CN105906964A - 一种阻燃高分子复合材料及其制备方法 - Google Patents

一种阻燃高分子复合材料及其制备方法 Download PDF

Info

Publication number
CN105906964A
CN105906964A CN201610318678.3A CN201610318678A CN105906964A CN 105906964 A CN105906964 A CN 105906964A CN 201610318678 A CN201610318678 A CN 201610318678A CN 105906964 A CN105906964 A CN 105906964A
Authority
CN
China
Prior art keywords
flame
retardant
molecular composite
retardant high
environmental protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610318678.3A
Other languages
English (en)
Other versions
CN105906964B (zh
Inventor
郭正虹
冉诗雅
方征平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fu Day Science And Technology Co ltd
Original Assignee
Ningbo Institute of Technology of ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Technology of ZJU filed Critical Ningbo Institute of Technology of ZJU
Priority to CN201610318678.3A priority Critical patent/CN105906964B/zh
Publication of CN105906964A publication Critical patent/CN105906964A/zh
Application granted granted Critical
Publication of CN105906964B publication Critical patent/CN105906964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种阻燃高分子复合材料,其特征在于:该材料含有环保溴系阻燃剂、石墨烯微片和助分散剂;其中高分子材料为聚苯乙烯。本发明创造性的添加了石墨烯微片于阻燃材料中,并准确限定了其添加量;石墨烯微片属于凝聚相阻燃,主要是在燃烧过程中形成网络结构,使材料燃烧时呈现“类固体”行为,网络结构可以有效抑制聚合物分子链的热运动,并阻隔气体与热量的交换。从阻燃效果上看,石墨烯微片只需添加极少量即可显著降低聚合物的热释放速率和烟密度;实现了预料不到的技术效果。

Description

一种阻燃高分子复合材料及其制备方法
技术领域
本发明涉及有机合成、高分子复合材料的共混、材料阻燃及力学性能测试等工艺过程,具体涉及一种环保溴系阻燃剂与石墨烯微片复配而成的阻燃高分子复合材料,以及该材料的制备方法以及性能测试。
技术背景
欧盟接连颁布的RoHS、WEEE和REACH等一系列环保指令,在高分子阻燃材料领域掀起了一场“无卤化”风暴。但是,判断阻燃剂的优劣,应该从其应用范围、阻燃效率、可靠性、成本和环境健康影响等诸多方面进行评判,而不应仅仅着眼于其化学结构中是否含有卤素。
就目前情况看,溴系阻燃剂具有阻燃效率高,对基材力学性能影响小、热稳定性和流动性好等优点,仍然是高分子材料最常用的阻燃剂之一,其综合阻燃效果是目前所有阻燃剂中最好的。更为重要的是,目前已有不少商品化的环保溴系阻燃剂,它们高效、无毒、无致癌性,完全符合RoHS等环保指令要求。
溴系阻燃剂目前面临的最大问题在于其气相阻燃机理不可避免带来的燃烧过程中会释放出的大量烟气。在燃烧过程中产生烟气能力和危害上,高分子材料与原生态材料相比更是有过之而无不及。据统计,火灾中死亡的人员85%以上都是由于吸入烟气致死的。
2007年3月1日,强制性国家标准《公共场所阻燃制品及组件燃烧性能要求和标识》(GB20286-2006)正式发布,规定从2008年7月1日起,凡是达不到GB20286-2006阻燃标准要求的6类制品将不得在公共场所使用。新的国家标准GB20286-2006中的阻燃性能概念与传统概念有很大差异,过去阻燃往往只是要求材料不易被小火源引燃,而新标准不仅是要求材料不易被小火源引燃,而且还要尽可能低的热释放和烟释放。
发明内容
本发明针对现有溴系阻燃高分子材料在燃烧过程会释放出大量烟气的问题,提供了一种利用石墨烯微片与环保溴系阻燃剂复配、充分发挥两者在高分子材料阻燃上的协效作用,从而优化现有环保溴系阻燃剂的阻燃效果,符合现代社会对环保更严苛研究的阻燃高分子复合材料。
为了解决上述技术问题,本发明采用的技术方案为:一种阻燃高分子复合材料,该材料含有环保溴系阻燃剂、石墨烯微片和助分散剂;其中高分子材料为聚苯乙烯。
具体的,本发明上述的阻燃高分子复合材料,该材料由以下重量百分比的各组分制备:
进一步优选,本发明所述的阻燃高分子复合材料,该材料由以下重量百分比的各组分制备:
本发明所述的高分子材料为聚苯乙烯,市售产品,对性能无特殊要求。
本发明所述的环保溴系阻燃剂为溴化聚苯乙烯,市售产品,溴含量大于65%(质量百分比),此处之所以强调溴的含量是因为:溴含量低,虽然加入石墨烯微片和助分散剂后一样可以达到很好的抑烟效果,但是材料的力学性能等综合性能不好(比如材料很脆),不具备使用价值。
本发明所述的石墨烯微片为10-20层(碳层数)石墨烯组成的石墨烯片层微晶,碳含量大于99.5%,堆砌密度2.20-2.26g/cm3。本发明的石墨烯微片是以晶体形式存在的,堆砌密度说明了它的结晶情况,结晶度太高也就是密度太高,不利于加工的时候石墨烯微片的分散,结晶度太低也就是密度太低,说明结晶不完全,晶体内的缺陷较多,这样的石墨烯微片会导致产品强度低;本发明通过合理控制石墨烯微片的堆砌密度成功实现分散度均匀且产品强度高的效果。
本发明所述的助分散剂为无水三氯化铝,分析纯,用于促进石墨烯微片在基体中的均匀
本发明还提供一种上述阻燃高分子复合材料的制备方法,制备步骤包括:
(1)先将高分子材料、环保溴系阻燃剂、石墨烯微片、助分散剂在80-90℃烘箱中干燥4-8h(本发明的干燥就是为了防止物料存储过程中吸水,如果有吸水的情况,加工的时候材料粘度低,出来的制品发脆,光泽度不好);
(2)再将高分子材料、环保溴系阻燃剂、石墨烯微片、助分散剂预混后加入到密炼机中,在150-180℃,60-90r/min条件下熔融共混8-15min,得到阻燃高分子复合材料。
