CN105907844B - 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法 - Google Patents

一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法 Download PDF

Info

Publication number
CN105907844B
CN105907844B CN201610215433.8A CN201610215433A CN105907844B CN 105907844 B CN105907844 B CN 105907844B CN 201610215433 A CN201610215433 A CN 201610215433A CN 105907844 B CN105907844 B CN 105907844B
Authority
CN
China
Prior art keywords
electrode
solution
ssdna
electrochemical
cile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610215433.8A
Other languages
English (en)
Other versions
CN105907844A (zh
Inventor
孙伟
闫丽君
文作瑞
牛学良
沈青凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201610215433.8A priority Critical patent/CN105907844B/zh
Publication of CN105907844A publication Critical patent/CN105907844A/zh
Application granted granted Critical
Publication of CN105907844B publication Critical patent/CN105907844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于三维石墨烯‑树枝状纳米金的电化学DNA生物传感器的制备方法。将三维石墨烯(3DGR)和树枝状纳米金(Au)依次固定到离子液体修饰碳糊电极(CILE)表面构建传感界面,然后利用巯基乙酸(MAA)将ssDNA固定在该界面之上,以增大探针ssDNA的固定量和界面导电性。通过扫描电镜(SEM)观察电极表面纳米材料的形貌结构,使用亚甲基蓝(MB)作为电化学杂交指示剂,利用循环伏安(CV)和示差脉冲伏安(DPV)等电化学技术,考察了所构建传感器的电化学行为、选择性和灵敏度等电化学性能参数,结果表明此种电化学DNA生物传感器具有较低的检测限、较宽的检测范围和良好的选择性。

