CN105907677A - 具有低温降解多环芳烃功能的交替假单胞菌及其应用 - Google Patents
具有低温降解多环芳烃功能的交替假单胞菌及其应用 Download PDFInfo
- Publication number
- CN105907677A CN105907677A CN201610290987.4A CN201610290987A CN105907677A CN 105907677 A CN105907677 A CN 105907677A CN 201610290987 A CN201610290987 A CN 201610290987A CN 105907677 A CN105907677 A CN 105907677A
- Authority
- CN
- China
- Prior art keywords
- pseudoalteromonas
- naphthalene
- temperature
- application
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015556 catabolic process Effects 0.000 title claims abstract description 36
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 36
- 241000519590 Pseudoalteromonas Species 0.000 title claims abstract description 17
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 title claims description 7
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims abstract description 54
- 241000519582 Pseudoalteromonas sp. Species 0.000 claims abstract description 17
- 230000000593 degrading effect Effects 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 abstract description 6
- 238000005067 remediation Methods 0.000 abstract description 2
- 241000894006 Bacteria Species 0.000 description 30
- 239000003921 oil Substances 0.000 description 26
- 230000001580 bacterial effect Effects 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 239000012531 culture fluid Substances 0.000 description 12
- 239000002609 medium Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000010779 crude oil Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 239000003209 petroleum derivative Substances 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 108020004465 16S ribosomal RNA Proteins 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 239000003305 oil spill Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000005955 Ferric phosphate Substances 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 229940032958 ferric phosphate Drugs 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 244000131316 Panax pseudoginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 208000031320 Teratogenesis Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 229910052564 epsomite Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/344—Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of mineral oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