由于以上技术方案的实施,本发明与现有技术相比具有以下优点:
1.本发明创造性的添加了石墨烯微片于阻燃材料中,并准确限定了其添加量;石墨烯微片属于凝聚相阻燃,主要是在燃烧过程中形成网络结构,使材料燃烧时呈现“类固体”行为,网络结构可以有效抑制聚合物分子链的热运动,并阻隔气体与热量的交换。从阻燃效果上看,石墨烯微片只需添加极少量(0.5-1.5%)即可显著降低聚合物的热释放速率和烟密度;实现了预料不到的技术效果。
2.本发明制备的阻燃材料,由于采用将溴系阻燃剂和石墨烯微片复配,材料燃烧过程中,石墨烯微片与聚合物链段缠结形成了传热容易、强度较高的网络结构,溴系阻燃剂在网络结构形成的密闭空间中,发挥捕获自由基的作用,阻止燃烧中产生的气体、自由基等扩散出去,在基体内部切断聚合物的自由基热降解反应,阻隔“烟气通道”,达到抑烟抑热的效果。
3.本发明针对电子电器制品中使用的环保溴系阻燃改性工程塑料,在燃烧过程中的高发热量和高发烟量,积极探求解决溴系阻燃剂在烟密度、热释放速率等方面的问题方案,为实现溴系阻燃剂的“低热低烟化”,推动阻燃行业多种阻燃剂的协调发展,满足日益严格的阻燃剂生产和使用标准提供技术支持。
4.本发明的阻燃材料,添加了助分散剂,使得石墨烯微片在整个复配材料中均匀分散、且没有明显的团聚现象,从而进一步发挥石墨烯微片的阻燃效果。
5.本发明制备得到的环保溴系阻燃剂与石墨烯微片复配的低烟阻燃高分子材料,具有优异的综合阻燃效果,在燃烧过程中的烟释放量非常低,有效缓解了溴系阻燃高分子材料产烟量大的问题。
6.本发明的制备加工方法简单易行,且效果明显,适合实际的应用。
附图说明
图1实施例2(a)和实施例3(b)的透射电镜图片。
图2实施例1(a,b)、实施例2(c,d)和实施例3(e,f)在马弗炉400℃下热处理5min后残炭表面的扫描电子显微镜图片。
具体实施方式
下面通过具体实施例对本发明做进一步详细描述,但本发明不仅仅局限于以下实施例。该领域的技术熟练人员根据本发明内容对本发明作出的一些非本质的改进和调整仍属于本发明的保护范围。
实施例配方如下表1所示:
本发明以下实施例使用的各种原材料,不做特殊说明均为市售产品。
表1.实施例的配方及样品编号
不同实施例的样品按上述表格中的重量百分比(wt%)进行配料和熔融共混。
实施例阻燃性能
本实施例阻燃性能测试采用锥形量热测试仪,按照ISO 5660-1标准,样品尺寸为100×100×3mm3,测试热流为50kW/m2,每个样品测试5个样条,然后按照标准中规定的修正法,计算材料的,测试结果如表2所示:
表2.本发明实施例的锥形量热测试结果
从表2中可以看到,对于没有加入石墨烯微片和助分散剂的实施例1,燃烧过程中释放的热量较大,产烟量特别突出,燃烧持续的时间较长,烟气释放持续的时间也很长;当加入石墨烯微片后,在实施例2中,由于石墨烯微片在材料基体中可以形成炭层,有利于阻止燃烧的扩散,所以燃烧过程中的放热量和产烟量都降低了一些,燃烧持续时间和烟气释放持续时间也缩短了;而对于实施例3-6,由于在材料中加入了助分散剂,石墨烯微片可以在材料中均匀分散(参考附图1:附图显示加入助分散剂后,石墨烯微片的尺寸变小了,分散变得均匀了),有利于在燃烧过程中形成更加致密而连续的炭层,避免了实施例2中可能出现的炭层塌陷和孔洞现象(参考附图2:附图显示实施例1在高温下高分子链段基本上都被热降解,仅有微量的残炭剩余;而对于实施例2,加入石墨烯微片后构筑成类似网络的屏障,可以保护其中的高分子材料免收热的损伤,但是炭层网络不够连续,还有很多的孔洞,甚至塌陷;当加入助分散剂后,实施例3的炭层变得更加连续而致密,能够有效阻止气相和凝聚相热量和烟气的传递。),从而更加有效的阻止了热量和烟气的释放,燃烧持续的时间大大缩短,烟气释放持续的时间也大大缩短,这对于在燃烧过程中挽救人民生命安全具有极为重要的意义。