Description

一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器 及制备方法
技术领域
本发明属于生物电化学分析及电化学传感器的制备领域,具体涉及一种三维石墨烯-树枝状纳米金修饰的电化学DNA生物传感器。
背景技术
电化学DNA生物传感器是DNA生物传感器的一种,其一般由一个固定ssDNA片段的电极和用于检测杂交反应的电活性杂交指示剂构成。Ghanbari 等在铂电极表面电化学聚合了具有纳米结构的导电聚合物,并将探针ssDNA固定在其表面,以亚精胺为杂交指示剂进行检测。(Ghanbari K., Bathaie S. Z., Mousavi M. F., Electrochemicallyfabricated polypyrrole nanofiber-modified electrode as a new electrochemicalDNA biosensor, Biosensors and Bioelectronic, 2008, 23: 1825-1831)。探针DNA分子在电极表面的固定量及其杂交活性会直接影响电化学DNA传感器的灵敏度。Sun等人在离子液体修饰碳糊电极表面恒电位法沉积三维石墨烯,三维石墨烯修饰电极的有效面积是裸电极的5.5倍,有效的提高了修饰电极的比表面积(Wei Sun, Fei Hou, Shixing Gong, LinHan, Wencheng Wang, Fan Shi, Jingwen Xi, Xiuli Wang, Guangjiu Li, Directelectrochemistry and electrocatalysis of hemoglobin on three-dimensionalgraphene modified carbon ionic liquid electrode, Sensors and Actuators B:Chemical 2015, 219, 331–337)。Shakoori 等在1, 6己二硫醇修饰的金电极上静电吸附金纳米棒,使用铁氰化钾作为指示剂,金纳米棒修饰电极的氧化还原峰电流是裸电极峰电流的1.3倍,电极表面的金纳米棒加快了电子的传递速率(Zahra Shakoori SamanehSalimian Sharmin Kharrazi Mahdi Adabi Reza Saber, Electrochemical DNAbiosensor based on gold nanorods for detecting hepatitis B virus, Analyticaland Bioanalytical Chemistry, 2015, 407: 455-461)。
纳米材料具有大的表面积和孔体积,常用来做为电极表面的修饰剂以增大电极的有效面积,又因其具有良好的生物相容性和吸附性,在生物电分析化学方面起着重要的作用。
石墨烯是一种新型的二维碳纳米材料,具有由单层碳原子紧密堆积而成的二维蜂窝状晶体结构。三维石墨烯是以二维石墨烯纳米片为基本单元构建的宏观材料。具有柔韧性好、多孔性、高活性表面积、突出的电子传递性能等独特的性质,在能源、环境、传感器和生物分析等领域展现出潜在的应用前景。
发明内容
本发明意在制备具有高灵敏度、检测范围宽、选择性高的电化学DNA生物传感器,这对电极表面DNA的固定量和杂交活性有很高的要求,本研究提供了一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器及制备方法。
为了实现上述任务,本发明采取如下的技术解决方案:
(1)纳米材料修饰电极的制备
利用电化学沉积方法,将三维石墨烯和树枝状纳米金于沉积溶液中修饰在CILE表面,使用二次蒸馏水清洗电极表面后室温下晾干,即可制得Au/3DGR/CILE;
(2)MAA在电极表面的自组装
将步骤1中制备的修饰电极浸泡在MAA溶液中,室温条件下避光自组装24小时,取出后
用二次蒸馏水冲洗,记为MAA/Au/3DGR/CILE;
(3)ssDNA探针的固定及与目标ssDNA的杂交
