CN105864181A - Filtering method adopting wave suppression, magnetization and adsorption - Google Patents

Filtering method adopting wave suppression, magnetization and adsorption Download PDF

Info

Publication number
CN105864181A
CN105864181A CN201610311885.6A CN201610311885A CN105864181A CN 105864181 A CN105864181 A CN 105864181A CN 201610311885 A CN201610311885 A CN 201610311885A CN 105864181 A CN105864181 A CN 105864181A
Authority
CN
China
Prior art keywords
oil
filter
module
inner core
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610311885.6A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201610311885.6A priority Critical patent/CN105864181A/en
Publication of CN105864181A publication Critical patent/CN105864181A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering

Abstract

The invention relates to a filtering method adopting wave suppression, magnetization and adsorption. According to the filtering method, a filter is used for attenuating pressure/flow pulsation of hydraulic oil, and a work condition self-adaptive filter is adopted as the filter; a U-shaped particle separation module is used for achieving separation of solid particles so that the solid particles in oil liquid can move towards the pipe wall, the oil liquid flows back to an oil tank after entering an oil return barrel through an oil inlet pipe of the oil return barrel, oil liquid, containing a micro quantity of small-particle-size particles, at the center of a pipeline enters an inner barrel through an oil inlet pipe of the inner barrel to be subjected to high-precision filtering, and the service life of a filter element is prolonged; the oil liquid entering the oil inlet pipe of the inner barrel flows into a spiral flow channel of the inner barrel in a tangent inflow manner, the inner barrel wall is provided with the filter element, filter liquor is closely attached to the filter element to flow under the effect of centrifugal force, the filter liquor fast flows parallel to the surface of the filter element, filtered hydraulic oil flows out to an outer barrel in the direction perpendicular to the surface of the filter element; and pollution particles deposited at the bottom of the inner barrel are discharged to the oil return barrel through an electronic control check valve, and therefore the service life of the filter element is prolonged.

Description

The filter method that a kind of employing presses down ripple, magnetizes and adsorb
[technical field]
The present invention relates to a kind of hydraulic oil filtering method, be specifically related to a kind of employing and press down ripple, the filtration side magnetizing and adsorbing Method, belongs to technical field of hydraulic equipment.
[background technology]
Statistics both domestic and external show, the fault of hydraulic system about 70%~85% is owing to oil contamination causes 's.Solid particle is then the pollutant the most universal in oil contamination, damaging effect is maximum.The liquid caused by solid grain contamination The pressure system failure accounts for the 70% of gross contamination fault.In particulate pollutant in hydraulic system oil liquid, metal filings accounting exists Between 20%~70%.Adopt an effective measure the solid grain contamination filtering in fluid, be the pass of Pollution Control in Hydraulic System Key, is also the Reliable guarantee of system safety operation.
Filter is the key element that hydraulic system filters solid grain contamination.Solid particle pollution in hydraulic oil Thing, outside the precipitable a part of larger particles of oil removal box, filters mainly by oil-filtering apparatus.Especially high pressure filtering device, mainly It is used for filtering the hydraulic oil of flow direction control valve and hydraulic cylinder, to protect the Hydraulic Elements of this kind of contamination resistance difference, therefore to liquid The cleannes of force feed require higher.
But, the high pressure filter that existing hydraulic system uses has the disadvantage that in (1) hydraulic system because of hydraulic pump Periodically oil extraction mechanism brings flow pulsation and pressure fluctuation, makes the filter element in wave filter operationally produce forced vibration, fall Low strainability;(2) cleannes of fluid are required different by all kinds of Hydraulic Elements, the particle diameter of the solid particle in fluid Size is the most different, needs for this diverse location in hydraulic system to install multiple dissimilar wave filter, thus brings Cost and the problem installing complexity;(3) filter in hydraulic system mainly uses cake filtration mode, and during filtration, filtrate is hung down Directly flowing in filter element surface, trapped solid particle forms filter cake progressive additive, the rate of filtration the most gradually under Fall, until filtrate stops flowing out, reduces the service life of filter element.
Therefore, for solving above-mentioned technical problem, the mistake that the employing of a kind of innovation of necessary offer presses down ripple, magnetizes and adsorb Filtering method, to overcome described defect of the prior art.
[summary of the invention]
For solving above-mentioned technical problem, it is an object of the invention to provide a kind of strainability good, adaptability and integration Height, service life length the employing filter method that presses down ripple, magnetize and adsorb.
For achieving the above object, the technical scheme that the present invention takes is: a kind of employing presses down ripple, the filtration side magnetizing and adsorbing Method, it uses a kind of defecator, and this device includes base plate, wave filter, U-shaped separation of particles module, oil returning tube, inner core, spiral Runner, filter element, outer barrel and end cap;Wherein, described wave filter, U-shaped separation of particles module, oil returning tube, outer barrel are sequentially placed into the end On plate;Described wave filter includes input pipe, shell, outlet tube, elastic thin-wall, H mode filter and cascaded H mode filter;Its In, described input pipe is connected to one end of shell, and it extends in shell, itself and hydraulic oil inlet docking;Described outlet tube Being connected to the other end of shell, it extends in shell, and itself and U-shaped separation of particles module are docked;Described elastic thin-wall is along shell Radial direction be installed in shell;Described input pipe, outlet tube and elastic thin-wall are collectively forming a two-tube slip-on filter;Described Some taper structure changes damping holes are uniformly had in the axial direction of elastic thin-wall;Described taper structure changes damping hole is hindered by cone shaped elastic Buddhist nun hole pipe and slot apertures form;Resonance series cavity volume I and parallel resonance cavity volume is formed between described elastic thin-wall and shell;Described The outside of resonance series cavity volume I sets a resonance series cavity volume II, logical between described resonance series cavity volume I and resonance series cavity volume II Cross a taper and insert pipe connection;This taper inserts pipe near input tube side;Described H mode filter is positioned at parallel resonance cavity volume, It is connected with taper structure changes damping hole;Described cascaded H mode filter is positioned at resonance series cavity volume I and resonance series cavity volume II In, it is also connected with taper structure changes damping hole;Described H mode filter and cascaded H mode filter are axially symmetrical set, and Composition connection in series-parallel H mode filter;Described U-shaped separation of particles module includes a U-tube, U-tube is sequentially installed with temperature control module, Magnetized module, adsorption module and demagnetization module;The top of described U-shaped separation of particles module and oil returning tube is entered by an oil returning tube Oil pipe connects;Described inner core is placed in outer barrel, if it is installed on end cap by a top board and bolt stem;Described helical flow path It is contained in inner core, is connected by an inner core oil inlet pipe between itself and U-shaped separation of particles module;Described inner core oil inlet pipe is positioned at back In oil cylinder oil inlet pipe, and extending into the central authorities of U-shaped separation of particles module, its diameter is less than oil returning tube oil inlet pipe diameter, and and returns Oil cylinder oil inlet pipe is coaxially disposed;Described filter element is arranged on the inwall of inner core;It is fuel-displaced that the bottom of said tub is provided with a hydraulic oil Mouthful;It comprises the steps:
1), the fluid in fluid pressure line passes through wave filter, the arteries and veins of the high, medium and low frequency range in filter attenuation hydraulic system Dynamic pressure, and suppression flowed fluctuation;
2), hydraulic oil enters the temperature control module of U-shaped separation of particles module, by temperature control module regulation oil temperature to optimal magnetic Change temperature 40-50 DEG C, enter magnetized module afterwards;
3), make the metallic particles in fluid be magnetized in magnetic field by magnetizing assembly, and make micron-sized metallic particles Aggregate into bulky grain;Enter adsorption module afterwards;
4), by the magnetic polymeric microgranule in adsorption module absorption oil return;Enter demagnetization module 35 afterwards;
5), magnetic particle magnetic is eliminated by demagnetization module;
6), the fluid of U-shaped separation of particles module near-wall is back to oil after entering oil returning tube by oil returning tube oil inlet pipe Case, the fluid of the pipeline center containing trace small particle microgranule then enters inner core by inner core oil inlet pipe and carries out high-precision filtration;
7), the fluid carrying small particle microgranule flows into the helical flow path of inner core in the way of tangential influent stream, and fluid is centrifugal It is close to filter core flow under the effect of power, and carries out high-precision filtration;
8), the fluid after high-precision filtration enters urceolus, and is discharged by the hydraulic oil oil-out bottom urceolus.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: described input pipe and the axle of outlet tube Line is the most on the same axis;The wider place of described taper structure changes damping hole opening is positioned at resonance series cavity volume I and parallel resonance is held Intracavity, its taper angle is 10 °;The Young's modulus of described taper structure changes damping hole cone shaped elastic damping hole pipe is than elastic thin-wall Young's modulus wants big, can be with change in fluid pressure stretching or compression;The Young's modulus of slot apertures is than the poplar of cone shaped elastic damping hole pipe Family name's modulus wants big, can be with fluid opened by pressure or closedown;Described taper is inserted the wider place of tube opening and is positioned at resonance series cavity volume II In, its taper angle is 10 °.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: described temperature control module include heater, Cooler and temperature sensor;Described heater uses the lubricating oil heater of the Chongqing gold letter of band temperature detection;Described cooling Remover for surface evaporation type air cooling selected by device, and the finned tube of cooler selects KLM type finned tube;Temperature sensor uses platinum resistance temperature to pass Sensor.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: described magnetized module includes aluminum matter pipe Road, some windings, iron shell, flange and some magnetizing current output modules;Wherein, described some windings are rotating around at aluminum Outside matter pipeline, each winding is made up of positive winding and inverse winding;Described iron shell is coated on aluminum matter pipeline;Described flange welding Two ends at aluminum matter pipeline;Each magnetizing current output module is connected to a winding.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: described adsorption module specifically use with The most adjacent type absorbing ring, this homopolarity adjacent type absorbing ring includes aluminium ring shape pipeline, forward solenoid, reverse solenoid and ferrum Matter magnetic conduction cap;Described forward solenoid and reverse solenoid are respectively arranged in aluminium ring shape pipeline, and both are connected with in opposite direction Electric current so that forward solenoid and reverse solenoid adjacent produce like pole;Described irony magnetic conduction cap is arranged in aluminum matter On the inwall of circulating line, it is positioned at forward solenoid and reverse solenoid adjacent and forward solenoid and reverse helical The intermediate point of pipe axis.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: described adsorption module specifically uses band The homopolarity adjacent type absorbing ring of electric shock hammer, the homopolarity adjacent type absorbing ring of this charged hammer includes aluminium ring shape pipeline, forward spiral shell Spool, reverse solenoid, irony magnetic conduction cap, dividing plate, electric shock hammer and electric magnet;Described forward solenoid and reverse solenoid divide Not being arranged in aluminium ring shape pipeline, both are connected with electric current in opposite direction so that forward solenoid and reverse solenoid are adjacent Place produces like pole;Described irony magnetic conduction cap is arranged on the inwall of aluminium ring shape pipeline, and it is positioned at forward solenoid with anti- To solenoid adjacent and forward solenoid and the intermediate point of reverse solenoid axis;Described dividing plate is positioned at forward solenoid And between reverse solenoid;Described electric shock hammer and electric magnet are between dividing plate;Described electric magnet connects and can promote electric shock hammer, Electric shock hammer is made to tap aluminium ring shape inner-walls of duct.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: the bottom of described oil returning tube is provided with one Overflow valve, is provided with an automatically controlled set screw bottom this overflow valve;Described overflow valve is provided with an oil drain out, and this oil drain out is by pipe Road is connected to a fuel tank.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: the bottom of described inner core is inverted round stage Shape, it is by an inner core oil exit pipe and oil returning tube connection, and inner core oil exit pipe is provided with an automatically controlled check-valves.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is further: the center upright of described inner core is provided with One hollow cylinder, hollow cylinder be arranged over pressure difference indicator, this pressure difference indicator is installed on end cap;Described inner core oil-feed Pipe and the tangent connection of helical flow path.
The employing of the present invention presses down ripple, magnetize and the filter method that adsorbs is also: the precision of described filter element is 1-5 micron.
Compared with prior art, there is advantages that
1. pulsed by the pressure/flow of filter attenuation hydraulic oil, make filter element not vibrate, to improve Strainability;Hydraulic oil realizes the separation of solid particle in U-shaped separation of particles module, makes the solid particle in fluid to tube wall Motion, at U-shaped separation of particles module outlet, the fluid rich in the near-wall of solid particle is entered by oil returning tube oil inlet pipe Fuel tank it is back to, in only the fluid of the pipeline center containing trace small particle microgranule is then entered by inner core oil inlet pipe after oil returning tube Cylinder carries out high-precision filtration, improves the service life of filter element, reduces filtering cost and complexity;Enter inner core oil inlet pipe Fluid flows into the helical flow path of inner core in the way of tangential influent stream, and inner tube wall is filter element, then filtrate is the tightest Patch filter core flow, filtrate is parallel to the surface of filter element and quickly flows, and the hydraulic oil after filtration is then perpendicular to cartridge surface direction stream Going out to urceolus, the microgranule of cartridge surface is implemented to sweep stream effect by this cross flow filter type, it is suppressed that the increase of filter cake thickness, It is deposited on the pollution granule bottom inner core and regularly can be discharged to oil returning tube by automatically controlled check-valves, thus improve filter element and use the longevity Life.
2., by controlling the temperature of hydraulic oil and magnetic field intensity, make that the granule in fluid is force-magnetized is gathered into bulky grain, And promote colloidal particles decomposition to melt, form efficient absorption by adsorption module, by degaussing gear, residual particles demagnetization is kept away Exempt to endanger Hydraulic Elements, so that solid particle is gathered into bulky grain and moves to near-wall in fluid.
3. the generation of non-uniform magnetic-field that magnetization needs, need multipair forward and reverse coil to and pass through different size of electric current, And current values can numeral set online.
[accompanying drawing explanation]
Fig. 1 is the structural representation of defecator that the employing of the present invention presses down ripple, magnetizes and adsorb.
Fig. 2 is the structural representation of the wave filter in Fig. 1.
Fig. 3 is the profile in Fig. 2 along A-A.
Fig. 4 is H mode filter schematic diagram in Fig. 3.
Fig. 5 is cascaded H mode filter schematic diagram in Fig. 3.
Fig. 6 is H mode filter and cascaded H mode filter frequency characteristic constitutional diagram.Wherein, solid line is cascaded H mode filter Frequency characteristic.
Fig. 7 is connection in series-parallel H mode filter frequency characteristic figure.
Fig. 8 is the structural representation of Double-pipe plug-in type wave filter.
Fig. 9 is the cross sectional representation of elastic thin-wall.
Figure 10 is the schematic diagram of taper structure changes damping hole in Fig. 2.
Figure 10 (a) to Figure 10 (c) is the working state figure of taper structure changes damping hole.
Figure 11 is the schematic diagram of the U-shaped separation of particles module in Fig. 1.
Figure 12 is the structural representation of the magnetized module in Figure 11.
Figure 13 is the structural representation of the winding in Figure 12.
Figure 14 is the circuit diagram of the magnetizing current output module in Figure 12.
Figure 15 be the adsorption module of Figure 11 be the structural representation of homopolarity adjacent type absorbing ring.
Figure 16 be the adsorption module in Figure 11 be the structural representation of the homopolarity adjacent type absorbing ring of charged hammer.
[detailed description of the invention]
Referring to shown in Figure of description 1 to accompanying drawing 16, the present invention is the filtration dress that a kind of employing presses down ripple, magnetizes and adsorb Putting, it is by base plate 6, wave filter 8, U-shaped separation of particles module 3, oil returning tube 7, inner core 15, helical flow path 17, filter element 18, outer barrel 19 And several parts such as end cap 25 composition.Wherein, described wave filter 8, U-shaped separation of particles module 2, oil returning tube 7, outer barrel 19 are put successively On base plate 6.
Described wave filter 8 is for inputting hydraulic oil, and the pulsation pressure of the high, medium and low frequency range that can decay in hydraulic system Power, and suppression flowed fluctuation.Described wave filter 8 is by input pipe 81, shell 88, outlet tube 89, elastic thin-wall 87, H mode filter 812 and several parts such as cascaded H mode filter 813 composition.
Wherein, described input pipe 81 is connected to one end of shell 89, and it extends in shell 88, itself and a hydraulic oil inlet 1 docking;Described outlet tube 811 is connected to the other end of shell 89, and it extends in shell 88, itself and U-shaped separation of particles module 3 Docking.Described elastic thin-wall 87 is installed in shell 88 along the radial direction of shell.The axis of described input pipe 81 and outlet tube 89 is not On the same axis, the filter effect of more than 10% can so be improved.
Described input pipe 81, outlet tube 89 and elastic thin-wall 87 are collectively forming a two-tube slip-on filter, thus decay Hydraulic system high frequency pressure pulsations.The filter transmission coefficient obtained after processing by lumped-parameter method is:
γ = | Z | 2 | Z | 2 + ( 2 ρ a πd 1 2 ) 2
Velocity of sound ρ fluid density d in a medium1Input pipe diameter Z characteristic impedance
Z = 1 1 Z 1 + 1 Z 2 + 1 Z 3
Z 1 = ρl 1 s π 4 ( D 2 - d 1 2 ) + ρa 2 π 4 ( D 2 - d 1 2 ) l 1 s
Z 2 = ρ L s π 4 D 2 + ρa 2 π 4 D 2 L s
Z 3 = ρl 2 s π 4 ( D 2 - d 2 2 ) + ρa 2 π 4 ( D 2 - d 2 2 ) l 2 s
d2Outlet tube diameter D cavity volume diameter l1Input inserts length of tube l2Outfan inserts length of tube L cavity volume total length and input outfan insert the difference of length of tube sum
From above formula, Double-pipe plug-in type cavity volume wave filter is similar with the electric capacity effect in circuit.The pressure of different frequency When pulsating wave is by this wave filter, transmission coefficient is different with frequency.Frequency is the highest, then transmission coefficient is the least, and this shows high frequency Pressure pulse wave decay the most severe when device after filtering, thus serve eliminate high frequency pressure pulsations effect.
The design principle of described Double-pipe plug-in type wave filter is as follows: when in pipeline, the fluctuating frequency of pressure is higher, pressure oscillation Act on convection cell on fluid and produce pinch effect.When the flow of change enters Double-pipe plug-in type cavity volume by input pipe, liquid Stream exceedes average discharge, and the cavity volume of expansion can absorb unnecessary liquid stream, and releases liquid stream when less than average discharge, thus absorbs Pressure fluctuation energy.
Described elastic thin-wall 87 weakens hydraulic system medium-high frequency pressure fluctuation by being forced to mechanical vibration.By lumped parameter The elastic thin-wall natural frequency that method obtains after processing is:
f m = k 2 h 2 πR 2 · E 12 ρ ( 1 + η ) ( 1 - μ 2 )
K elastic thin-walled structures coefficient h elastic thin-wall thickness R elastic thin-wall radius
The mass density of the Young's modulus ρ elastic thin-wall of E elastic thin-wall
The Poisson's ratio of the current-carrying factor mu elastic thin-wall of η elastic thin-wall.
Substitute into actual parameter, above formula is carried out simulation analysis it is found that the natural frequency generally ratio H type of elastic thin-wall 87 The natural frequency of wave filter is high, and its attenuation band is also wide than H mode filter.In relatively wide frequency band range, elastic Thin-walled has good attenuating to pressure fluctuation.Meanwhile, the elastic thin-wall radius in the filter construction of the present invention is bigger And relatively thin, its natural frequency, closer to Mid Frequency, can realize the effective attenuation to the medium-high frequency pressure fluctuation in hydraulic system.
The design principle of described elastic thin-wall 87 is as follows: when producing intermediate frequency pressure fluctuation in pipeline, S type cavity volume is to pressure wave Dynamic damping capacity is more weak, flows into the periodically pulsing pressure continuous action of wave filter S type cavity volume inside and outside elastic thin-wall 87 On wall, owing to having between inside and outside wall, pillar is fixing to be connected, and inside and outside elastic thin-wall is done by the frequency of fluctuation pressure simultaneously and periodically shakes Dynamic, this forced vibration consumes the pressure fluctuation energy of fluid, thus realizes the filtering of Mid Frequency pressure.From the principle of virtual work, The ability that elastic thin-wall consumes fluid pulsation pressure energy is directly related with potential energy during its forced vibration and kinetic energy sum, in order to Improving Mid Frequency filtering performance, the radial design of elastic thin-wall is much larger than pipe radius, and the thickness of thin-walled is less, representative value For less than 0.1mm.
Further, form resonance series cavity volume I84 between described elastic thin-wall 87 and shell 88 and parallel resonance is held Chamber 85.The outside of described resonance series cavity volume I84 sets a resonance series cavity volume II83, described resonance series cavity volume I84 and series connection Inserting pipe 82 by a taper between resonance cavity volume II83 to connect, this taper insertion pipe 82, near input pipe 81 side, makes resonance hold Chamber I and II forms unsymmetric structure, to reduce wave filter natural reonant frequency.Described taper is inserted the wider place of pipe 82 opening and is positioned at In resonance series cavity volume II83, its taper angle is 10 °.Some taper structure changes are uniformly had in the axial direction of described elastic thin-wall 87 Damping hole 86.
Described H mode filter 812 is positioned at parallel resonance cavity volume 85, and it is connected with taper structure changes damping hole 86.Institute State the wider place of taper structure changes damping hole 86 opening and be positioned at resonance series cavity volume I84 and parallel resonance cavity volume 85, its taper angle It it is 10 °.The wave filter natural angular frequency obtained after processing by lumped-parameter method is:
ω = a · D 1 D 2 1 L 1 L 2 ( r a d / s )
Velocity of sound L in a medium1The long D of damping hole1Damping hole diameter
L2Parallel resonance cavity volume height D2Parallel resonance cavity volume diameter.
Described cascaded H mode filter 813 is positioned at resonance series cavity volume I84 and resonance series cavity volume II83, and it also and is bored Deformation structure damping hole 86 is connected.After processing by lumped-parameter method, two natural angular frequencies of cascaded H mode filter 813 are:
ω 1 = π a 2 πl 1 ( d 2 2 l 2 + d 4 2 l 4 ) 4 d 1 2 1 + πd 4 2 l 4 l 3 4 d 3 2 + [ πl 1 ( d 2 2 l 2 + d 4 2 l 4 ) 4 d 1 2 1 - πd 4 2 l 4 l 3 4 d 3 2 ] 2 + π 2 d 4 4 l 4 2 l 1 l 3 4 d 1 2 d 3 2
ω 2 = π a 2 πl 1 ( d 2 2 l 2 + d 4 2 l 4 ) 4 d 1 2 1 + πd 4 2 l 4 l 3 4 d 3 2 - [ πl 1 ( d 2 2 l 2 + d 4 2 l 4 ) 4 d 1 2 1 - πd 4 2 l 4 l 3 4 d 3 2 ] 2 + π 2 d 4 4 l 4 2 l 1 l 3 4 d 1 2 d 3 2
Velocity of sound l in a medium1The long d of damping hole1Damping hole diameter l3Resonance pipe range
d3Resonantron diameter l2Resonance series cavity volume 1 height d2Resonance series cavity volume 1 diameter
l4Resonance series cavity volume 2 height d4Resonance series cavity volume 2 diameter.
Described H mode filter 812 and cascaded H mode filter 813 are axially symmetrical set, and form the filtering of connection in series-parallel H type Device, for broadening frequency filtering scope and make overall structure more compact.The multiple connection in series-parallel H types of the present invention circumferentially interface distributions Wave filter (only depicts 2) in figure, separate with dividing plate 820 each other, and the resonance bands of these multiple wave filter is different, Whole medium and low frequency filtering frequency range can be covered, it is achieved the entire spectrum filtering of medium and low frequency section after combining comprehensively.
All can be found by Fig. 6 H mode filter and cascaded H mode filter frequency characteristic and formula, cascaded H mode filter has 2 Individual natural angular frequency, at crest, filter effect is preferable, does not the most substantially have filter effect at trough;H mode filter has 1 Natural angular frequency, at crest, filter effect is preferable equally, does not the most substantially have filter effect at trough;Select suitably filter Ripple device parameter, makes the natural angular frequency of H mode filter just fall between 2 natural angular frequencies of cascaded H mode filter, such as figure Shown in 7, in certain frequency range, both defined the natural reonant frequency peak value of 3 next-door neighbours, in this frequency range, no matter The fluctuating frequency of pressure is at crest or all can guarantee that preferable filter effect at trough.Multiple connection in series-parallel H mode filter structures The bank of filters become both can cover whole medium and low frequency section, it is achieved the entire spectrum filtering of medium and low frequency section.
Further, described taper structure changes damping hole 86 is made up of cone shaped elastic damping hole pipe 16 and slot apertures 15, taper Narrow end is opened on elastic thin-wall 87.Wherein the Young's modulus of cone shaped elastic damping hole pipe 16 is than the Young's modulus of elastic thin-wall 87 Want big, can be with change in fluid pressure stretching or compression;The Young's modulus of slot apertures 15 is than the Young mould of cone shaped elastic damping hole pipe 16 Amount wants big, can be with fluid opened by pressure or closedown.Therefore when the fluctuating frequency of pressure falls at high band, c-type cavity volume filter construction Strobing, cone shaped elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (a) state;And when ripple frequency falls at Mid Frequency Time, filter construction becomes c-type cavity volume filter construction and elastic thin-wall 87 filter structure concurs, and cone shaped elastic damps Hole pipe 16 and slot apertures 15 are all in Figure 10 (a) state;When ripple frequency falls at some specific Frequency, filter construction Become plug-in type connection in series-parallel H mode filter, c-type cavity volume filter construction and elastic thin-wall filter structure to concur, taper Elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (b) state, due to the natural frequency quilt of plug-in type connection in series-parallel H mode filter It is designed as consistent with these particular low frequency ripple frequencies, the system that fundamental frequency energy is big can be played preferable filter effect;Work as arteries and veins Dynamic frequency fall the low-frequency range beyond some characteristic frequency time, cone shaped elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (c) State.The design of such structure changes wave filter both ensure that the full frequency band full working scope filtering of hydraulic system, reduces again normal work The pressure loss of wave filter under condition, it is ensured that the hydraulic pressure rigidity of system.
The present invention can also the pulsation decay of solid line operating mode self-adaptive pressure.When hydraulic system working conditions change, both executive components Suddenly stop or running, and when the opening of valve changes, the characteristic impedance of pipe-line system can be caused to undergo mutation, so that former pipe Pressure curve with change in location in time in road changes the most therewith, then the position of pressure peak also changes.Due to the present invention The axial length of wave filter be designed as pulsing wavelength, and the connection in series-parallel H mode filter group of wave filter more than system main pressure Cavity volume length, the length of Double-pipe plug-in type cavity volume wave filter and the length of elastic thin-wall and wave filter axial length equal, protect Demonstrate,prove pressure peak position to be constantly in the effective range of wave filter;And the taper structure changes of connection in series-parallel H mode filter Damping hole is opened on elastic thin-wall, is uniformly distributed in the axial direction so that pressure peak change in location is several to the performance of wave filter Not impact, it is achieved thereby that operating mode adaptive-filtering function.In view of three kinds of filter structure axial dimensions and wave filter phase When, this bigger size also ensure that hydraulic filter possesses stronger pressure fluctuation damping capacity.
The method that the hydraulic filter using the present invention carries out hydraulic pulsation filtering is as follows:
1), hydraulic fluid enters Double-pipe plug-in type wave filter by input pipe, and the cavity volume of expansion absorbs unnecessary liquid stream, completes The filtering of high frequency pressure pulsations;
2), by elastic thin-wall 87 forced vibration, consume the pressure fluctuation energy of fluid, complete the filter of intermediate frequency pressure fluctuation Ripple;
3), by connection in series-parallel H mode filter group, and taper structure changes damping hole, taper insertion pipe and fluid produce altogether Shake, consume pulsation energy, complete the filtering of low frequency pulsation;
4), the axial length of wave filter is designed as more than hydraulic system main pressure pulsation wavelength, and the filter of connection in series-parallel H type Ripple device length, Double-pipe plug-in type filter length and elastic thin-wall 87 length are equal with filter length, make pressure peak position It is constantly in the effective range of wave filter, it is achieved the filtering of pressure fluctuation when system condition changes;
5), by the flexible of the cone shaped elastic damping hole pipe of taper structure changes damping hole and the switch of slot apertures, pressure is completed Pulsation adaptive-filtering.
Described U-shaped separation of particles module 3 includes a U-tube 31, and U-tube 31 is sequentially installed with temperature control module 32, magnetization Module 33, adsorption module 34 and demagnetization module 35.
Described temperature control module 32 main purpose is to provide optimal magnetization temperature 40-50 DEG C, also for magnetized module 33 simultaneously Having the effect of fluid viscosity reduction concurrently, it includes heater, cooler and temperature sensor.Described heater uses band temperature detection The lubricating oil heater of Chongqing gold letter.Described cooler can be selected for remover for surface evaporation type air cooling, the advantage having water-cooled and air cooling concurrently, Good heat dissipation effect, uses light pipe, and fluid resistance is little;Cooler fin type is high wing, and finned tube selects KLM type finned tube, heat transfer Performance is good, and thermal contact resistance is little, and fin and pipe contact area are big, and closely, firmly, it is good to bear cold and hot sudden turn of events ability, fin in laminating Root weather-resistant performance is high;The bank of tubes number optimum of air cooler is 8.Described temperature sensor uses platinum resistance temperature sensing Device.
Described magnetized module 33 realizes the force-magnetized of metallic particles, and makes micron-sized metallic particles aggregate into big Grain, it is simple to subsequent adsorbtion separates.Magnetized module 32 it is also required to provide non-uniform magnetic-field simultaneously, enters the colloidal particles in hydraulic oil Row magnetization is decomposed, the microgranule making colloid particulate breakup be smaller particle size, pollution abatement.
Described magnetized module 33 is by aluminum matter pipeline 331, some windings 332, iron shell 333, flange 334 and some magnetic Galvanic current output module 335 forms.Wherein, described aluminum matter pipeline 331 makes fluid flow there through and by magnetization treatment, and aluminum Pcrmeability the lowest, can make pipeline 331 obtains higher magnetic field intensity.
Described some windings 332, rotating around outside aluminum matter pipeline 331, are coated insulation by the copper wire of a diameter of about 1.0mm Paint is made.Each winding 332 is all separate setting, is controlled by corresponding magnetizing current output module 335 respectively, Qi Zhong electricity Flow and need different according to system.Separate owing to often enclosing winding 332, its exit can cause the electric current that this coil forms Ring is not real " justifying ", but has individual breach, and this can cause the radial distribution of aluminum matter pipeline 331 internal magnetic field uneven, thus Affect magnetic efficiency.For solving this problem, the often circle winding 332 of this creation is all made up of positive winding 336 and inverse winding 337, mesh Be to produce the magnetic field in same polarity direction and to make up the magnetic field that breach causes unbalanced simultaneously.In positive winding and inverse winding Size of current is equal.Aluminum matter pipeline 331 axis direction is arranged with multipair forward and reverse winding, by different electric currents, in order to shape Become the non-uniform magnetic-field of aforementioned claim.
Described iron shell 333 is coated on aluminum matter pipeline 331, and the material of irony can mask most magnetic flux.Institute State flange 334 and be welded on the two ends of aluminum matter pipeline 331, and by flange flange 334 in U-tube 20.
Each magnetizing current output module 335 is connected to a winding 332, and it utilizes digital potentiometer real time modifying resistance Feature, it is achieved the real-time control of non-uniform magnetic-field.The circuit theory diagrams of described magnetizing current output module 335 can be found in accompanying drawing 5, Its digital potentiometer used is AD5206, has the defeated of 6 passages.Amplifier AD8601 and metal-oxide-semiconductor 2N7002 are real by negative feedback Show the output of high-precision voltage follow.Constant High-current output have employed the high voltage of Texas Instrument (TI), the fortune of big electric current Put OPA 549.
Described adsorption module 34 is for adsorbing the big microgranule of magnetic polymeric after magnetized module 33 magnetizes, and it can use homopolarity Adjacent type absorbing ring, this homopolarity adjacent type absorbing ring is by aluminium ring shape pipeline 341, forward solenoid 342, reverse solenoid 343 And the parts such as irony magnetic conduction cap 344 composition.Wherein, described forward solenoid 342 and reverse solenoid 343 are respectively arranged in aluminum Matter circulating line 341, both are connected with electric current in opposite direction so that forward solenoid 342 and reverse solenoid 343 adjacent produce Raw like pole.Described irony magnetic conduction cap 344 is arranged on the inwall of aluminium ring shape pipeline 341, and it is positioned at forward solenoid 342 With reverse solenoid 343 adjacent and forward solenoid 342 and the intermediate point of reverse solenoid 343 axis.
The design principle of described homopolarity adjacent type absorbing ring is as follows: energising forward solenoid 342, reverse solenoid 343, phase Adjacent forward solenoid 342, reverse solenoid 343 are connected with electric current in opposite direction so that forward solenoid 342, reverse helical Pipe 343 adjacent produces like pole;Meanwhile, aluminium ring shape pipeline 341 can improve magnetic circuit, strengthens the magnetic field at inner-walls of duct Intensity, strengthens the irony magnetic conduction cap 344 capture absorbability to granule.Each forward solenoid 342, reverse solenoid 343 electric current Can be different with concentration and change, to obtain optimal adsorption performance according to the size of granule.
Further, the homopolarity adjacent type absorbing ring that described adsorption module 34 may be used without charged hammer, this charged hammer Homopolarity adjacent type absorbing ring by aluminium ring shape pipeline 341, forward solenoid 342, reverse solenoid 343, irony magnetic conduction cap 344, dividing plate 345, the parts such as hammer 346 and electric magnet 347 that shock by electricity form.Wherein, described forward solenoid 342 and reverse helical Pipe 343 is respectively arranged in aluminium ring shape pipeline 341, and both are connected with electric current in opposite direction so that forward solenoid 342 is with reverse Solenoid 343 adjacent produces like pole.Described irony magnetic conduction cap 344 is arranged on the inwall of aluminium ring shape pipeline 341, its It is positioned at forward solenoid 342 and reverse solenoid 343 adjacent and forward solenoid 342 and reverse solenoid 343 axis Intermediate point.Described electric shock hammer 346 and electric magnet 347 are between dividing plate 345.Described electric magnet 347 connects and can promote electric shock Hammer 346, makes electric shock hammer 346 percussion aluminium ring shape pipeline 342 inwall.
The design principle of the homopolarity adjacent type absorbing ring of described charged hammer is as follows: energising forward solenoid 342, reverse spiral shell Spool 343, adjacent forward solenoid 342, reverse solenoid 343 are connected with electric current in opposite direction so that forward solenoid 342, reverse solenoid 343 adjacent produces like pole;Meanwhile, aluminium ring shape pipeline 341 can improve magnetic circuit, strengthens pipeline Magnetic field intensity at inwall, strengthens the irony magnetic conduction cap 344 capture absorbability to granule.Each forward solenoid 342, reverse spiral shell Spool 343 electric current can be different with concentration and change, to obtain optimal adsorption performance according to the size of granule.And by electric shock The setting of hammer 346, prevents granule bulk deposition at irony magnetic conduction cap 344, affects adsorption effect.Now, by electric magnet 347 Control the inwall of electric shock hammer 346 percussion pipeline 341 so that adsorbed granule scatter to both sides.Meanwhile, pipeline is being cleaned When 341, the percussion of electric shock hammer 346 can also improve cleaning performance.
Described adsorption module 34 is designed to U-shaped, and when fluid enters U-shaped absorption pipeline, granule is at gravity, the work of centrifugal force Under with, to side, tube wall moves, and plus magnetic field force effect, moves radially speed and accelerates, and the efficiency of granular absorption is improved; Fluid leave U-shaped absorption pipeline rise time, making a concerted effort so that the diagonally lower direction motion of granule, prolongation of gravity and magnetic field force The numerical density time, improve the efficiency of granular absorption.
Described demagnetization module 35 gives magnetized particles demagnetization, prevents residual magnetism microgranule from entering hydraulic pressure by oil returning tube oil inlet pipe Loop, sensitive to pollution Hydraulic Elements cause damage.
The top of described U-shaped separation of particles module 3 and oil returning tube 7 is connected by an oil returning tube oil inlet pipe 22;By U-shaped micro- After grain separation module 3 processes, the fluid of U-tube 31 near-wall, rich in aggregated particles, is entered back by oil returning tube oil inlet pipe 22 It is back to fuel tank after oil cylinder 7.
The bottom of described oil returning tube 7 is provided with an overflow valve 2, is provided with an automatically controlled set screw 9 bottom this overflow valve 2;Described Overflow valve 2 is provided with an oil drain out 10, and this oil drain out 10 is connected to a fuel tank 11 by pipeline 20.
Described inner core 15 is placed in outer barrel 19, if it is installed on end cap 25 by a top board 13 and bolt stem 21.Institute State helical flow path 17 to be contained in inner core 15, connected by an inner core oil inlet pipe 12 between itself and U-shaped separation of particles module 3, tool Saying of body, described inner core oil inlet pipe 12 and the tangent connection of helical flow path 17.The fluid of the U-tube 31 pipeline center only granule Han trace Footpath microgranule, enters inner core 15 by inner core oil inlet pipe 12 and realizes high-precision filtration, thus realize solid particle and separate.Further , described inner core oil inlet pipe 12 is positioned at oil returning tube oil inlet pipe 22, and extends into the central authorities of U-shaped separation of particles module 3, its diameter Less than oil returning tube oil inlet pipe 22 diameter, and it is coaxially disposed with oil returning tube oil inlet pipe 22.
Further, the bottom of described inner core 15 is rounding mesa-shaped, and it is connected by an inner core oil exit pipe 23 and oil returning tube 7 Connecing, inner core oil exit pipe 23 is provided with an automatically controlled check-valves 24.The center upright of described inner core 15 is provided with a hollow cylinder 16, hollow Cylinder 16 be arranged over pressure difference indicator 14, this pressure difference indicator 14 is installed on end cap 25.
Described filter element 18 is arranged on the inwall of inner core 15, and its precision is 1-5 micron.
The bottom of said tub 19 is provided with a hydraulic oil oil-out 5, the hydraulic oil that will have been filtered by hydraulic oil oil-out 5 Discharge.
In the present invention, owing to U-shaped separation of particles module 3 is to solid particle separation of polymeric effect in fluid, at U-shaped microgranule In the fluid in separation module 3 exit, the fluid at the center only small particle microgranule Han trace, this part fluid is from inner core oil inlet pipe 12 It is flowed into inner core 15 and carries out high-precision filtration;And the fluid of near-wall is rich in aggregated particles, this part fluid passes through oil returning tube Oil inlet pipe 22 enters oil returning tube 7, then flows back to fuel tank 11 through the oil drain out 10 of overflow valve 2, thus realizes solid particle by particle Footpath shunting filtering.Herein, oil returning tube 7 and overflow valve 2 serve aforesaid macrofiltration, thus save filter number, fall Low system cost and complexity.The automatically controlled set screw 9 of overflow valve 2 is used for regulating oil pressure relief, is adjusted to by its pressure slightly Less than pressure at filtering outlet, to ensure inner core 15 filtering traffic.
It addition, traditional filter mainly uses cake filtration mode, during filtration, filtrate is perpendicular to filter element surface stream Dynamic, trapped solid particle forms filter cake progressive additive, and the rate of filtration is gradually reduced the most therewith, until filtrate stops stream Go out, reduce the service life of filter element.In this present invention, carry the filtrate of small particle microgranule from inner core oil inlet pipe 12 Flowing into the helical flow path 17 of inner core 15 in the way of tangential influent stream, inner core 15 wall of helical duct 17 side is high-precision filter element 18, filtrate is close to filter element 18 surface under the influence of centrifugal force, and filtrate is parallel to the surface of filter element 18 and quickly flows, after filtration Hydraulic oil is then perpendicular to filter element 18 surface direction and flows out to urceolus 19, and the direction of the two flowing is orthogonal staggered, therefore claims it Filter for cross flow.The quickly flowing of filtrate is applied with shearing to the microgranule being gathered in filter element 18 surface and sweeps stream effect, thus presses down Having made the increase of filter cake thickness so that rate of filtration near constant, filter pressure also will not raise with the passing of time, filter element Service life thus increase substantially.Along with the accumulation of filtration time, it is deposited on the pollution granule bottom inner core 15 inverted round stage Being stepped up, the rate of filtration slowly declines, and in inner core 15, unfiltered filtrate rises along the hollow cylinder 16 at center, now, and pressure Difference indicator 14 works, and monitors the change of its pressure, that is the stopping state of filter element 18 bottom inner core 15, if exceeding threshold value, then Regulate automatically controlled set screw 9 and reduce oil pressure relief, and open check-valves 24 simultaneously, make bottom inner core 15 containing more pollution granule Filtrate is discharged to oil returning tube 7 by inner core oil exit pipe 23 under differential pressure action, it is to avoid bottom, filter element 18 blockage deteriorates, from And extend filter element 18 service life.
The processing step using above-mentioned oil-filtering apparatus to process backflow force feed is as follows:
1), the fluid in fluid pressure line passes through wave filter 8, the high, medium and low frequency range that wave filter 8 is decayed in hydraulic system Fluctuation pressure, and suppression flowed fluctuation;
2), hydraulic oil enters the temperature control module 32 of U-shaped separation of particles module 3, regulates oil temperature to by temperature control module 32 Good magnetization temperature 40-50 DEG C, enters magnetized module 33 afterwards;
3), make the metallic particles in fluid be magnetized in magnetic field by magnetized module 33, and make micron-sized metal Grain aggregates into bulky grain;Enter adsorption module 34 afterwards;
4), the magnetic polymeric microgranule in oil return is adsorbed by adsorption module 34;Enter demagnetization module 35 afterwards;
5), magnetic particle magnetic is eliminated by demagnetization module 35;
6), the fluid of U-shaped separation of particles module 3 near-wall refluxes after entering oil returning tube 7 by oil returning tube oil inlet pipe 22 To fuel tank, the fluid of the pipeline center containing trace small particle microgranule then enters inner core 15 by inner core oil inlet pipe 12 and carries out high-precision Spend filter;
7), the fluid carrying small particle microgranule flows into the helical flow path 17 of inner core 15 in the way of tangential influent stream, and fluid exists It is close to filter core flow under the effect of centrifugal force, and carries out high-precision filtration;
8), the fluid after high-precision filtration enters urceolus 19, and is discharged by the hydraulic oil oil-out 5 bottom urceolus 19.
Above detailed description of the invention is only the preferred embodiment of this creation, not in order to limit this creation, all in this wound Any modification, equivalent substitution and improvement etc. done within the spirit made and principle, should be included in this creation protection domain it In.