Claims (8)

1.一种阻燃高分子复合材料,其特征在于:该材料含有环保溴系阻燃剂、石墨烯微片和助分散剂;其中高分子材料为聚苯乙烯。
2.根据权利要求1所述的阻燃高分子复合材料,其特征在于:该材料由以下重量百分比的各组分制备:
3.根据权利要求2所述的阻燃高分子复合材料,其特征在于:该材料由以下重量百分比的各组分制备:
4.根据权利要求2所述的阻燃高分子复合材料,其特征在于:所述的高分子材料为聚苯乙烯。
5.根据权利要求2所述的阻燃高分子复合材料,其特征在于:所述的环保溴系阻燃剂为溴含量大于65%的溴化聚苯乙烯。
6.根据权利要求2所述的阻燃高分子复合材料,其特征在于:所述的石墨烯微片为10-20层石墨烯组成的石墨烯片层微晶,碳含量大于99.5%,堆砌密度2.20-2.26g/cm3
7.根据权利要求2所述的阻燃高分子复合材料,其特征在于:所述的助分散剂为无水三氯化铝。
8.根据权利要求2所述的阻燃高分子复合材料的制备方法,其特征在于:制备步骤包括:
(1)先将高分子材料、环保溴系阻燃剂、石墨烯微片、助分散剂在80-90℃烘箱中干燥4-8h;
(2)再将高分子材料、环保溴系阻燃剂、石墨烯微片、助分散剂预混后加入到密炼机中,在150-180℃,60-90r/min条件下熔融共混8-15min,得到阻燃高分子复合材料。
CN201610318678.3A 2016-05-13 2016-05-13 一种阻燃高分子复合材料及其制备方法 Active CN105906964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610318678.3A CN105906964B (zh) 2016-05-13 2016-05-13 一种阻燃高分子复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610318678.3A CN105906964B (zh) 2016-05-13 2016-05-13 一种阻燃高分子复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105906964A true CN105906964A (zh) 2016-08-31
CN105906964B CN105906964B (zh) 2018-08-31

Family

ID=56749070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610318678.3A Active CN105906964B (zh) 2016-05-13 2016-05-13 一种阻燃高分子复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105906964B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883540A (zh) * 2017-04-14 2017-06-23 明光市安盛非金属材料厂 一种高阻燃凹凸棒土基纳米复合材料及制备方法
CN110975435A (zh) * 2019-12-23 2020-04-10 应城市天润产业用布有限责任公司 一种工业除尘的复合过滤材料及其制备工艺
CN114318579A (zh) * 2022-01-12 2022-04-12 东华大学 高隔热抑烟的聚苯硫醚复合材料的制备方法及复合纤维

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1373329B1 (en) * 2001-03-12 2007-05-30 Albemarle Corporation Improved brominated polystyrenic resins
CN103819597A (zh) * 2014-02-19 2014-05-28 哈尔滨工业大学 含石墨烯的可发性聚苯乙烯聚合物的制备方法
CN104448884A (zh) * 2014-11-13 2015-03-25 苏州经贸职业技术学院 一种阻燃石墨烯纳米复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1373329B1 (en) * 2001-03-12 2007-05-30 Albemarle Corporation Improved brominated polystyrenic resins
CN103819597A (zh) * 2014-02-19 2014-05-28 哈尔滨工业大学 含石墨烯的可发性聚苯乙烯聚合物的制备方法
CN104448884A (zh) * 2014-11-13 2015-03-25 苏州经贸职业技术学院 一种阻燃石墨烯纳米复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RAN S.Y,等: "Effect of friedel-Crafts reaction on the thermal stability and flammability of HDPE/BPS/GNPs composites", 《POLYMER INTERNATIONAL》 *
SHIYA RAN,等: "Effect of a Lewis Acid Catalyst on the Performance of HDPE/BFR/GNPs Composites", 《INDUSTRIAL & ENGINEERING CHEMISTRY REASEARCH》 *
杨鸣波,等: "《塑料改性使用技术与应用》", 30 June 2014, 中国轻工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883540A (zh) * 2017-04-14 2017-06-23 明光市安盛非金属材料厂 一种高阻燃凹凸棒土基纳米复合材料及制备方法
CN110975435A (zh) * 2019-12-23 2020-04-10 应城市天润产业用布有限责任公司 一种工业除尘的复合过滤材料及其制备工艺
CN114318579A (zh) * 2022-01-12 2022-04-12 东华大学 高隔热抑烟的聚苯硫醚复合材料的制备方法及复合纤维
CN114318579B (zh) * 2022-01-12 2024-03-15 东华大学 高隔热抑烟的聚苯硫醚复合材料的制备方法及复合纤维