将步骤2中处理后的电极继续浸泡在电极活化液中,活化30分钟,取出后分别用5%SDS溶液和二次蒸馏水冲洗,然后在电极表面均匀滴涂10 µL 探针ssDNA储备液。自然晾干后分别用5% SDS溶液和二次蒸馏水冲洗。随后将10 µL 含有目标序列的TE缓冲溶液直接滴涂在ssDNA/MAA/Au/3DGR/CILE表面,室温下杂交反应30分钟后分别用5% SDS溶液和二次蒸馏水冲洗,即完成分子杂交反应,得到dsDNA/MAA/Au/3DGR/CILE。
一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器及制备方法,所述步骤(1)中三维石墨烯和树枝状纳米金的沉积溶液分别为3.0 mg/L氧化石墨烯与1.0 mg/L高氯酸锂的混合溶液液和5.0 mmol/L HAuCl4与0.5 mol/L KNO3混合溶液,沉积电位和时间分别为-1.3 V, 50 s和-0.4 V, 300 s。
一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器及制备方法,所述步骤(2)MAA的浓度为10 mmol/L。
一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器及制备方法,所述步骤(3)电极活化液为含有5.0 mmol/L EDC和8.0 mmo/L N-羟基琥珀酰亚胺(NHS)的pH 7.0的磷酸盐缓冲溶液(PBS);TE缓冲溶液是由三羟甲基氨基甲烷(Tris)和乙二胺四乙酸二钠(EDTA)配制而成;探针ssDNA储备液为含有1.0×10-6 mol/L的氨基化探针ssDNA序列的pH8.0的TE缓冲溶液。
本发明设计的电化学DNA生物传感器,以CILE离子液体修饰碳糊电极作为基底电极,分别将三维石墨烯和树枝状纳米金依次通过电化学沉积到电极表面,然后利用MAA与Au之间的Au-S共价键形成稳定的MAA自组装膜修饰电极,最后利用缩合反应将氨基化探针DNA固定到电极表面,制备出相应的ssDNA修饰电极。使用滴涂法完成探针ssDNA与目标ssDNA的杂交,最后采用MB作为电化学指示剂,通过CV和DPV等电化学技术进行电化学信号检测。
附图说明
图1为电极表面不同纳米材料的SEM图,A, B为沉积在裸电极表面上的三维石墨烯于不同放大尺寸下的电镜图;C, D为沉积在三维石墨烯上的树枝状纳米金的电镜图。
图2为不同修饰电极(a到f分别为CILE, Au/CILE, dsDNA/MAA/Au/3D-GR/CILE,ssDNA/MAA/Au/3D-GR/CILE, MAA/Au/3D-GR/CILE和Au/3D-GR/CILE)在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合溶液中的循环伏安曲线。
图3为MB在不同杂交情况电极上的DPV曲线。a到e分别为杂交前、与非互补序列杂交后、与三碱基错配序列杂交后、与单碱基错配序列杂交后、与目标序列杂交后的DPV曲线。
图4为ssDNA/MAA/Au/3DGR/CILE与不同浓度的目标序列杂交后MB的DPV曲线。a到j的目标序列浓度依次为0, 1.0×10-14, 1.0×10-13, 1.0×10-12, 1.0×10-11, 1.0×10-10,1.0×10-9, 1.0×10-8, 1.0×10-7, 1.0×10-6 mol/L,(内嵌图为MB的的还原峰电流与目标序列浓度间的线性关系)。
具体实施方式
下面给出的实施例对本发明作进一步说明,但不超出本发明保护范围的限制。
实施例1
电化学DNA传感器的制备
1 试剂和仪器
试剂:石墨粉,1-己基吡啶六氟磷酸盐,氧化石墨烯,高氯酸锂,氯金酸,硝酸钾,巯基乙酸,乙基-(3-二甲基氨丙基)碳二亚胺盐酸盐,N-羟基琥珀酰亚胺,铁氰化钾,氯化钾;
仪器:CHI 750B电化学工作站,三电极系统(工作电极、参比电极和铂电极);
2 方法
(1) 基底电极的制备
按一定的比例将石墨粉、离子液体和液体石蜡充分混合研磨后,装入内插细铜丝的玻璃电极管内压实,即得离子液体修饰碳糊电极(CILE)。使用前在抛光纸上打磨至镜面;
(2)纳米材料修饰电极的制备
将新制备CILE电极浸泡在含有3.0 mg/L氧化石墨烯和1.0 mg/L高氯酸锂的混合液中,缓慢搅拌并通入氮气,在-1.3V恒电位沉积还原50 s。取出后用二次蒸馏水冲洗,室温晾干后得到3DGR/CILE。其表观结构如图1中A和B所示,三维石墨烯表现出卷曲、薄片和多孔等微观结构。将上述制备的3DGR/CILE放在5.0 mmol/L HAuCl4和0.5 mol/L KNO3混合溶液中-0.4 V恒电位沉积300 s。取出后用二次蒸馏水冲洗,室温晾干后得到Au/3DGR/CILE。其表观结构如图1中C和D,纳米金表现为树枝状结构,均匀分布在石墨烯表面之上;
(3)电化学DNA传感器的制备
将Au/3DGR/CILE浸泡在10.0 mmol/L巯基乙酸溶液中,室温条件下避光自组装24小时,取出后用二次蒸馏水冲洗,记为MAA/Au/3DGR/CILE。继续将其浸入含5.0 mmol/L EDC和8.0 mmo/L NHS的pH 7.0的PBS溶液中活化30分钟,然后在电极表面均匀地滴涂10 µL探针ssDNA储备液。室温晾干后分别用5% SDS溶液和二次蒸馏水冲洗。随后将10 µL 含有目标序列的TE缓冲溶液直接滴涂在ssDNA/MAA/Au/3DGR/CILE表面。室温下杂交反应30分钟后分别用5% SDS溶液和二次蒸馏水冲洗,得到dsDNA/MAA/Au/3DGR/CILE。
实施例2
不同修饰电极的电化学行为
图2为CILE (a), Au/CILE (b), dsDNA/MAA/Au/3D-GR/CILE (c), ssDNA/MAA/Au/3D-GR/CILE (d), MAA/Au/3D-GR/CILE (e)和Au/3D-GR/CILE (f)在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合溶液中的循环伏安图。曲线b的氧化还原峰电流大于曲线a的,说明纳米金的存在可以加快电极表面电子的传递速率;曲线f的氧化还原峰电流明显大于曲线b的,说明具有大的比表面积的三维石墨烯可以大幅度的提高电极的有效面积,为纳米金的生成提供更多的结合位点。纳米金在三维石墨烯表面沉积后形成复合材料具有更好的电学性能,相应的氧化还原峰电流最大:曲线e为自组装一层MAA膜后电化学响应,由于MAA带负电性会排斥溶液中的[Fe(CN)6]3-/4-探针,因此峰电流比曲线f的要小;进一步固定ssDNA后,曲线d所对应的电流进一步降低,这是由于ssDNA上的带负电的磷酸骨架进一步阻碍了[Fe(CN)6]3-/4-的扩散;在dsDNA修饰电极(曲线c)上电流比曲线d降低,这是由于dsDNA的存在比ssDNA的阻碍作用更强。
实施例3
电化学DNA生物传感器的选择性
通过ssDNA/MAA/Au/3D-GR/CILE与不同序列的ssDNA进行杂交,研究构建的电化学DNA传感器的选择性。图3所示了MB在不同杂交情况电极上的DPV响应信号(电极浸入含有5.0×10−5 mol/L MB 的pH 7.0 PBS溶液中),曲线a到e分别为杂交前、与非互补序列杂交后、与三碱基错配序列杂交后、与单碱基错配序列杂交后、与目标序列杂交后的DPV曲线,其响应结果依次逐渐增大。原因可归结为MB仅与ssDNA发生静电吸附,然而与dsDNA不仅发生静电吸附,还与dsDNA的双螺旋结构存在沟槽作用,因此MB和dsDNA分子之间的亲和能力更强。随着碱基错配序列的减少,形成的双链结构越完整,所结合的MB分子越多,MB的DPV信号逐渐增强。因此本发明构建的电化学DNA生物传感器具有良好的选择性。
实例4
电化学DNA生物传感器的灵敏度
通过考察ssDNA/MAA/Au/3D-GR/CILE与不同浓度的目标ssDNA序列之间的杂交反应,研究了本发明中电化学DNA生物传感器的灵敏度。图4中可以看到,MB的还原峰电流值随着目标序列浓度的增大而逐渐的增大,且在1.0×10-14 ~ 1.0×10-6 mol/L的浓度范围内呈现良好的线性关系,其线性回归方程为ΔI (μA) = -21.71 log[C / (mol L-1)]-337.90(γ = 0.996),检测限为3.3×10-15 mol L-1。表明构建的电化学DNA生物传感器具有低的检测限和较宽的检测范围,呈现出良好的灵敏度。

Claims (8)

1.一种基于三维石墨烯-树枝状纳米金的电化学DNA生物传感器,其特征在于所述电化学DNA生物传感器以离子液体修饰碳糊电极作为基底电极,分别将三维石墨烯和树枝状纳米金依次地固定在电极表面,然后利用巯基乙酸与纳米金之间的Au-S共价键形成稳定的巯基乙酸自组装膜修饰电极,利用缩合反应将氨基化探针ssDNA固定到电极表面形成ssDNA修饰界面,最后采用滴涂法完成探针ssDNA与目标ssDNA的杂交,达到对目标ssDNA特异性识别检测的目的;
所述电化学DNA生物传感器的制备方法包括以下步骤:
(1)纳米材料修饰电极的制备
利用电化学沉积方法,依次将三维石墨烯和树枝状纳米金于沉积溶液中固定在离子液体修饰碳糊电极表面,用二次蒸馏水清洗电极表面后室温下晾干,即可制得Au/3DGR/CILE;
(2)巯基乙酸在电极表面的自组装
将步骤(1)中制备的修饰电极浸泡在巯基乙酸溶液中,室温条件下避光自组装24小时,取出后用二次蒸馏水冲洗,记为MAA/Au/3DGR/CILE;
(3)DNA探针的固定及与目标ssDNA的杂交
将步骤(2)中处理后的电极继续浸泡在电极活化液中,活化30分钟后取出分别用5% 十二烷基硫酸钠溶液和二次蒸馏水冲洗,然后在电极表面均匀滴涂10 μL 探针ssDNA储备液,自然晾干后分别用5% SDS溶液和二次蒸馏水冲洗,随后将10 μL 含有目标ssDNA的TE缓冲溶液直接滴涂在ssDNA/MAA/Au/3DGR/CILE表面,室温下杂交反应30分钟后分别用5%SDS溶液和二次蒸馏水冲洗,即完成分子杂交反应,得到dsDNA/MAA/Au/3DGR/CILE。
2.权利要求1所述的电化学DNA生物传感器,其特征在于所述步骤(1)中三维石墨烯和树枝状纳米金的沉积溶液分别为3.0 mg/L氧化石墨烯与1.0 mg/L高氯酸锂的混合溶液和5.0 mmol/L HAuCl4与0.5 mol/L KNO3混合溶液,沉积电位和时间分别为-1.3 V, 50 s和-0.4 V, 300 s。
3.权利要求1所述的电化学DNA生物传感器,其特征在于所述步骤(2)中巯基乙酸的浓度为10 mmol/L。
4.权利要求1所述的电化学DNA生物传感器,其特征在于所述步骤(3)中电极活化液为含有5.0 mmol/L 乙基-(3-二甲基氨丙基)碳二胺盐酸盐和8.0 mmo/L N-羟基琥珀酰亚胺的pH 7.0的磷酸盐缓冲溶液;TE缓冲溶液是由三羟甲基氨基甲烷和乙二胺四乙酸二钠配制而成;探针ssDNA储备液为含有1.0×10-6 mol/L的氨基化探针ssDNA的pH 8.0的TE缓冲溶液。
5.权利要求1所述的电化学DNA生物传感器的制备方法,其特征在于包括以下步骤:
(1)纳米材料修饰电极的制备
利用电化学沉积方法,依次将三维石墨烯和树枝状纳米金于沉积溶液中固定在离子液体修饰碳糊电极表面,用二次蒸馏水清洗电极表面后室温下晾干,即可制得Au/3DGR/CILE;
(2)巯基乙酸在电极表面的自组装
将步骤(1)中制备的修饰电极浸泡在巯基乙酸溶液中,室温条件下避光自组装24小时,取出后用二次蒸馏水冲洗,记为MAA/Au/3DGR/CILE;
(3)DNA探针的固定及与目标ssDNA的杂交
将步骤(2)中处理后的电极继续浸泡在电极活化液中,活化30分钟后取出分别用5% 十二烷基硫酸钠溶液和二次蒸馏水冲洗,然后在电极表面均匀滴涂10 μL 探针ssDNA储备液,自然晾干后分别用5% SDS溶液和二次蒸馏水冲洗,随后将10 μL 含有目标ssDNA的TE缓冲溶液直接滴涂在ssDNA/MAA/Au/3DGR/CILE表面,室温下杂交反应30分钟后分别用5%SDS溶液和二次蒸馏水冲洗,即完成分子杂交反应,得到dsDNA/MAA/Au/3DGR/CILE。
6.权利要求5所述的制备方法,其特征在于,所述步骤(1)中三维石墨烯和树枝状纳米金的沉积溶液分别为3.0 mg/L氧化石墨烯与1.0 mg/L高氯酸锂的混合溶液和5.0 mmol/LHAuCl4与0.5 mol/L KNO3混合溶液,沉积电位和时间分别为-1.3 V, 50 s和-0.4 V, 300s。
7.权利要求5所述的制备方法,其特征在于,所述步骤(2)中巯基乙酸的浓度为10mmol/L。
8.权利要求5所述的制备方法,其特征在于,所述步骤(3)中电极活化液为含有5.0mmol/L 乙基-(3-二甲基氨丙基)碳二胺盐酸盐和8.0 mmo/L N-羟基琥珀酰亚胺的pH 7.0的磷酸盐缓冲溶液;TE缓冲溶液是由三羟甲基氨基甲烷和乙二胺四乙酸二钠配制而成;探针ssDNA储备液为含有1.0×10-6 mol/L的氨基化探针ssDNA的pH 8.0的TE缓冲溶液。
CN201610215433.8A 2016-04-08 2016-04-08 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法 Active CN105907844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610215433.8A CN105907844B (zh) 2016-04-08 2016-04-08 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610215433.8A CN105907844B (zh) 2016-04-08 2016-04-08 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法