- C02F2101/327—Polyaromatic Hydrocarbons [PAH's]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一株具有低温降解石油功能的交替假单胞菌Pseudoalteromonas sp.QN‑1,其保藏号为CGMCC No.11635。该菌株筛选自我国北方受石油污染的海域,可在低温条件下降解石油,特别是可在0℃的极端环境降解石油中的萘。本发明的交替假单胞菌QN‑1可应用于海洋石油污染的生物修复工作,尤其可应用于我国北方海域冬季(包括冰期)等低温环境下萘的降解。
Description
技术领域
本发明属于微生物技术领域,涉及一株海洋低温菌及其在海洋萘污染生物修复中的应用。所述菌株能在0℃~15℃的低温条件下降解石油烃,特别是具有在0℃的极端条件下高效降解石油烃中萘的特点,可用于我国北方海域溢油污染和萘污染的生物修复工作。
背景技术
随着海洋运输业的高速发展和海洋开采业的快速崛起,海洋溢油事故日益频发,危害巨大。特别是低温海域发生的溢油由于温度低,使有机污染物持久存在,会对当地生态系统造成更大的危害。石油中多环芳烃(PAHs)具有广泛的毒性、致癌性及致畸诱变作用,通过生物累积及食物链的传递作用,会给海洋生物和人类健康带来极大危害,已经引起各国学者的高度重视。虽然PAHs在原油中的含量仅占1%左右,但通常溢油总量较大,因此其中PAHs的含量不容忽视。利用微生物修复海洋溢油具有成本低、效果好、对环境负面影响小、无二次污染等优点,因此日益受到人们的重视。环境温度对石油的生物降解影响很大,而我国北方海域冬季的海洋表面温度较低,大约在2℃左右,部分海域也会有结冰期。虽然目前已经发现了一些海洋石油烃低温降解菌,但菌源主要来自极地环境,而且多是烷烃低温降解菌,PAHs低温降解菌非常少。由于自然环境相当复杂,外源菌的进入会给本地生态环境带来诸多问题。为了避免引入大量外来菌种而造成海洋原有生态系统的破坏,进行生物修复时应选用土著菌种。但是,目前我国关于海洋石油烃低温降解菌的研究较少,特别是对海洋PAHs低温降解菌的研究成果更为匮乏。萘为常见的PAHs,本发明的内容是提供一株筛选自我国北方受污染海域的石油降解菌,该菌为交替假单胞菌,可在低温条件下降解石油,特别是可在0℃的极端环境下高效地降解萘。
发明内容
本发明的目的在于针对上述现有技术的不足提供一株在低温条件下可降解石油的海洋石油降解菌。该菌株筛选自我国北方受石油污染的海域,可在低温条件下降解石油中的多环芳烃,特别是可在0℃的极端环境下高效地降解石油中的萘。
本发明所提供的具有在低温条件下降解多环芳烃功能的交替假单胞菌(Pseudoalteromonas sp.)QN-1是从胶州湾海域筛选获得的。2013年11月22,中石化输油储运公司潍坊分公司输油管线破裂。事故发生后,部分原油沿着雨水管线进入胶州湾,污染附近海域。溢油发生一周后,取表层被原油污染的海水,经过筛选得到Pseudoalteromonas sp.QN-1。
该菌株已在中国微生物菌种保藏管理委员会普通微生物中心(简称:CGMCC,地址为:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编:100101)保藏,保藏号为CGMCC No.11635,保藏日期为2015年11月09日。
本发明的Pseudoalteromonas sp.QN-1的特征如下:
(1)菌落特征:乳白、近似圆形、隆起、光滑、湿润。
(2)遗传学特征:16S rDNA分析,表明其属于交替假单胞菌属(Pseudoalteromonas)。菌株Pseudoalteromonas sp.QN-1的16S rDNA序列具体可见序列表。
(3)萘降解性能特征:在0℃的条件下,经过30天的降解实验后,萘降解率可达80.6%。
本发明还提供交替假单胞菌(Pseudoalteromonas sp.)QN-1在低温条件下降解石油中的应用,优选地,该菌降解石油中的石油烃,更优地该菌高效地降解萘。所述低温条件是指0℃~15℃,尤其是指0℃。本发明的交替假单胞菌QN-1可应用于海洋石油污染的生物修复中,尤其可应用于低温环境中。
本发明的有益效果:
本发明的Pseudoalteromonas sp.QN-1是一株高效海洋低温萘降解菌,即使是在0℃的条件下还能保持较高的萘降解活力。
本发明的菌株培养方法简单,培养基原料易得。该菌株对萘降解能力强,对菲和蒽等PAHs也具有一定降解能力,对石油中烷烃也具有一定降解能力,适用于海洋萘污染的生物修复工作,也可为我国北方海域溢油(包括冰期溢油)的生物修复工作提供优良的PAHs降解菌。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。另外,下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学试剂公司购买。
下述实施例采用的培养基及其组成为如下:
MMC培养基为:NaCl 24g,NH4NO3 1.0g,KCl 0.7g,KH2PO4 2.0g,Na2HPO43.0g,MgSO4·7H2O 7.0g,微量元素CaCl2 0.02mg/L,FeCl3·6H2O 0.5mg/L,CuSO40.005mg/L,MnCl2·4H2O 0.005mg/L,ZnSO4·7H2O 0.1mg/L,加去离子水至1L,pH 7.4;