Also Published As

Publication number Publication date
CN105906964B (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
Sun et al. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high‐density polyethylene/ethylene vinyl‐acetate/expandable graphite composites
CN105906964A (zh) 一种阻燃高分子复合材料及其制备方法
Xu et al. Component ratio effects of hyperbranched triazine compound and ammonium polyphosphate in flame‐retardant polypropylene composites
Akdogan et al. Synergistic effects of expandable graphite and ammonium pentaborate octahydrate on the flame‐retardant, thermal insulation, and mechanical properties of rigid polyurethane foam
Wen et al. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene
Zhou et al. Application of intumescent flame retardant containing aluminum diethyphosphinate, neopentyl glycol, and melamine for polyethylene
Ai et al. Synergistic flame retardant effect of organic phosphorus–nitrogen and inorganic boron flame retardant on polyethylene
Kuan et al. Preparation of expandable graphite via H2O2‐hydrothermal process and its effect on properties of high‐density polyethylene composites
Nie et al. Investigation on flame retardancy and thermal degradation of flame retardant poly (butylene succinate)/bamboo fiber biocomposites
Qin et al. Synergistic effect of modified expanded graphite and zinc borate on the flammability, thermal stability and crystallization behavior of LLDPE/EVA composites with Mg (OH) 2/Al (OH) 3
Ding et al. The combination of expandable graphite, organic montmorillonite, and magnesium hydrate as fire‐retardant additives for ethylene–propylene–diene monomer/chloroprene rubber foams
Li et al. Synergistic flame retardant effects of ammonium polyphosphate in ethylene‐vinyl acetate/layered double hydroxides composites
CN103613827B (zh) 碳纳米管桥连苯基膦酸稀土盐复配十溴二苯乙烷阻燃聚乙烯及其制备方法
Huang et al. Combination effect of organics‐modified montmorillonite with intumescent flame retardants on thermal stability and fire behavior of polyethylene nanocomposites
Zheng et al. Flame‐retardant properties of acrylonitrile–butadiene–styrene/wood flour composites filled with expandable graphite and ammonium polyphosphate
Jia et al. Flame retardant ethylene‐vinyl acetate composites based on layered double hydroxides with zinc hydroxystannate
Zhao et al. Synergistic effects of pentaerythritol with aluminum hypophosphite in flame retardant ethylene‐vinyl acetate composites
Hu et al. Metal‐phenolic networks: a biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy
Dang et al. Influences of 4ZnO· B2O3· H2O whisker based intumescent flame retardant on the mechanical, flame retardant and smoke suppression properties of polypropylene composites
Luo et al. Enhanced Thermal Insulation and Flame‐Retardant Properties of Polyvinyl Alcohol‐Based Aerogels Composited with Ammonium Polyphosphate and Chitosan
Li et al. Improving the fire performance of structural insulated panel core materials with intumescent flame-retardant epoxy resin adhesive
Jiao et al. Properties of fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid in thermoplastic polyurethane elastomer
Mu et al. Synergistic effect of intumescent flame retardant and zinc borate on linear low‐density polyethylene
Jiang et al. A novel strategy for preparing ethylene‐vinyl acetate composites with high effective flame retardant and smoke suppression performance by incorporating piperazine pyrophosphate and Ce‐MOF
Ma et al. High thermal stability and low flammability for Ethylene‐Vinyl acetate Monomer/Ethylene‐Propylene‐Diene Monomer by incorporating macromolecular charring agent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 315100 No.1 Qianhu South Road, higher education park, Shounan street, Yinzhou District, Ningbo City, Zhejiang Province

Patentee after: Zhejiang University of science and engineering Ningbo

Address before: 315100, Qian 1, Yinzhou District, Ningbo, Zhejiang, Hunan Road

Patentee before: Ningbo Institute of Technology, Zhejiang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210826

Address after: 315300 West Industrial Park, Guanhaiwei town, Cixi City, Ningbo City, Zhejiang Province

Patentee after: FU-DAY SCIENCE AND TECHNOLOGY Co.,Ltd.

Address before: 315100 No.1 Qianhu South Road, higher education park, Shounan street, Yinzhou District, Ningbo City, Zhejiang Province

Patentee before: Zhejiang University of science and engineering Ningbo