Publications (2)

Publication Number Publication Date
CN105907844A CN105907844A (zh) 2016-08-31
CN105907844B true CN105907844B (zh) 2022-02-18

Family

ID=56744784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610215433.8A Active CN105907844B (zh) 2016-04-08 2016-04-08 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法

Country Status (1)

Country Link
CN (1) CN105907844B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941881A (zh) * 2017-11-24 2018-04-20 海南师范大学 基于三维石墨烯修饰电极的肌红蛋白电化学生物传感器制备及其电催化研究
CN108535339B (zh) * 2018-03-28 2019-10-22 海南师范大学 纳米金-生物质碳复合材料修饰电极及其在木犀草素检测中的应用
CN108918623A (zh) * 2018-07-21 2018-11-30 海南师范大学 一种基于锌基金属有机骨架材料和纳米金复合材料的电化学酶传感器的制备方法和应用
US11181501B2 (en) 2018-09-11 2021-11-23 City University Of Hong Kong Method and an apparatus for determining a presence or an amount of a polyamine or its derivative in a sample
CN114509481B (zh) * 2022-01-26 2024-04-30 宁波大学 一种基于“蝴蝶效应”的电化学生物传感器制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875805A (zh) * 2012-09-28 2013-01-16 浙江理工大学 一种三维石墨烯-聚多巴胺-金纳米粒子复合材料及其制备方法
CN103063715A (zh) * 2012-11-03 2013-04-24 福建医科大学 一种基于石墨烯金复合材料电化学DNA生物传感器检测survivin基因的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875805A (zh) * 2012-09-28 2013-01-16 浙江理工大学 一种三维石墨烯-聚多巴胺-金纳米粒子复合材料及其制备方法
CN103063715A (zh) * 2012-11-03 2013-04-24 福建医科大学 一种基于石墨烯金复合材料电化学DNA生物传感器检测survivin基因的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin;fan shi等;《Materials science and engineering C》;20150902;第58卷;摘要、第450页左栏第1段、第453页左栏第3-4段 *
基于离子液体修饰碳糊电极的纳米电化学DNA传感器的研究与应用;祁晓炜;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20130630;第64页摘要、第67页5.1.2-5.1.3部分 *

Also Published As

Publication number Publication date
CN105907844A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105907844B (zh) 一种基于三维石墨烯-树枝状纳米金的电化学dna生物传感器及制备方法
Li et al. Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level
Ju et al. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity
Zou et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel
Zhuang et al. Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes
Ragupathy et al. Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube–silica network–gold nanoparticles based nanohybrid modified electrode
Ahammad et al. Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film
Muñoz et al. Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrode
Galal et al. Probing cysteine self-assembled monolayers over gold nanoparticles–Towards selective electrochemical sensors
Peng et al. Label-free electrochemical immunosensor based on multi-functional gold nanoparticles–polydopamine–thionine–graphene oxide nanocomposites film for determination of alpha-fetoprotein
Khazaei et al. Polyvinyl alcohol as a crucial omissible polymer to fabricate an impedimetric glucose biosensor based on hierarchical 3D-NPZnO/chitosan
Zhang et al. An acetylcholinesterase biosensor with high stability and sensitivity based on silver nanowire–graphene–TiO 2 for the detection of organophosphate pesticides
Li et al. Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self-assembled 11-mercaptoundecanoic acid monolayer
Shi et al. Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition
Kuralay et al. Gold nanoparticle/polymer nanocomposite for highly sensitive drug–DNA interaction
Liang et al. Fabrication, characterization, and application of potentiometric immunosensor based on biocompatible and controllable three-dimensional porous chitosan membranes
Zou et al. Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds
Tepeli et al. An electrochemical cytosensor based on a PAMAM modified glassy carbon paste electrode
Yang et al. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@ 3D-GO for sensitive and selective detection of Ag+
Bai et al. An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification
Sun et al. Fabrication of a thermal responsive hemoglobin (Hb) biosensor via Hb-catalyzed eATRP on the surface of ZnO nanoflowers
Yang et al. Determination of hydrogen peroxide using a Prussian blue modified macroporous gold electrode
Ke et al. Electrochemistry and electrocatalysis of myoglobin on carbon coated Fe 3 O 4 nanospindle modified carbon ionic liquid electrode
Li et al. Layer-by-layer assembled multilayer films of nitrogen-doped graphene and polyethylenimine for selective sensing of dopamine
Wen et al. Electrodeposited ZnO@ three-dimensional graphene composite modified electrode for electrochemistry and electrocatalysis of myoglobin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant