CN105903447A - 一种吸附蛋白酶解液中重金属镉的工艺 - Google Patents

一种吸附蛋白酶解液中重金属镉的工艺 Download PDF

Info

Publication number
CN105903447A
CN105903447A CN201610295410.2A CN201610295410A CN105903447A CN 105903447 A CN105903447 A CN 105903447A CN 201610295410 A CN201610295410 A CN 201610295410A CN 105903447 A CN105903447 A CN 105903447A
Authority
CN
China
Prior art keywords
solution
heavy metal
crystal cellulose
metal cadmium
enzymatic hydrolyzate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610295410.2A
Other languages
English (en)
Other versions
CN105903447B (zh
Inventor
欧阳小琨
王南
金如娜
刘超
杨立业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang hanpukang Pharmaceutical Co.,Ltd.
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201610295410.2A priority Critical patent/CN105903447B/zh
Publication of CN105903447A publication Critical patent/CN105903447A/zh
Application granted granted Critical
Publication of CN105903447B publication Critical patent/CN105903447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明公开了一种吸附蛋白酶解液中重金属镉的工艺,其主要由蛋白酶解液中铬浓度的调节、pH调节、复合吸附剂配制、吸附和分离等步骤组成。本发明所采用的吸附剂为聚乙烯亚胺改性羧基化纳晶纤维素与海泡石复合吸附剂,具有吸附重金属效果好,几乎没有副作用的优点;吸附蛋白酶解液中重金属镉的工艺简单易行,而且所采用的吸附剂易于除去,不会产生其他污染。