2216E液体培养基为:蛋白胨5g,酵母膏1g,磷酸高铁0.1g,加去离子水至1000mL,pH值7.4~7.8;
2216E琼脂培养基为:蛋白胨5g,酵母膏1g,磷酸高铁0.1g,琼脂15g,加去离子水至1000mL,pH值7.4~7.8。
实施例1菌株Pseudoalteromonas sp.QN-1的分离与鉴定
菌株Pseudoalteromonas sp.QN-1的分离
(1)样品采集:胶州湾;
(2)富集驯化:于250mL三角瓶中加入100mL MMC培养液,120℃下灭菌15min。二氯甲烷用0.22μm孔径的耐有机溶剂滤膜过滤除菌。称取0.2g萘溶于20mL除菌后的二氯甲烷中,然后转入到已灭菌的100mL MMC培养液里,放于摇床上振荡过夜使二氯甲烷挥发。待二氯甲烷挥发后,加入海水样品5mL,置入低温生化培养箱,于120r/min、10℃下振荡培养30d,然后从中取5mL培养液再次转接:将5mL培养液加入到含有0.2g萘的100mL MMC培养液中(处理方法同上),于120r/min条件下培养30d。每轮培养温度降低1℃,直至0℃,并在0℃条件下长期驯化。
(3)分离纯化:将经过富集驯化的微生物培养液进行梯度稀释,并在2216E固体培养基上进行平板划线,0℃培养直至长出清晰菌落。挑选生长良好的菌落,在已灭菌的2216E固体培养基上分3个区域进行划线,置入生化培养箱,于0℃下培养。挑取3区具有生长优势的单菌落,进行二次划线分离。如此反复多次划线,直到分离出菌落单一的菌株,命名为菌株QN-1。
2.菌株Pseudoalteromonas sp.QN-1的鉴定
(1)菌落特征:乳白、近似圆形、隆起、光滑、湿润。
(2)遗传学特征:16S rDNA分析,表明其属于交替假单胞菌属(Pseudoalteromonas),被分类为交替假单胞菌(Pseudoalteromonas sp.)。该菌株已在中国微生物菌种保藏管理委员会普通微生物中心保藏,其保藏号为CGMCC No.11635,保藏日期为2015年11月09日。16S rDNA序列如SEQ IDNo.1。
实施例2菌株Pseudoalteromonas sp.QN-1的发酵
用无菌接种环挑取纯化后的菌苔至装有100mL已灭菌的2216E液体培养基的三角瓶锥形中,低温振荡培养7d(0℃,120r/min),成为种子液;将种子液按10%体积比加入2216E液体培养基中,0℃下培养7天,获得发酵液。
实施例3在0℃条件下菌株Pseudoalteromonas sp.QN-1萘降解率的测定
(1)降解菌种子液
用无菌接种环挑取纯化后的菌苔至装有100mL已灭菌的2216E液体培养基的三角瓶锥形中,低温振荡培养7d(0℃,120r/min)。
(2)降解培养
称取0.2g萘溶于20mL已过滤灭菌的正己烷中,移至装有100mL已灭菌的MMC液体培养基的三角瓶锥形中,放置到振荡器上振荡直至正己烷挥发完全,按照10%的接种量接种降解菌种子液,低温振荡培养30d(0℃,120r/min)。以不接种降解菌的培养液作为空白组。
(3)萃取
降解培养结束后,在培养液中加入3mL 50%的硫酸溶液进行酸化。将酸化后的培养液移入250mL的分液漏斗中。用20mL的正己烷清洗空三角瓶后把正己烷倒入分液漏斗,充分振荡后静置。液体明显分层后把下层液体转至三角瓶中,上层液离心后通过铺满无水硫酸钠的砂芯漏斗过滤除水后收集,进行下一步分析。萃取2~3次,然后合并上层液,旋转蒸发,进行气相色谱分析。
(4)气相色谱法测量
气相色谱仪实验条件:载气N2流量25mL/min;H2流量30mL/min;汽化室温度280℃;毛细管色谱柱30(l)m×0.32(d)mm;FID检测器温度300℃;柱头压力145KPa;进样量为1μL;进样方式为不分流进样。气相色谱程序升温条件:初始温度60℃,每分钟升温20℃,在100℃保留2min,然后每分钟升温20℃,在280℃保留5min。
标准曲线绘制:用正己烷做为溶剂,分别配制50ppm、100ppm、200ppm、300ppm、400ppm、500ppm的萘标准溶液。将标准溶液进行气相色谱分析,以萘浓度为横坐标,峰面积为纵坐标,绘制标准曲线。
将空白组和实验组的萘溶液进行气相色谱分析,得到出峰面积,根据标准曲线可得萘浓度。
(5)结果
萘降解率的计算:降解率D=(C0-C1)/C0×100%
式中C0:空白瓶(不加菌)中萘的浓度;C1:实验瓶(加菌)中萘的浓度。
计算结果降解率为80.6%,说明在0℃条件下本发明的菌株对萘具有高效的降解能力。
实施例4菌株Pseudoalteromonas sp.QN-1石油烃降解率的测定
(1)降解菌种子液
0℃组:用无菌接种环挑取纯化后的菌苔至装有100mL已灭菌的2216E液体培养基的三角瓶锥形中,低温振荡培养7d(0℃,120r/min)。
15℃组:用无菌接种环挑取纯化后的菌苔至装有100mL已灭菌的2216E液体培养基的三角瓶锥形中,低温振荡培养5d(15℃,120r/min)。
(2)降解培养
0℃组:称取0.5g原油溶于20mL已过滤灭菌的正己烷中,移至装有100mL已灭菌的MMC液体培养基的三角瓶锥形中,放置到振荡器上振荡直至正己烷挥发完全,按照10%的接种量接种菌株Pseudoalteromonas sp.QN-1种子液,低温振荡培养60d(0℃,120r/min)。以不接种降解菌的培养液作为空白组。
15℃组:称取0.5g原油溶于20mL已过滤灭菌的正己烷中,移至装有100mL已灭菌的MMC液体培养基的三角瓶锥形中,放置到振荡器上振荡直至正己烷挥发完全,按照10%的接种量接种菌株Pseudoalteromonas sp.QN-1种子液,低温振荡培养60d(15℃,120r/min)。以不接种降解菌的培养液作为空白组。
(3)萃取
降解培养结束后,在培养液中加入3mL 50%的硫酸溶液进行酸化。将酸化后的培养液移入250mL的分液漏斗中。用20mL的正己烷清洗空三角瓶后把正己烷倒入分液漏斗,充分振荡后静置。液体明显分层后把下层液体转至三角瓶中,上层液离心后通过铺满无水硫酸钠的砂芯漏斗过滤除水后收集,进行下一步分析。萃取2~3次,然后合并上层液。
(4)原油标准曲线绘制
称取0.1g油样品溶于正己烷中,移至100ml的容量瓶中,定容得到浓度为1.00mg/ml的油标准储备溶液。移取5ml油标准储备溶液于50ml容量瓶中,用正己烷定容,得到浓度为0.1mg/ml油标准使用液。分别移取一定量的0.1mg/ml油标准使用液于25ml容量瓶中,用正己烷定容,得到一系列已知浓度的油溶液。采用紫外分光光度法,在227nm处测其吸光度。以油浓度为纵坐标,吸光度为横坐标,绘制标准曲线。
(5)吸光度测量
采用紫外分光光度计进行测量。在227nm的波长下,以正己烷的吸光度为参比,用10mm石英比色皿测萃取液吸光度。若吸光值超过标准曲线范围,则对萃取液按照1/10的比例逐级稀释。根据标准曲线,算出其相应的浓度。
(6)结果
降解率的计算:降解率D=(C0-C1)/C0×100%
式中C0:空白瓶(不加菌)中原油的浓度;C1:实验瓶(加菌)中原油的浓度。
计算结果为在0℃和15℃条件下,石油烃降解率分别为21%和40%。说明在低温条件下本发明的菌株对石油烃具有一定的降解能力。
Claims (7)
1.一株在海洋环境中具有低温降解多环芳烃功能的交替假单胞菌Pseudoalteromonas sp.QN-1,其保藏号为CGMCC No.11635。
2.如权利要求1所述的交替假单胞菌QN-1在低温条件下降解石油中的应用。
3.根据权利要求2所述的应用,其特征在于,所述交替假单胞菌QN-1降解多环芳烃。
4.根据权利要求3所述的应用,其特征在于,所述交替假单胞菌QN-1降解萘。
5.根据权利要求2~4的任一项所述的应用,其特征在于,所述低温条件为0℃~15℃。
6.根据权利要求2~4的任一项所述的应用,其特征在于,所述降解石油的环境为海洋环境。
7.根据权利要求5所述的应用,其特征在于,所述低温条件为0℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610290987.4A CN105907677B (zh) | 2016-05-04 | 2016-05-04 | 具有低温降解多环芳烃功能的交替假单胞菌及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610290987.4A CN105907677B (zh) | 2016-05-04 | 2016-05-04 | 具有低温降解多环芳烃功能的交替假单胞菌及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105907677A true CN105907677A (zh) | 2016-08-31 |
CN105907677B CN105907677B (zh) | 2019-09-06 |
Family
ID=56752436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610290987.4A Active CN105907677B (zh) | 2016-05-04 | 2016-05-04 | 具有低温降解多环芳烃功能的交替假单胞菌及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105907677B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048376A (zh) * | 2018-02-06 | 2018-05-18 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn3及其应用 |
CN108102978A (zh) * | 2018-02-06 | 2018-06-01 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn8及其应用 |
CN108467841A (zh) * | 2018-03-23 | 2018-08-31 | 辽宁大学 | 蛭石固定化耐低温降解多环芳烃混合菌颗粒及其制备方法和应用 |
CN109929781A (zh) * | 2019-03-26 | 2019-06-25 | 中国矿业大学 | 一株降解菲的菌株及其在土壤修复中的应用 |
CN114703222A (zh) * | 2022-03-15 | 2022-07-05 | 上海市农业科学院 | 一种可完全降解多环芳烃植物的培育方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105176888A (zh) * | 2015-10-22 | 2015-12-23 | 中国石油大学(华东) | 一株假单胞菌及其在降解石油类污染物中的应用 |
-
2016
- 2016-05-04 CN CN201610290987.4A patent/CN105907677B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105176888A (zh) * | 2015-10-22 | 2015-12-23 | 中国石油大学(华东) | 一株假单胞菌及其在降解石油类污染物中的应用 |
Non-Patent Citations (7)
Title |
---|
BRIAN P. HEDLUND,ET AL: "Isolation and characterization of strains with divergent polycyclic aromatic hydrocarbon catabolic properties", 《ENVIRONMENTAL MICROBIOLOGY》 * |
PANAGIOTA-MYRSINI CHRONOPOULOU,ET AL: "Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea", 《MICROBIAL BIOTECHNOLOGY》 * |
ZHENG ZHOU,ET AL: "Antarctic Psychrophile Bacteria Screening for Oil Degradation and Their Degrading Characteristics", 《MARINE SCIENCE BULLETIN》 * |
ZHISONG CUI,ET AL: "Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge", 《ENVIRONMENTAL MICROBIOLOGY》 * |
王以斌等: "南极海洋低温萘降解茵的筛选、鉴定及其降解特性研究", 《海洋科学进展》 * |
郑洲等: "南极多环芳烃低温降解菌的筛选及其降解特性研究", 《现代农业科技》 * |
郑洲等: "南极石油烃降解嗜冷菌的筛选及其降解特性的研究", 《海洋科学进展》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048376A (zh) * | 2018-02-06 | 2018-05-18 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn3及其应用 |
CN108102978A (zh) * | 2018-02-06 | 2018-06-01 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn8及其应用 |
CN108102978B (zh) * | 2018-02-06 | 2020-08-04 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn8及其应用 |
CN108048376B (zh) * | 2018-02-06 | 2020-08-04 | 北京大学 | 一种含油污泥中石油烃类的降解菌株jn3及其应用 |
CN108467841A (zh) * | 2018-03-23 | 2018-08-31 | 辽宁大学 | 蛭石固定化耐低温降解多环芳烃混合菌颗粒及其制备方法和应用 |
CN109929781A (zh) * | 2019-03-26 | 2019-06-25 | 中国矿业大学 | 一株降解菲的菌株及其在土壤修复中的应用 |
CN114703222A (zh) * | 2022-03-15 | 2022-07-05 | 上海市农业科学院 | 一种可完全降解多环芳烃植物的培育方法 |
CN114703222B (zh) * | 2022-03-15 | 2024-02-02 | 上海市农业科学院 | 一种可完全降解多环芳烃植物的培育方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105907677B (zh) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105907677A (zh) | 具有低温降解多环芳烃功能的交替假单胞菌及其应用 | |
Medina-Moreno et al. | Hydrocarbon pollution studies of underwater sinkholes along Quintana Roo as a function of tourism development in the Mexican Caribbean | |
Zhao et al. | The occurrence and spatial distribution of phthalate esters (PAEs) in the Lanzhou section of the Yellow River | |
Mahfooz et al. | Field testing phytoremediation of organic and inorganic pollutants of sewage drain by bacteria assisted water hyacinth | |
CN101586148B (zh) | 一种应用原生动物纤毛虫降解石油的方法 | |
Chebbi et al. | Biodegradation of malodorous mercaptans by a novel Staphylococcus capitis strain isolated from gas-washing wastewaters of the Tunisian Chemical Group | |
Kosek et al. | Phytoplankton communities of polar regions–Diversity depending on environmental conditions and chemical anthropopressure | |
Chen et al. | Spatiotemporal distribution and particle–water partitioning of polycyclic aromatic hydrocarbons in Bohai Sea, China | |
Stoma et al. | Biological activity of microbial communities in soils of some Russian cities | |
Hiatt et al. | Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams | |
Hocinat et al. | Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils | |
CN106434413B (zh) | 一种植生拉乌尔菌以及利用该菌降解土壤中芘的方法 | |
Kai et al. | Effects of basal fertilizer and perlite amendment on growth of zinnia and its remediation capacity in oil-contaminated soils | |
Bidleman et al. | Chiral pesticides in soil and water and exchange with the atmosphere | |
CN110317745A (zh) | Ralstonia pickettii M1菌株及其在降解菲和联苯中的应用 | |
Oyedeji | Impacts of selected leguminous tree species and kaolinite pre-amendment on oil-contaminated soil for bioremediation in the oil-bearing region of Nigeria | |
Shkidchenko et al. | Biodegradation of black oil by microflora of the Bay of Biscay and biopreparations | |
Albright et al. | Microbial dynamics of two sub-Arctic Canadian rivers | |
CN105907675B (zh) | 一株具有低温降解石油功能的红球菌及其应用 | |
CN106929454A (zh) | 一株具有石油降解和凝聚性能的菌株cs07及其应用 | |
Fan et al. | Remediation of petroleum contaminated tidal flat sediments by co-bioremediation system | |
CN105907676B (zh) | 一株具有低温降解石油功能的交替假单胞菌及其应用 | |
CN107815430B (zh) | 一株具有低温耐盐高效芘降解功能菌株bw02和其用途 | |
Akinwole et al. | Elucidating stream bacteria utilizing terrestrial dissolved organic matter | |
Douglas et al. | Bioremediation of crude oil polluted terrestrial soil using Aspergillus clavatus and Pichia spp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160831 Assignee: PANJIN GUOQIANG PETROLEUM EQUIPMENT MANUFACTURING CO.,LTD. Assignor: Dalian Maritime University Contract record no.: X2024210000006 Denomination of invention: Pseudomonas alternata with low-temperature degradation of polycyclic aromatic hydrocarbons and its application Granted publication date: 20190906 License type: Common License Record date: 20240115 |
|
EE01 | Entry into force of recordation of patent licensing contract |