积于铜合金基板表面上,得到沉积厚度为500~700nm的敏感栅遮挡薄膜,去除光刻胶。
5.根据权利要求1所述的高温薄膜应变计的制作方法,其特征在于:步骤6中,将步骤5得到的铜合金基板置于真空管式炉内在5.0×10-3~5.5×10-3Pa的真空条件下,通入纯度不低于99.999%的氩气作为工作介质,在功率为300~500W、溅射气压为0.7~0.8Pa,沉积时间为10~20min,采用直流磁控溅射方法将ITO沉积于铜合金基板上,得到沉积厚度为300~500nm的ITO薄膜,去除光刻胶。
6.一种利用权利 要求1所述方法制作的高温薄膜应变计,其特征在于:包括SiO2绝缘薄膜、应变计敏感栅薄膜、焊盘遮挡薄膜和敏感栅遮挡薄膜,所述应变计敏感栅的区域覆盖有敏感栅遮挡薄膜,所述应变计敏感栅以外的区域覆盖有焊盘遮挡薄膜,所述应变计敏感栅为NiCr合金敏感栅,所述敏感栅遮挡薄膜为SiOxNy薄膜,所述焊盘遮挡薄膜为ITO薄膜。
CN201610239871.8A 2016-04-15 2016-04-15 一种高温薄膜应变计及其制作方法 Active CN105908142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610239871.8A CN105908142B (zh) 2016-04-15 2016-04-15 一种高温薄膜应变计及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610239871.8A CN105908142B (zh) 2016-04-15 2016-04-15 一种高温薄膜应变计及其制作方法

Publications (2)

Publication Number Publication Date
CN105908142A CN105908142A (zh) 2016-08-31
CN105908142B true CN105908142B (zh) 2018-08-14

Family

ID=56747434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610239871.8A Active CN105908142B (zh) 2016-04-15 2016-04-15 一种高温薄膜应变计及其制作方法

Country Status (1)

Country Link
CN (1) CN105908142B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595910A (zh) * 2016-11-08 2017-04-26 中国电子科技集团公司第四十八研究所 一种应力传感器及其制备方法
CN109596041A (zh) * 2018-11-28 2019-04-09 大连交通大学 一种具有(400)晶面择优的铟锡氧化物在薄膜应变计上的应用
CN110132561B (zh) * 2019-05-15 2021-03-02 中北大学 一种面向极端环境的叶片应力/应变动态测试方法
CN111006695A (zh) * 2019-12-02 2020-04-14 广东微应变传感科技有限公司 一种带自粘胶应变计的加工方法
CN112629402B (zh) * 2020-12-31 2022-08-23 厦门市诺盛测控技术有限公司 一种焊点镀膜的应变计制备方法及其制备模版

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104605A (en) * 1976-09-15 1978-08-01 General Electric Company Thin film strain gauge and method of fabrication
US4221649A (en) * 1979-04-09 1980-09-09 Gould Inc. Thin film strain gage and process therefor
CN101079429A (zh) * 2006-05-24 2007-11-28 Lg.菲利浦Lcd株式会社 薄膜晶体管阵列基板及其制造方法
CN101378012A (zh) * 2007-08-31 2009-03-04 Nec液晶技术株式会社 电子部件和显示装置及所述电子部件和显示装置的制造方法
CN102212823A (zh) * 2011-05-13 2011-10-12 电子科技大学 在合金基板上设置薄膜传感器的方法
CN103134417A (zh) * 2011-11-24 2013-06-05 中国航空工业集团公司沈阳发动机设计研究所 一种高温动态应变计
CN104942318A (zh) * 2015-07-01 2015-09-30 大连交通大学 一种智能瞬态切削测温刀具、制作方法及其测温方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104605A (en) * 1976-09-15 1978-08-01 General Electric Company Thin film strain gauge and method of fabrication
US4221649A (en) * 1979-04-09 1980-09-09 Gould Inc. Thin film strain gage and process therefor
CN101079429A (zh) * 2006-05-24 2007-11-28 Lg.菲利浦Lcd株式会社 薄膜晶体管阵列基板及其制造方法
CN101378012A (zh) * 2007-08-31 2009-03-04 Nec液晶技术株式会社 电子部件和显示装置及所述电子部件和显示装置的制造方法
CN102212823A (zh) * 2011-05-13 2011-10-12 电子科技大学 在合金基板上设置薄膜传感器的方法
CN103134417A (zh) * 2011-11-24 2013-06-05 中国航空工业集团公司沈阳发动机设计研究所 一种高温动态应变计
CN104942318A (zh) * 2015-07-01 2015-09-30 大连交通大学 一种智能瞬态切削测温刀具、制作方法及其测温方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High-temperature thin-film strain gauges;P Kayser等;《Sensors and Actuators A》;19931231;第328-329页 *
The oxidation process of NiSix film at high temperature in air and the antioxidant effect of SiOxNy/NiSix film;Qixiang Zhang等;《J Mater Sci: Mater Electron》;20151231;第26卷;第3291页 *

Also Published As

Publication number Publication date
CN105908142A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105908142B (zh) 一种高温薄膜应变计及其制作方法
CN106197774B (zh) 柔性压阻式触觉传感器阵列及其制备方法
CN104034454B (zh) 一种用于多物理量测量的传感器芯片及其制备方法
CN103308242B (zh) 一种以氮氧化钛为应变材料的薄膜压力传感器及其制造方法
CN104374486B (zh) 一种基于石墨烯纳米墙的柔性温度传感器及其制备方法
KR101094165B1 (ko) 압저항 방식의 터치 패널, 그 제조방법, 이를 포함하는 디스플레이 장치, 터치 패드 및 압력센서
WO2020114366A1 (zh) 压力传感器及其制备方法
CN105021120B (zh) 一种电容应变传感器及其制备方法
CN108801515A (zh) 一种TiON薄膜压力传感器及其制备方法
CN107966481B (zh) 一种基于复合电容式结构的材质识别传感器及其制备方法
TW201305698A (zh) 導電性積層體、附有圖案配線之透明導電性積層體及光學裝置
CN105241568B (zh) 一种挠性温度传感器的制造方法
CN106403804A (zh) 一种高温同步补偿薄膜应变计及其制备方法
CN105136351A (zh) 一种电容式压力传感器及其制备方法
CN104891425A (zh) 基于石墨烯的流量传感器芯片及其制备方法
CN109825809A (zh) 一种聚酰亚胺基电阻式薄膜应变传感器及其制备方法与应用
CN113091811A (zh) 一种柔性温压一体化传感器及其制备方法和应用
CN108557759A (zh) 高性能柔性触力传感器及其制备方法
CN109297622A (zh) 一种基于二硒化钨的微型压阻式应力传感器
KR20090081195A (ko) 금속 압력다이어프램이 구비된 압력측정센서 및 상기압력측정센서의 제조방법
CN206362470U (zh) 一种耐500v高绝缘强度溅射薄膜敏感元件
CN102507053A (zh) 一种钢化玻璃压力传感器
CN109799014A (zh) 一种柔性压敏传感器及其制备方法
CN106124576A (zh) 集成的湿度传感器和多单元气体传感器及其制造方法
CN116593122A (zh) 一种模型表面多参量薄膜传感结构及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant