CN105891182B - 一种对过氧化氢酶定量的方法 - Google Patents

一种对过氧化氢酶定量的方法 Download PDF

Info

Publication number
CN105891182B
CN105891182B CN201610427262.5A CN201610427262A CN105891182B CN 105891182 B CN105891182 B CN 105891182B CN 201610427262 A CN201610427262 A CN 201610427262A CN 105891182 B CN105891182 B CN 105891182B
Authority
CN
China
Prior art keywords
catalase
fluorescence
signal
content
phenyl oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610427262.5A
Other languages
English (en)
Other versions
CN105891182A (zh
Inventor
宣志刚
黄志红
王万宾
崔文娟
周涛
顾开林
罗生
宋羽飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Shengqing Environment Monitoring Technology Co Ltd
Original Assignee
Yunnan Shengqing Environment Monitoring Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Shengqing Environment Monitoring Technology Co Ltd filed Critical Yunnan Shengqing Environment Monitoring Technology Co Ltd
Priority to CN201610427262.5A priority Critical patent/CN105891182B/zh
Publication of CN105891182A publication Critical patent/CN105891182A/zh
Application granted granted Critical
Publication of CN105891182B publication Critical patent/CN105891182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种对过氧化氢酶定量的方法,属于生物检测技术领域。本发明包括使用以下三种化学物质:过氧化氢、苯基草酸酯和9,10‑二苯基蒽荧光染料;利用过氧化氢和苯基草酸酯之间的化学反应产生的能量激发9,10‑二苯基蒽产生荧光信号,而过氧化氢酶则会抑制这种化学反应,导致荧光信号的减弱或猝灭,将荧光信号转换为电信号,通过电信号的强度测定过氧化氢酶的含量。本发明提供一种可以快速准确的对过氧化氢酶定量的方法,灵敏度高、操作方便,检测范围宽,能够对痕量及高浓度过氧化氢酶进行精确定量。

Description

一种对过氧化氢酶定量的方法
技术领域
本发明涉及一种快速测定过氧化氢酶含量的方法,属于生物检测技术领域。
背景技术
生物体在新陈代谢过程中,会产生一些有害物质,这些有害物质只有被快速分解清除,生物体才能维持正常的生命活动。过氧化氢是生物体产生的一种有害物质,氧化性极强,对生物体的危害很大,需要被快速的分解。过氧化氢酶能催化过氧化氢分解,并产生氧气,与生物的呼吸作用、光合作用及生长素的氧化等都有密切关系。在生物体生长活动过程中,过氧化氢酶的活性不断发生变化,过氧化氢酶的浓度,可以反映某一时期生物体内代谢的变化。例如,在对污水进行生物处理过程中,过氧化氢酶活性与活性污泥中的微生物呼吸强度和活动状况相关,在一定程度上可反映污水处理中微生物处理污水的效能,直接影响出水水质。土壤中的过氧化氢酶含量也直接反应了土壤的呼吸强度和土壤中微生物的活动强度。
常用的过氧化氢酶的测定方法包括测压法和滴定法。测压法是测定过氧化氢分解时析出的氧量,方法简单,但易受环境中含氧的影响,准确性较差。滴定法是定量滴定酶促反应后剩余的过氧化氢量,准确度相对较高,但操作较复杂。
如何快速准确的对食品、工业、环境及生命体系中的过氧化氢酶进行定量,促成了本发明的形成。本发明通过寻求荧光信号变化强度与过氧化氢酶含量间的线性关系范围,间接定量检测环境中的过氧化氢酶的含量。通过大量的实验数据,确定本发明的检测目标的范围,同时保证检测的精确度。
分类号G01N21/33(2006.01)I公开了一种活性污泥过氧化氢酶活性的测定方法,该发明“为了通过测定活性污泥过氧化氢酶活性,揭示过氧化氢酶与活性污泥之间的内在关系,定量分析和评价活性污泥微生物的氧化还原酶状况,从分子水平表征活性污泥的内在运行特征,采用紫外分光光度法,利用过氧化氢在245nm处有强烈吸收的特性,建立了活性污泥过氧化氢酶活性测定方法。本发明的积极效果是简单易行,安全可靠,成本较低,测定精度高,重现性好,可实现活性污泥中过氧化氢酶活性的快速测定。”
分类号G01N21/64(2006.01)I公开了一种基于金纳米团簇探针的过氧化氢酶荧光测定方法,其涉及“以N-乙酰-L-半胱氨酸保护的金纳米团簇为荧光探针的过氧化氢酶测定方法,其特征是利用Fe2+催化H2O2产生羟自由基使金纳米团簇的荧光发生猝灭,而过氧化氢酶可催化H2O2分解生成H2O和O2,抑制金纳米团簇荧光的猝灭,从而表现出荧光发射光谱特征的变化,可以用于过氧化氢酶的检测。在0.01~0.3U/mL范围内荧光强度变化值ΔF650与过氧化氢酶浓度呈线性关系,检测限为0.002U/mL。本发明灵敏度高,重现性好,可用于食品、工业、环境及生命体系中过氧化氢酶的测定。”
本发明本提供一种快速准确测定过氧化氢酶的方法,利用过氧化氢酶与过氧化氢的酶促反应,间接定量过氧化氢酶的含量。
发明内容
为了克服常规检测准确性较差,操作较复杂的问题,发明一种快速准确测定过氧化氢酶的方法。本发明通过寻求荧光信号变化强度与过氧化氢酶含量间的线性关系范围,间接定量检测环境中的过氧化氢酶的含量。通过大量的实验数据,确定本发明的检测目标的范围,同时保证检测的精确度。
一种对过氧化氢酶定量的方法,其特征在于,包括使用以下三种化学物质:过氧化氢、苯基草酸酯和9,10-二苯基蒽荧光染料;首先,利用过氧化氢和苯基草酸酯反应,过氧化氢对苯基草酸酯的羰基亲核进攻,生成能产生高能量的双氧基环状中间体二氧杂环丁二酮;中间体分解将能量传递给受体荧光分子,使之处于激发状态;激发态的9,10-二苯基蒽不稳定,分解回到稳定基态的同时,发射荧光,而过氧化氢酶能催化H2O2分解生成H2O和O2,可导致荧光信号的减弱或猝灭;
在0.01~5U/mL范围内,荧光信号变化强度与过氧化氢酶的含量呈负相关的线性关系,表现出荧光发射光谱特征的变化;
将发出的荧光信号转换为电信号,通过传感器直接指示过氧化氢酶的含量;信号越强,过氧化氢酶的含量越低,反之,含量越高;
过氧化氢酶在0.01~5U/mL浓度范围内,对应的电信号强度为47.73~52.56 mv/m,过氧化氢酶浓度为零时,对应的电信号强度为60mv/m;检测限为0.001U/mL;
具体步骤如下:
(1)取待检样品50mL,调pH至8~8.5,向样品中加入2mL重铬酸钾,摇匀;
(2)向上述混合液中加入0.3%的过氧化氢溶液5毫升;
(3)再加入浓度为0.05mol/L的苯基草酸酯溶液0.5毫升和9,10-二苯基蒽溶液1.0毫升,摇匀30s,激发荧光;
(4)将反应混合液置于荧光转换器,再通过信号转换器将荧光信号转化成电信号,根据输出的电信号强度定量样品中过氧化氢酶的浓度。
本发明可以快速准确的对过氧化氢酶定量,灵敏度高、操作方便;检测范围宽,能够对痕量及高浓度过氧化氢酶进行精确定量。
具体实施方式
本发明一种对过氧化氢酶定量的方法,其特征在于,包括以下三种化学物质:过氧化氢、苯基草酸酯和9,10-二苯基蒽荧光染料;首先,利用过氧化氢和苯基草酸酯反应,过氧化氢对苯基草酸酯的羰基亲核进攻,生成能产生高能量的双氧基环状中间体二氧杂环丁二酮;中间体分解将能量传递给受体荧光分子,使之处于激发状态;激发态的9,10-二苯基蒽不稳定,分解回到稳定基态的同时,发射荧光,而过氧化氢酶能催化H2O2分解生成H2O和O2,可导致荧光信号的减弱或猝灭;
在0.2-3U/mL范围内,荧光信号变化强度与过氧化氢酶的含量呈负相关的线性关系,表现出荧光发射光谱特征的变化;
将发出的荧光信号转换为电信号,通过传感器直接指示过氧化氢酶的含量;信号越强,过氧化氢酶的含量越低,反之,含量越高;
过氧化氢酶在0.2-3U/mL浓度范围内,对应的电信号强度为49.66~52.37 mv/m,过氧化氢酶浓度为零时,对应的电信号强度为60mv/m;检测限为0.001U/mL;
具体步骤如下:
(1)取待检样品50mL,调pH至8,向样品中加入2mL重铬酸钾,摇匀;
(2)向上述混合液中加入0.3%的过氧化氢溶液5毫升;
(3)再加入浓度为0.05mol/L的苯基草酸酯溶液0.5毫升和9,10-二苯基蒽溶液1.0毫升,摇匀30s,激发荧光;
(4)将反应混合液置于荧光转换器,再通过信号转换器将荧光信号转化成电信号,根据输出的电信号强度定量样品中过氧化氢酶的浓度。

Claims (1)

1.一种对过氧化氢酶定量的方法,其特征在于,包括使用以下三种化学物质:过氧化氢、苯基草酸酯和9,10-二苯基蒽荧光染料;首先,利用过氧化氢和苯基草酸酯反应,过氧化氢对苯基草酸酯的羰基亲核进攻,生成能产生高能量的双氧基环状中间体二氧杂环丁二酮;中间体分解将能量传递给受体荧光分子,使之处于激发状态;激发态的9,10-二苯基蒽不稳定,分解回到稳定基态的同时,发射荧光,而过氧化氢酶能催化H2O2分解生成H2O和O2,可导致荧光信号的减弱或猝灭;
过氧化氢酶在0.01~5U/mL范围内,荧光信号变化强度与过氧化氢酶的含量呈负相关的线性关系,表现出荧光发射光谱特征的变化;
将发出的荧光信号转换为电信号,通过传感器直接指示过氧化氢酶的含量;信号越强,过氧化氢酶的含量越低,反之,含量越高;
过氧化氢酶在0.01~5U/mL浓度范围内,对应的电信号强度为47.73~52.56 mv/m,过氧化氢酶浓度为零时,对应的电信号强度为60mv/m;检测限为0.001U/mL;
具体步骤如下:
(1)取待检样品50mL,调pH至8~8.5,向样品中加入2mL重铬酸钾,摇匀;
(2)继续加入0.3%的过氧化氢溶液5毫升;
(3)再加入浓度为0.05mol/L的苯基草酸酯溶液0.5毫升和9,10-二苯基蒽溶液1.0毫升,摇匀30s,激发荧光;
(4)将反应混合液置于荧光转换器,再通过信号转换器将荧光信号转化成电信号,根据输出的电信号强度定量样品中过氧化氢酶的浓度。
CN201610427262.5A 2016-06-17 2016-06-17 一种对过氧化氢酶定量的方法 Active CN105891182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610427262.5A CN105891182B (zh) 2016-06-17 2016-06-17 一种对过氧化氢酶定量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610427262.5A CN105891182B (zh) 2016-06-17 2016-06-17 一种对过氧化氢酶定量的方法

Publications (2)

Publication Number Publication Date
CN105891182A CN105891182A (zh) 2016-08-24
CN105891182B true CN105891182B (zh) 2018-05-29

Family

ID=56729752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610427262.5A Active CN105891182B (zh) 2016-06-17 2016-06-17 一种对过氧化氢酶定量的方法

Country Status (1)

Country Link
CN (1) CN105891182B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706539A (zh) * 2016-12-01 2017-05-24 湖北大学 一种测定植物过氧化氢酶活性的方法
CN114397284A (zh) * 2022-01-20 2022-04-26 甘肃医学院 基于丁基罗丹明b荧光猝灭法测定血清过氧化氢酶活度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743467A (zh) * 2007-06-04 2010-06-16 马里兰大学生物技术研究所 微波腔中的荧光显微镜
CN102861334A (zh) * 2012-10-11 2013-01-09 南京大学 肿瘤信号响应的主动治疗纳米光动力药物载体及制法
CN103645152A (zh) * 2013-12-12 2014-03-19 尹军 一种活性污泥过氧化氢酶活性的测定方法
CN104330392A (zh) * 2014-11-04 2015-02-04 福建医科大学 基于金纳米团簇探针的过氧化氢酶荧光测定方法
CN105001858A (zh) * 2015-07-30 2015-10-28 济南大学 一种新型检测碱性环境中过氧化氢的荧光探针及其制备方法与生物应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL158462A0 (en) * 2001-05-08 2004-05-12 Astrazeneca Ab An assay for detecting inhibitors of the enzyme myeloperoxidase
US7446867B2 (en) * 2005-10-24 2008-11-04 Jevgeni Berik Method and apparatus for detection and analysis of biological materials through laser induced fluorescence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743467A (zh) * 2007-06-04 2010-06-16 马里兰大学生物技术研究所 微波腔中的荧光显微镜
CN102861334A (zh) * 2012-10-11 2013-01-09 南京大学 肿瘤信号响应的主动治疗纳米光动力药物载体及制法
CN103645152A (zh) * 2013-12-12 2014-03-19 尹军 一种活性污泥过氧化氢酶活性的测定方法
CN104330392A (zh) * 2014-11-04 2015-02-04 福建医科大学 基于金纳米团簇探针的过氧化氢酶荧光测定方法
CN105001858A (zh) * 2015-07-30 2015-10-28 济南大学 一种新型检测碱性环境中过氧化氢的荧光探针及其制备方法与生物应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
过氧化氢酶的荧光法测定及其在海洋环境污染评估中的应用;薛细平 等;《厦门大学学报(自然科学版)》;20030131;第42卷(第1期);第83-86页 *

Also Published As

Publication number Publication date
CN105891182A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
Yu et al. Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection
Irkham et al. Electrogenerated chemiluminescence of luminol mediated by carbonate electrochemical oxidation at a boron-doped diamond
CN106008342A (zh) 一种检测细胞溶酶体内甲醛的荧光探针及其制备方法
Jing et al. Fe–N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants
Zheng et al. Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminol
Fereja et al. Highly sensitive and selective non-enzymatic glucose detection based on indigo carmine/hemin/H 2 O 2 chemiluminescence
CN105891182B (zh) 一种对过氧化氢酶定量的方法
CN101451953B (zh) 一种生物毒性的检测方法
CN109576342A (zh) 一种用于检测碱性磷酸酶的荧光化学方法与应用
Li et al. A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water
Zhang et al. A ruthenium (II) complex based turn-on electrochemiluminescence probe for the detection of nitric oxide
Zhang et al. Evaluation methods of inhibition to microorganisms in biotreatment processes: A review
CN102608092A (zh) 高灵敏度的铜离子检测用荧光生物传感器及其检测方法
Gao et al. A commercially available NIR fluorescence probe for the detection of hypochlorite and its application in cell imaging
CN109142493B (zh) 一种用于非标记检测4-氯苯酚的光电化学传感器的构建方法
Wang et al. An ultrasensitive electrochemiluminescence biosensor for the detection of total bacterial count in environmental and biological samples based on a novel sulfur quantum dot luminophore
Gao et al. Determination of copper (II) based on its inhibitory effect on the cathodic electrochemiluminescence of lucigenin
McLamore et al. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities
Liu et al. An immobilization-free and homogeneous electrochemiluminescence assay for detection of environmental pollutant graphene oxide in water
AU2021104090A4 (en) Method for quantitatively detecting alkaline phosphatase in seawater based on surface enhanced raman spectroscopy
Woldu Biosensors and its applications in Water Quality Monitoring
Kitte et al. Electrochemiluminescence of Ru (bpy) 3 2+/thioacetamide and its application for the sensitive determination of hepatotoxic thioacetamide
Barkae et al. Development of Ru (bpy) 32+ electrochemiluminescence sensor for highly sensitive detection of carcinogenic and mutagenic hexamethylphosphoramide
CN110133065A (zh) 一种利用α-溶血素纳米孔检测铜离子的方法
CN112345505B (zh) 四(4-氨基联苯基)乙烯检测次氯酸根的方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Quantitative Method for Catalase

Effective date of registration: 20230324

Granted publication date: 20180529

Pledgee: Bank of China Limited Kunming Bayi Branch

Pledgor: YUNNAN SHENGQING ENVIRONMENT MONITORING TECHNOLOGY Co.,Ltd.

Registration number: Y2023530000011

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20180529

Pledgee: Bank of China Limited Kunming Bayi Branch

Pledgor: YUNNAN SHENGQING ENVIRONMENT MONITORING TECHNOLOGY Co.,Ltd.

Registration number: Y2023530000011

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A quantitative method for catalase

Granted publication date: 20180529

Pledgee: Bank of China Limited Kunming Bayi Branch

Pledgor: YUNNAN SHENGQING ENVIRONMENT MONITORING TECHNOLOGY Co.,Ltd.

Registration number: Y2024980016707