CN105895687B - 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件 - Google Patents

一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件 Download PDF

Info

Publication number
CN105895687B
CN105895687B CN201610240036.6A CN201610240036A CN105895687B CN 105895687 B CN105895687 B CN 105895687B CN 201610240036 A CN201610240036 A CN 201610240036A CN 105895687 B CN105895687 B CN 105895687B
Authority
CN
China
Prior art keywords
ohmic contact
gan
layer
superlattice structure
gan hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610240036.6A
Other languages
English (en)
Other versions
CN105895687A (zh
Inventor
周建军
孔月婵
孔岑
郁鑫鑫
张凯
郁元卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201610240036.6A priority Critical patent/CN105895687B/zh
Publication of CN105895687A publication Critical patent/CN105895687A/zh
Application granted granted Critical
Publication of CN105895687B publication Critical patent/CN105895687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及的是一种基于微电子工艺,一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,具体实施步骤包括(1)生长高阻缓冲层/超晶格结构;(2)生长SiO2;(3)定义欧姆接触区域;(4)制备Ni刻蚀阻挡层;(5)刻蚀SiO、超晶格层;(6)去除Ni刻蚀阻挡层;(7)生长AlGaN/GaN异质结;(8)去除SiO2;(9)定义欧姆接触区域;(10)蒸发/剥离/低温退火形成欧姆接触。本发明针对现有GaN HEMT欧姆接触金属形貌差、接触电阻率高等缺点,提出在欧姆接触区域引入超晶格结构解决上述问题,具有(1)接触电阻率低;(2)欧姆接触金属表面形貌质量高的优点。

Description

一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法 及GaN HEMT器件
技术领域
本发明属于半导体器件制备技术领域,尤其是一种GaN HEMT(氮化镓高电子迁移率晶体管)上利用刻蚀和扩散技术实现降低欧姆接触退火温度的方法。
背景技术
GaN作为第三代半导体材料在功率器件中的应用受到了广泛的关注,其中基于AlGaN/GaN异质结结构的HEMT具有高频、高功率密度以及高工作温度的优点,是固态微波功率器件和功率电子器件的发展方向。优异的欧姆接触是实现高性能GaN器件的基础,包括低的欧姆接触电阻率和良好的欧姆接触形貌。Ti/Al/Ni/Au是应用最广泛的GaN HEMT欧姆接触金属结构之一,通过合金与GaN形成欧姆接触。但传统欧姆合金温度一般在800℃以上。由于金属Al的熔点为660.4℃,因此合金过程中,Al处于熔融状态;并且部分Al会与Au形成AlAu2或AlAu4等晶粒颗状物,使得欧姆金属表面粗糙。对于功率电子器件,粗糙的欧姆接触边缘会导致尖峰电场的出现,从而使得器件击穿特性下降。对于微波器件,还会引起电流分布不均匀以及高的信号衰减。器件在大电流工作时,还可能导致欧姆接触金属表面凸起处开裂,从而影响器件可靠性。
故而,需要一种新的技术方案可以降低欧姆接触金属外溢以及金属体系中合金的形成,从而提高欧姆金属表面平整度以及边缘质量。
发明内容
本发明针对现有GaN HEMT器件欧姆制作工艺中采用高温退火导致欧姆接触金属表面形貌差,的问题,提供一种基于刻蚀和扩散技术降低GaN HEMT器件欧姆接触退火温度的方法,该方法能有效降低GaN HEMT欧姆接触退火温度,提高欧姆接触金属表面形貌,可广泛应用于各类GaN HEMT器件的研制生产中。
为达到上述目的,本发明可采用如下技术方案:
一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,包括以下步骤:
(1)、在半绝缘衬底上依次外延生长出高阻缓冲层以及超晶格结构;
(2)、在超晶格结构表面生长一层SiO2掩模层;
(3)、在SiO2掩模层表面形成欧姆接触区域;
(4)、在欧姆接触区域形成Ni刻蚀阻挡层;
(5)、利用Ni刻蚀阻挡层作为刻蚀掩模而刻蚀SiO2掩模层及刻蚀超晶格结构,露出高阻缓冲层;
(6)、去除Ni刻蚀阻挡层;
(7)、在露出的高阻缓冲层区域外延生长AlGaN/GaN异质结;
(8)、去除SiO2掩模层;
(9)、形成欧姆接触区域;
(10)、在欧姆接触区域形成Ti/Al基欧姆接触金属,利用低温合金的方法获得欧姆接触。
有益效果:(1)在欧姆区域引入了i-AlN/n-GaN或i-AlGaN/n-GaN超晶格结构,有利于提升Si杂质在材料中的离化率,提升掺杂浓度,有利于降低欧姆接触的合金温度,并利于形成低接触电阻的欧姆接触;(2)将AlGaN/GaN异质结生长放在GaN掺杂结构之后生长,可以降低后续高温生长工艺对AlGaN/GaN异质结性能的影响,避免了在二次生长中无法采用低温获得高质量掺杂外延层的问题;(3)欧姆接触电阻率降低,欧姆接触金属表面形貌提高。
而为达到上述目的,本发明还提供一种GaN HEMT器件的技术方案:
GaN HEMT器件,包括板绝缘衬底、自板绝缘衬底延生长出的高阻缓冲层以及超晶格结构;还包括在高阻缓冲层区域外延生长AlGaN/GaN异质结以及形成于AlGaN/GaN异质结表面的Ti/Al基欧姆接触金属。
有益效果:在刻蚀欧姆接触通孔时采用SiCl4刻蚀,增加了材料中Si的浓度;且采用通孔形式进行Si扩散,工艺容差大;并且在退火实现欧姆接触时降低了欧姆合金的至500-600℃温度,实现低温合金欧姆接触工艺可以降低欧姆接触金属外溢以及金属体系中合金的形成,从而提高欧姆金属表面平整度以及边缘质量,从而有效的提高了欧姆接触表面形貌。
附图说明
图1为本发明GaN HEMT器件结构示意图。
图2为再生长GaN HEMT欧姆接触工艺步骤(1)流程图。
图3为再生长GaN HEMT欧姆接触工艺步骤(2)流程图。
图4为再生长GaN HEMT欧姆接触工艺步骤(3)流程图。
图5为再生长GaN HEMT欧姆接触工艺步骤(4)流程图。
图6为再生长GaN HEMT欧姆接触工艺步骤(5)流程图。
图7为再生长GaN HEMT欧姆接触工艺步骤(6)流程图。
图8为再生长GaN HEMT欧姆接触工艺步骤(7)流程图。
图9为再生长GaN HEMT欧姆接触工艺步骤(8)流程图。
图10为再生长GaN HEMT欧姆接触工艺步骤(9)流程图。
图11为再生长GaN HEMT欧姆接触工艺步骤(10)流程图。
具体实施方式
下面结合附图进一步描述本发明的技术方案;
本发明是一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,包括生长高阻缓冲层/超晶格结构;生长SiO2;定义欧姆接触区域;制备Ni刻蚀阻挡层;刻蚀SiO、超晶格层;去除Ni刻蚀阻挡层;生长AlGaN/GaN异质结;去除SiO2;定义欧姆接触区域;蒸发/剥离/低温退火形成欧姆接触。具体方法如下:
(1)在半绝缘SiC衬底1上依次外延生长GaN层高阻缓冲层2、i-AlN/n-GaN超晶格结构3,如图2所示。其中,所述半绝缘衬底1为SiC或Si或蓝宝石衬底。所述高阻缓冲层2为GaN层或AlGaN层。所述超晶格结构3为i-AlN(本征AlN)/n-GaN(n型掺杂GaN)超晶格结构或i-AlGaN(本征AlGaN)/n-GaN(n型掺杂GaN)超晶格结构。
(2)采用PECVD在样品表面生长一层SiO2掩模层4,如图3所示;
(3)通过常规光刻、显影工艺形成欧姆接触区域5,如图4所示;
(4)通过常规蒸发、剥离工艺在欧姆接触区域5形成Ni刻蚀阻挡层6,如图5所示;
(5)利用Ni刻蚀阻挡层6作为刻蚀掩模,利用ICP刻蚀工艺,采用氟基气体刻蚀SiO2掩模层4,采用氯基气体刻蚀i-AlN/n-GaN超晶格结构3,露出GaN层高阻缓冲层2,如图6所示;
(6)利用Ni刻蚀液,去除Ni刻蚀阻挡层6,如图7所示;
(7)在露出的高阻缓冲层2区域外延生长AlGaN/GaN异质结7,如图8所示;
(8)利用HF缓冲液去除SiO2掩模层4,如图9所示;
(9)通过常规光刻、显影工艺形成欧姆接触区域5,如图10所示;
(10)通过常规蒸发、剥离工艺在欧姆接触区域5形成Ti/Al基欧姆接触金属8,利用低温合金的方法获得欧姆接触,所述低温合金为退火温度为300℃-500℃,在本实施方式中优选的合金温度为450℃,如图11所示。
而请再结合图1所示,在本发明公开的上述基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法实施例的基础上,本发明还公开了一种可以采用上述方法制成的一种GaN HEMT器件的实施例。
该GaN HEMT器件包括板绝缘衬底1、自板绝缘衬底延生长出的高阻缓冲层2以及超晶格结构3;还包括在高阻缓冲层2区域外延生长AlGaN/GaN异质结7以及形成于AlGaN/GaN异质结7表面的Ti/Al基欧姆接触金属8。其中,所述半绝缘衬底1为SiC或Si或蓝宝石衬底。所述高阻缓冲层2为GaN层或AlGaN层。所述超晶格结构3为i-AlN/n-GaN超晶格结构或i-AlGaN/n-GaN超晶格结构。
该GaN HEMT器件中,在欧姆区域引入了i-AlN/n-GaN或i-AlGaN/n-GaN超晶格结构,有利于提升Si杂质在材料中的离化率,提升掺杂浓度,有利于降低欧姆接触的合金温度,并利于形成低接触电阻的欧姆接触。从而在制造过程中,欧姆接触电阻率降低,欧姆接触金属表面形貌提高。本实施方式的GaN HEMT器件可以采用本发明中公开的方法制作,也可以采用其他的方式制作,结构符合本实施例中的GaN HEMT器件均可。
另外,本发明的具体实现方法和途径很多,以上所述仅是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (8)

1.一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,其特征是,包括以下步骤:
(1)、在半绝缘衬底(1)上依次外延生长出高阻缓冲层(2)以及超晶格结构(3);
(2)、在超晶格结构(3)表面生长一层SiO2掩模层(4);
(3)、在SiO2掩模层(4)表面形成欧姆接触区域(5);
(4)、在欧姆接触区域(5)形成Ni刻蚀阻挡层(6);
(5)、利用Ni刻蚀阻挡层(6)作为刻蚀掩模而刻蚀SiO2掩模层(4)及刻蚀超晶格结构(3),露出高阻缓冲层(2);
(6)、去除Ni刻蚀阻挡层(6);
(7)、在露出的高阻缓冲层(2)区域外延生长AlGaN/GaN异质结(7);
(8)、去除SiO2掩模层(4);
(9)、形成欧姆接触区域(5);
(10)、在欧姆接触区域(5)形成Ti/Al基欧姆接触金属(8),利用低温合金的方法获得欧姆接触。
2.如权利要求1所述的基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,其特征是,在步骤(1)中,所述半绝缘衬底(1)为SiC或Si或蓝宝石衬底。
3.如权利要求1所述的基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,其特征是,在步骤(1)、(5)、(7)中,所述高阻缓冲层(2)为GaN层或AlGaN层。
4.如权利要求1所述的基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,其特征是,在步骤(1)、(5)中,所述超晶格结构(3)为i-AlN/n-GaN超晶格结构或i-AlGaN/n-GaN超晶格结构。
5.如权利要求1所述的基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法,其特征是,在步骤(10)中,所述低温合金为退火温度为300℃-500℃。
6.一种GaN HEMT器件,其特征是,包括半绝缘衬底(1)、自半绝缘衬底外延生长出的高阻缓冲层(2)以及超晶格结构(3);还包括在高阻缓冲层(2)区域外延生长AlGaN/GaN异质结(7)以及形成于超晶格结构(3)上方的的Ti/Al基欧姆接触金属(8);所述超晶格结构(3)为i-AlN/n-GaN超晶格结构或
i-AlGaN/n-GaN超晶格结构。
7.如权利要求6所述的GaN HEMT器件,其特征是,所述半绝缘衬底(1)为SiC或Si或蓝宝石衬底。
8.如权利要求7所述的GaN HEMT器件,其特征是,所述高阻缓冲层(2)为GaN层或AlGaN层。
CN201610240036.6A 2016-04-18 2016-04-18 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件 Active CN105895687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610240036.6A CN105895687B (zh) 2016-04-18 2016-04-18 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610240036.6A CN105895687B (zh) 2016-04-18 2016-04-18 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件

Publications (2)

Publication Number Publication Date
CN105895687A CN105895687A (zh) 2016-08-24
CN105895687B true CN105895687B (zh) 2019-03-05

Family

ID=56704946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610240036.6A Active CN105895687B (zh) 2016-04-18 2016-04-18 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件

Country Status (1)

Country Link
CN (1) CN105895687B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916633A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142750A (ja) * 1990-10-03 1992-05-15 Fujitsu Ltd 高電子移動度トランジスタ
JP2008270794A (ja) * 2007-03-29 2008-11-06 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
KR101124017B1 (ko) * 2010-03-26 2012-03-23 삼성전기주식회사 반도체 소자 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916633A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置

Also Published As

Publication number Publication date
CN105895687A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
EP1779437B1 (en) Nitride-based transistors having laterally grown active region and methods of fabricating same
JP5160225B2 (ja) 再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタの製作方法及び再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタ
CN100511706C (zh) 基于组份渐变GaN MISFET的GaN器件及制备方法
WO2019136864A1 (zh) 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法
CN103930995B (zh) 具有反向极化帽的增强模式iii‑n族高电子迁移率晶体管
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
CN110085518A (zh) 一种选择性电化学方法剥离的可转移GaN薄膜及其器件的制备方法
CN106549038A (zh) 一种垂直结构的氮化镓异质结hemt
CN109244130A (zh) 基于p-GaN和SiN层的自对准栅结构GaN MIS-HEMT器件及其制作方法
CN109888013A (zh) 镁掺杂制备的增强型GaN基HEMT器件及其制备方法
WO2022199309A1 (zh) 具有p-GaN盖帽层的HEMT器件及制备方法
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
CN112397587B (zh) 一种常开型高电子迁移率晶体管及其制造方法
CN104465403B (zh) 增强型AlGaN/GaN HEMT器件的制备方法
CN106971943B (zh) 氮化镓外延层生长在硅衬底上的纵向型器件的制造方法
CN105679679B (zh) 一种GaN基凹槽栅MISFET的制备方法
CN105895687B (zh) 一种基于再生长技术降低GaN HEMT器件欧姆接触电阻的方法及GaN HEMT器件
CN110634747A (zh) 利用MBE再生长p-GaN的单栅结构GaN-JFET器件的方法
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN112420829A (zh) 一种常闭型硅衬底高电子迁移率晶体管及其制造方法
CN211295112U (zh) 一种氮化镓基肖特基二极管
CN111446296B (zh) p型栅增强型氮化镓基高迁移率晶体管结构及制作方法
CN112420828A (zh) 一种常闭型高电子迁移率晶体管及其制造方法
CN103681831A (zh) 高电子迁移率晶体管及其制造方法
CN207664047U (zh) 一种高性能常关型的GaN场效应晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160824

Assignee: Nanjing Zhongdian Core Valley High Frequency Device Industry Technology Research Institute Co., Ltd.

Assignor: China Electronics Technology Group Corporation No.55 Research Institute

Contract record no.: X2020980000164

Denomination of invention: Regrowth technology-based method for reducing ohmic contact resistance of GaN HEMT device, and GaN HEMT device

Granted publication date: 20190305

License type: Common License

Record date: 20200119