Description

一种吸附蛋白酶解液中重金属镉的工艺
技术领域
本发明涉及蛋白质加工处理技术领域,尤其是涉及一种吸附蛋白酶解液中重金属铬的工艺。
背景技术
蛋白酶解液是一种用废弃动植物蛋白制作的营养剂,通常是用低值鱼或水产品下脚料制备而成。近年来由于工农业污水被随意排放入海,含重金属化石燃料的燃烧,生活污水随河流进海,以及沿海和海上活动日益频繁,造成了海水中重金属增加,特别是铬、镉离子超标特别严重,从而造成易富集重金属水产品中的铬、镉离子含量超标,用相应低值水产制得的蛋白酶解液中铬、镉离子含量也会相应的超标。如果对铬、镉离子含量超标的蛋白酶解液不做脱铬、镉离子处理,则铬、镉离子会沿着路径进入人体,危害人的身心健康。但是现有技术中未见有专门针对蛋白酶解液的脱除重金属离子的工艺方法,更未见有脱除蛋白酶解液中铬、镉离子的工艺方法。其他领域液体中去除重金属离子的方法通常是单纯采用化学沉淀法及离子交换法。化学沉淀法就是往所需除重金属液体中加碱使重金属离子沉淀,然后再经过物理方法去除沉淀后的重金属,这种方法处理中不仅会改变液体的pH值,还会引入一些其他的离子,如果运用此方法去除蛋白酶解液中的铬、镉离子可能会影响原有液体的使用效果,如果运用此方法去除液体蛋白肥中的铬、镉离子,沉淀剂额外引入的铝离子、铁离子会造成蛋白肥中蛋白质发生变性,也会影响蛋白肥施用作物的生长;离子交换法就是利用离子交换剂与液体中的离子发生交换作用而使离子分离的方法,离子交换树脂是一种不溶性的高分子化合物,如果运用此方法去除蛋白酶解液中的铬、镉离子,离子交换树脂加入到蛋白酶解液中后会很难去除,从而会影响到之后蛋白酶解液的施用效果。
羧基化纳晶纤维素是一种经羧基化改性后具有优良吸附作用的纳晶纤维素,可以在纤维素的表面引入羧基,经过处理后的纤维素表面带有更多的负电荷,能够增强纤维素的分散性,使其能够形成稳定的水悬浮液。羧基化改性后的纳晶纤维素由于其表面所带的负电荷,具有较好的吸附性能。
发明内容
为解决上述问题,本发明提供了一种利用改性羧基化纳晶纤维素作为主要吸附剂,辅以海泡石对蛋白酶解液中重金属铬进行脱除的重金属吸附工艺。
为实现上述目的,本发明采用的技术方案如下:
一种吸附蛋白酶解液中重金属镉的工艺,包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至180~260mg/L;
b)将上述蛋白酶解液的pH值调节至2.5~4;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:10~20,海泡石与蛋白酶解液的质量比为1:8~12;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在15~23℃环境下吸附反应4~10小时;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液。
经过试验证明,在重金属铬的浓度为180~260mg/L,pH值在2.5~4时,聚乙烯亚胺改性羧基化纳晶纤维素对溶液中重金属铬的吸附效果最优,可以在最大的限度上吸附溶液中的重金属离子,同时吸附效率也是最高的;海泡石是一种富镁的含水层链状硅酸盐矿物,其结构中具有较大的表面能,使其具有较强的吸附能力,另外其表面多附有钠钙等轻金属离子,使其同时具有良好的阳离子交换性能,可以与所需处理的蛋白酶解液中的重金属铬离子发生阳离子交换反应,除去蛋白酶解液中的重金属铬离子。
作为优选,聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液3~5份,N-羟基琥珀酰亚胺0.23~0.26份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.4~0.5份,琥珀酸锌1~2份,硬脂酸钡0.8~1.2份,叔丁基对苯二酚0.7~0.9份,去离子水50~70份。
作为优选,聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散20~40分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至6.5~7.5,并使混合液在20~30℃温度下反应20~26小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散15~25分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在25~35℃温度下反应2~6小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理4~9分钟,将残渣用去离子水清洗3~5次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在50~70℃环境下烘干20~26小时,得到聚乙烯亚胺改性羧基化纳晶纤维素。
N-羟基琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸是两种具有促进羧基活化的有机化合物,其可以促进羧基化纳晶纤维素表面的羧基活化,并可促使羧基化纳晶纤维素表面的羧基可以与改性成分的基团形成网状交联结构;聚乙烯亚胺是一种水溶性高分子聚合物,其可以与纤维素中的羟基反应并交联聚合,形成分散性优良的改性纤维素,同样其也可与经羧基化改性后的纤维素表面的羧基反应交联聚合,由于羧基化改性后的纤维素的分散性能优于未改性纤维素,所以经过与聚乙烯亚胺改性后的羧基化纳晶纤维素的分散性能更由于普通的改性纤维素;羧基化纳晶纤维素和羧基化改性后的纳晶纤维素具有热不稳定性,即在较高温度下就立即会失去吸附活性,在重金属等废水处理过程中,不论是通过加热或者曝晒等方式,其温度难免会有所升高,为了防止羧基化纳晶纤维素在废水处理的过程中因高温失活造成重金属吸附活性降低的问题,需要在羧基化纳晶纤维素改性过程中添加稳定剂,增强其热稳定性,琥珀酸锌与硬脂酸钡都是具有提高羧基化纳晶纤维素热稳定性能的有机化和物,其可以与在热环境下产生的自由基进行反应,防止自由基进一步对羧基化纳晶纤维素进行破坏,保证纤维素在较高温度下仍不失去活性;叔丁基对苯二酚是一种抗氧化剂,在羧基化纳晶纤维素中适当添加叔丁基对苯二酚,可以防止羧基化纳晶纤维素在处理过程中被氧化失效。
作为优选,海泡石经过如下预处理:将海泡石在6~16wt%的氯化钠溶液中浸泡30~50分钟,之后将经浸泡处理的海泡石烘干。
作为优选,步骤b中,通过1mol/L的乙酸溶液和1mol/L的乙酸钾溶液调节蛋白酶解液的pH值。
乙酸和乙酸钾作为酸碱pH值调节剂的好处就是,不会混入其他有害的金属离子,不会对蛋白酶解液产生污染,而且乙酸酸性较弱,乙酸钾也为弱碱,加入不会使蛋白酶解液变性。
作为优选,步骤e中,用去离子水清洗离心后所得的沉积物5~9次,并将得到的清洗液加入到所得的脱除重金属镉的蛋白酶解液中。
作为优选,步骤a中,通过加入去离子水和蒸发溶剂的方法调节蛋白酶解液中重金属镉的浓度。
作为优选,步骤d中,吸附反应时从底部向混合液中通入氮气,通入速率为每分钟通入0.2~0.4重量份氮气。
作为优选,步骤d中,吸附反应通入氮气前将所通入的氮气预热至25~35℃。
为了在反应中使各反应物充分接触,采用在反应时从反应器底部通入一定速率的氮气进行搅拌的方式,氮气作为还原性气体也可以保护反应在一个还原性环境下进行,防止反应物与反应产物被氧化,此外,氮气通入之前进行预热可以使反应温度稳定不会发生任何波动。
因此,本发明具有以下有益效果:
(1)所采用的吸附剂为聚乙烯亚胺改性羧基化纳晶纤维素与海泡石复合吸附剂,具有吸附重金属效果好,几乎没有副作用的优点;
(2)吸附蛋白酶解液中重金属铬的工艺简单易行,而且所采用的吸附剂易于除去,不会产生其他污染。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例1
一种吸附蛋白酶解液中重金属镉的工艺,包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至220mg/L;
b)将上述蛋白酶解液的pH值调节至3;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:15,海泡石与蛋白酶解液的质量比为1:10;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在19℃环境下吸附反应7小时;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液。
其中,聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液4份,N-羟基琥珀酰亚胺0.25份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.45份,琥珀酸锌1.5份,硬脂酸钡1份,叔丁基对苯二酚0.8份,去离子水60份;
聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散30分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至7,并使混合液在25℃温度下反应23小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散20分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在25~35℃温度下反应4小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理6分钟,将残渣用去离子水清洗4次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在60℃环境下烘干23小时,得到聚乙烯亚胺改性羧基化纳晶纤维素。
实施例2
一种吸附蛋白酶解液中重金属镉的工艺,包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至180mg/L,通过加入去离子水和蒸发溶剂的方法调节蛋白酶解液中重金属镉的浓度;
b)将上述蛋白酶解液的pH值调节至2.5,通过1mol/L的乙酸溶液和1mol/L的乙酸钾溶液调节蛋白酶解液的pH值;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:10,海泡石与蛋白酶解液的质量比为1:8;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在15℃环境下吸附反应4小时;反应时从底部向混合液中通入氮气,通入速率为每分钟通入0.2重量份氮气,通入氮气前将所通入的氮气预热至25℃;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液,同时用去离子水清洗离心后所得的沉积物5次,并将得到的清洗液加入到所得的脱除重金属镉的蛋白酶解液中。
其中,聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液3份,N-羟基琥珀酰亚胺0.23份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.4份,琥珀酸锌1份,硬脂酸钡0.8份,叔丁基对苯二酚0.7份,去离子水50份;
聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散20分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至6.5,并使混合液在20℃温度下反应20小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散15分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在25℃温度下反应2小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理4分钟,将残渣用去离子水清洗3次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在50℃环境下烘干20小时,得到聚乙烯亚胺改性羧基化纳晶纤维素;
其中,海泡石经过如下预处理:将海泡石在6wt%的氯化钠溶液中浸泡30分钟,之后将经浸泡处理的海泡石烘干。
实施例3
一种吸附蛋白酶解液中重金属镉的工艺,包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至220mg/L,通过加入去离子水和蒸发溶剂的方法调节蛋白酶解液中重金属镉的浓度;
b)将上述蛋白酶解液的pH值调节至3,通过1mol/L的乙酸溶液和1mol/L的乙酸钾溶液调节蛋白酶解液的pH值;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:15,海泡石与蛋白酶解液的质量比为1:10;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在19℃环境下吸附反应7小时;反应时从底部向混合液中通入氮气,通入速率为每分钟通入0.3重量份氮气,通入氮气前将所通入的氮气预热至30℃;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液,同时用去离子水清洗离心后所得的沉积物7次,并将得到的清洗液加入到所得的脱除重金属镉的蛋白酶解液中。
其中,聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液4份,N-羟基琥珀酰亚胺0.25份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.45份,琥珀酸锌1.5份,硬脂酸钡1份,叔丁基对苯二酚0.8份,去离子水60份;
聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散30分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至7,并使混合液在25℃温度下反应23小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散20分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在30℃温度下反应4小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理6分钟,将残渣用去离子水清洗4次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在60℃环境下烘干23小时,得到聚乙烯亚胺改性羧基化纳晶纤维素;
其中,海泡石经过如下预处理:将海泡石在11wt%的氯化钠溶液中浸泡40分钟,之后将经浸泡处理的海泡石烘干。
实施例4
一种吸附蛋白酶解液中重金属镉的工艺,包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至260mg/L,通过加入去离子水和蒸发溶剂的方法调节蛋白酶解液中重金属镉的浓度;
b)将上述蛋白酶解液的pH值调节至4,通过1mol/L的乙酸溶液和1mol/L的乙酸钾溶液调节蛋白酶解液的pH值;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:10~20,海泡石与蛋白酶解液的质量比为1:12;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在23℃环境下吸附反应10小时;反应时从底部向混合液中通入氮气,通入速率为每分钟通入0.4重量份氮气,通入氮气前将所通入的氮气预热至35℃;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液,同时用去离子水清洗离心后所得的沉积物9次,并将得到的清洗液加入到所得的脱除重金属镉的蛋白酶解液中。
其中,聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液5份,N-羟基琥珀酰亚胺0.26份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.5份,琥珀酸锌2份,硬脂酸钡1.2份,叔丁基对苯二酚0.9份,去离子水70份;
聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散40分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至7.5,并使混合液在30℃温度下反应26小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散25分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在35℃温度下反应6小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理9分钟,将残渣用去离子水清洗5次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在70℃环境下烘干26小时,得到聚乙烯亚胺改性羧基化纳晶纤维素;
其中,海泡石经过如下预处理:将海泡石在16wt%的氯化钠溶液中浸泡50分钟,之后将经浸泡处理的海泡石烘干。

Claims (9)

1.一种吸附蛋白酶解液中重金属镉的工艺,其特征在于包括以下步骤:
a)将蛋白酶解液中重金属镉的浓度调节至180~260mg/L;
b)将上述蛋白酶解液的pH值调节至2.5~4;
c)称取聚乙烯亚胺改性羧基化纳晶纤维素和海泡石,其中,聚乙烯亚胺改性羧基化纳晶纤维素与蛋白酶解液的质量比为1:10~20,海泡石与蛋白酶解液的质量比为1:8~12;
d)将聚乙烯亚胺改性羧基化纳晶纤维素和海泡石加到蛋白酶解液中,在15~23℃环境下吸附反应4~10小时;
e)将经步骤d处理后的蛋白酶解液离心处理,处理后保留上层溶液,所得的上层溶液即为脱除重金属镉的蛋白酶解液。
2.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于所述的聚乙烯亚胺改性羧基化纳晶纤维素由以下重量份的原料制得:羧基化纳晶纤维素溶液100份,聚乙烯亚胺溶液3~5份,N-羟基琥珀酰亚胺0.23~0.26份,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸0.4~0.5份,琥珀酸锌1~2份,硬脂酸钡0.8~1.2份,叔丁基对苯二酚0.7~0.9份,去离子水50~70份。
3.根据权利要求1或2所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于所述的聚乙烯亚胺改性羧基化纳晶纤维素通过以下步骤制得:
a)将羧基化纳晶纤维素溶液超声分散20~40分钟;
b)向经步骤a分散后的羧基化纳晶纤维素溶液中加入聚乙烯亚胺溶液、N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸和苯胺制成混合液,并用0.1mol/L的盐酸和0.1mol/L的氢氧化钠溶液将混合液的pH值调节至6.5~7.5,并使混合液在20~30℃温度下反应20~26小时;
c)将琥珀酸锌、硬脂酸钡和叔丁基对苯二酚加入到去离子水中,并超声分散15~25分钟,配制稳定液;
d)将稳定液加入到经步骤b处理后的混合液中,在25~35℃温度下反应2~6小时,制得改性羧基化纳晶纤维素液;
e)将制得的改性羧基化纳晶纤维素液离心处理4~9分钟,将残渣用去离子水清洗3~5次,将清洗后的残渣在用去离子水配制成100mL溶液,之后在50~70℃环境下烘干20~26小时,得到聚乙烯亚胺改性羧基化纳晶纤维素。
4.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于所述的海泡石经过如下预处理:将海泡石在6~16wt%的氯化钠溶液中浸泡30~50分钟,之后将经浸泡处理的海泡石烘干。
5.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于:所述步骤b中,通过1mol/L的乙酸溶液和1mol/L的乙酸钾溶液调节蛋白酶解液的pH值。
6.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于:所述步骤e中,用去离子水清洗离心后所得的沉积物5~9次,并将得到的清洗液加入到所得的脱除重金属镉的蛋白酶解液中。
7.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于:所述步骤a中,通过加入去离子水和蒸发溶剂的方法调节蛋白酶解液中重金属镉的浓度。
8.根据权利要求1所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于:所述步骤d中,吸附反应时从底部向混合液中通入氮气,通入速率为每分钟通入0.2~0.4重量份氮气。
9.根据权利要求1或8所述的一种吸附蛋白酶解液中重金属镉的工艺,其特征在于:所述步骤d中,吸附反应通入氮气前将所通入的氮气预热至25~35℃。
CN201610295410.2A 2016-05-06 2016-05-06 一种吸附蛋白酶解液中重金属镉的工艺 Active CN105903447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610295410.2A CN105903447B (zh) 2016-05-06 2016-05-06 一种吸附蛋白酶解液中重金属镉的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610295410.2A CN105903447B (zh) 2016-05-06 2016-05-06 一种吸附蛋白酶解液中重金属镉的工艺

Publications (2)

Publication Number Publication Date
CN105903447A true CN105903447A (zh) 2016-08-31
CN105903447B CN105903447B (zh) 2018-03-27

Family

ID=56747792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610295410.2A Active CN105903447B (zh) 2016-05-06 2016-05-06 一种吸附蛋白酶解液中重金属镉的工艺

Country Status (1)

Country Link
CN (1) CN105903447B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949323A2 (de) * 1998-03-28 1999-10-13 Mall-Neutra GmbH Verfahren und Vorrichtung zur Verlängerung der Gebrauchsfähigkeit eines Kühlschmierstoffes
CN103304820A (zh) * 2013-03-15 2013-09-18 山东大学(威海) 一种高效聚乙烯亚胺改性纤维素基重金属吸附剂的制备方法
CN103386298A (zh) * 2013-07-11 2013-11-13 东华大学 一种用于吸附分离La3+的纳米纤维亲和膜的制备方法
CN103394334A (zh) * 2013-07-11 2013-11-20 东华大学 一种高比表面积胺化纳米纤维膜的制备方法
CN104984744A (zh) * 2015-06-02 2015-10-21 中山大学 一种植物纤维基固态胺吸附材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949323A2 (de) * 1998-03-28 1999-10-13 Mall-Neutra GmbH Verfahren und Vorrichtung zur Verlängerung der Gebrauchsfähigkeit eines Kühlschmierstoffes
CN103304820A (zh) * 2013-03-15 2013-09-18 山东大学(威海) 一种高效聚乙烯亚胺改性纤维素基重金属吸附剂的制备方法
CN103386298A (zh) * 2013-07-11 2013-11-13 东华大学 一种用于吸附分离La3+的纳米纤维亲和膜的制备方法
CN103394334A (zh) * 2013-07-11 2013-11-20 东华大学 一种高比表面积胺化纳米纤维膜的制备方法
CN104984744A (zh) * 2015-06-02 2015-10-21 中山大学 一种植物纤维基固态胺吸附材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUCIO MELONE ET AL: ""TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation"", 《CHEMPLUSCHEM》 *
商平等: "《环境矿物材料》", 31 January 2008, 化学工业出版社 *

Also Published As

Publication number Publication date
CN105903447B (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN101297673B (zh) 鱼胶原低聚肽的加工方法
CN103663617A (zh) 一种含有油脂的废水处理方法
CN108298629A (zh) 一种高效吸附汞离子的复合材料的制备方法
CN112657465A (zh) 磁性生物炭的制备方法和处理尾矿废水的方法
Dutta et al. Nanoparticle‐induced enzyme pretreatment method for increased glucose production from lignocellulosic biomass under cold conditions
Buntić et al. Utilization of spent coffee grounds for isolation and stabilization of Paenibacillus chitinolyticus CKS1 cellulase by immobilization
CN105936650A (zh) 一种聚乙烯亚胺改性羧基化纳晶纤维素的制备方法
AU2020301716B2 (en) Preparation and use of zeolite and biochar composite material
CN104163552A (zh) 一种有机废水处理方法
CN102671634B (zh) 一种改性纤维素类吸附剂及其制备方法和应用
CN107285400A (zh) 一种水质改良剂及其制备方法
Argun et al. Treatment and alternative usage possibilities of a special wastewater: Nejayote
CN106237985A (zh) 一种秸秆基选择性除汞材料及其制备方法和应用
CN102146144A (zh) 一种菊粉的提取精制方法
CN1268756C (zh) 利用菊苣进行水解生产果糖的工艺
CN105906725A (zh) 一种酒石酸改性羧基化纳晶纤维素的制备方法
CN105906723A (zh) 一种柠檬酸改性羧基化纳晶纤维素的制备方法
CN106348562A (zh) 一种污水处理产生活性污泥的处理及提取蛋白质的方法
CN104402101A (zh) 一种玉米淀粉蓝藻处理剂及其制备方法
CN105964009A (zh) 一种吸附蛋白酶解液中重金属铬的工艺
CN103861566A (zh) 一种高效吸附性变性淀粉微球的制备方法及应用
CN105903447A (zh) 一种吸附蛋白酶解液中重金属镉的工艺
Bakar et al. Immobilization of Xylanase into Zeolitic Imidazolate Framework-67 (ZIF-67) and Manganese-Doped ZIF-67 (Mn/ZIF-67): A Comparison Study
CN110724211B (zh) 一种基于还原糖催化氧化的虾蟹壳高值化综合利用方法及其应用
JP2011016048A (ja) リグニン及び/又はタンニンを含有する排水の脱色浄化処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220330

Address after: 150028 No. a16, building 25, lakeside green home community, No. 1358, Zuo'an street, Songbei District, Harbin City, Heilongjiang Province

Patentee after: Heilongjiang hanpukang Pharmaceutical Co.,Ltd.

Address before: 316000 No. 127 Datong Road, Zhujiajian street, Putuo District, Zhoushan, Zhejiang

Patentee before: Zhejiang Ocean University