Claims (10)

1. the filter method that an employing presses down ripple, magnetizes and adsorb, it is characterised in that: it uses a kind of defecator, this device Including base plate, wave filter, U-shaped separation of particles module, oil returning tube, inner core, helical flow path, filter element, outer barrel and end cap;Wherein, Described wave filter, U-shaped separation of particles module, oil returning tube, outer barrel are sequentially placed on base plate;Described wave filter includes input pipe, outer Shell, outlet tube, elastic thin-wall, H mode filter and cascaded H mode filter;Wherein, described input pipe is connected to the one of shell End, it extends in shell, itself and hydraulic oil inlet docking;Described outlet tube is connected to the other end of shell, and it extends into In shell, itself and U-shaped separation of particles module are docked;Described elastic thin-wall is installed in shell along the radial direction of shell;Described input Pipe, outlet tube and elastic thin-wall are collectively forming a two-tube slip-on filter;If uniformly having in the axial direction of described elastic thin-wall Dry taper structure changes damping hole;Described taper structure changes damping hole is made up of cone shaped elastic damping hole pipe and slot apertures;Described elasticity Resonance series cavity volume I and parallel resonance cavity volume is formed between thin-walled and shell;The outside of described resonance series cavity volume I sets a string Ally the communists the cavity volume II that shakes, and inserts pipe by a taper and connect between described resonance series cavity volume I and resonance series cavity volume II;This taper Insert pipe near input tube side;Described H mode filter is positioned at parallel resonance cavity volume, and it is connected with taper structure changes damping hole Logical;Described cascaded H mode filter is positioned at resonance series cavity volume I and resonance series cavity volume II, and it also damps with taper structure changes Hole is connected;Described H mode filter and cascaded H mode filter are axially symmetrical set, and form connection in series-parallel H mode filter;Institute State U-shaped separation of particles module and include a U-tube, U-tube is sequentially installed with temperature control module, magnetized module, adsorption module and Demagnetization module;The top of described U-shaped separation of particles module and oil returning tube is connected by an oil returning tube oil inlet pipe;Described inner core is placed in In outer barrel, if it is installed on end cap by a top board and bolt stem;Described helical flow path is contained in inner core, and it is with U-shaped Connected by an inner core oil inlet pipe between separation of particles module;Described inner core oil inlet pipe is positioned at oil returning tube oil inlet pipe, and extends Entering the central authorities of U-shaped separation of particles module, its diameter is less than oil returning tube oil inlet pipe diameter, and is coaxially disposed with oil returning tube oil inlet pipe; Described filter element is arranged on the inwall of inner core;The bottom of said tub is provided with a hydraulic oil oil-out;It comprises the steps:
1), the fluid in fluid pressure line passes through wave filter, the pulsation pressure of the high, medium and low frequency range in filter attenuation hydraulic system Power, and suppression flowed fluctuation;
2), hydraulic oil enters the temperature control module of U-shaped separation of particles module, by temperature control module regulation oil temperature to optimal magnetization temperature Spend 40-50 DEG C, enter magnetized module afterwards;
3), make the metallic particles in fluid be magnetized in magnetic field by magnetizing assembly, and make micron-sized metallic particles be polymerized Become bulky grain;Enter adsorption module afterwards;
4), by the magnetic polymeric microgranule in adsorption module absorption oil return;Enter demagnetization module 35 afterwards;
5), magnetic particle magnetic is eliminated by demagnetization module;
6), the fluid of U-shaped separation of particles module near-wall is back to fuel tank after entering oil returning tube by oil returning tube oil inlet pipe, and The fluid of the pipeline center containing trace small particle microgranule then enters inner core by inner core oil inlet pipe and carries out high-precision filtration;
7), the fluid carrying small particle microgranule flows into the helical flow path of inner core in the way of tangential influent stream, and fluid is at centrifugal force It is close to filter core flow under effect, and carries out high-precision filtration;
8), the fluid after high-precision filtration enters urceolus, and is discharged by the hydraulic oil oil-out bottom urceolus.
2. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described input pipe and The axis of outlet tube is the most on the same axis;The wider place of described taper structure changes damping hole opening be positioned at resonance series cavity volume I and In parallel resonance cavity volume, its taper angle is 10 °;The Young's modulus ratio of described taper structure changes damping hole cone shaped elastic damping hole pipe The Young's modulus of elastic thin-wall wants big, can be with change in fluid pressure stretching or compression;The Young's modulus of slot apertures hinders than cone shaped elastic The Young's modulus of Buddhist nun hole pipe wants big, can be with fluid opened by pressure or closedown;Described taper is inserted the wider place of tube opening and is positioned at series connection In resonance cavity volume II, its taper angle is 10 °.
3. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described temperature control module Including heater, cooler and temperature sensor;Described heater uses the lubricating oil heating of the Chongqing gold letter of band temperature detection Device;Remover for surface evaporation type air cooling selected by described cooler, and the finned tube of cooler selects KLM type finned tube;Temperature sensor uses Platinum resistance temperature sensor.
4. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described magnetizing assembly Including aluminum matter pipeline, some windings, iron shell, flange and some magnetizing current output modules;Wherein, described some windings Rotating around outside aluminum matter pipeline, each winding is made up of positive winding and inverse winding;Described iron shell is coated on aluminum matter pipeline;Institute State the flange welding two ends at aluminum matter pipeline;Each magnetizing current output module is connected to a winding.
5. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described adsorption module Concrete employing homopolarity adjacent type absorbing ring, this homopolarity adjacent type absorbing ring includes aluminium ring shape pipeline, forward solenoid, reverse spiral shell Spool and irony magnetic conduction cap;Described forward solenoid and reverse solenoid are respectively arranged in aluminium ring shape pipeline, Liang Zhetong There is electric current in opposite direction so that forward solenoid and reverse solenoid adjacent produce like pole;Described irony magnetic conduction cap Being arranged on the inwall of aluminium ring shape pipeline, it is positioned at forward solenoid and reverse solenoid adjacent and forward solenoid Intermediate point with reverse solenoid axis.
6. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described adsorption module The concrete homopolarity adjacent type absorbing ring using charged hammer, the homopolarity adjacent type absorbing ring of this charged hammer includes aluminium ring shape pipe Road, forward solenoid, reverse solenoid, irony magnetic conduction cap, dividing plate, electric shock hammer and electric magnet;Described forward solenoid is with anti- Being respectively arranged in aluminium ring shape pipeline to solenoid, both are connected with electric current in opposite direction so that forward solenoid is with reverse Solenoid adjacent produces like pole;Described irony magnetic conduction cap is arranged on the inwall of aluminium ring shape pipeline, and it is positioned at forward Solenoid and reverse solenoid adjacent and forward solenoid and the intermediate point of reverse solenoid axis;Described dividing plate is positioned at Between forward solenoid and reverse solenoid;Described electric shock hammer and electric magnet are between dividing plate;Described electric magnet connects and energy Promote electric shock hammer, make electric shock hammer tap aluminium ring shape inner-walls of duct.
7. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: described oil returning tube Bottom is provided with an overflow valve, is provided with an automatically controlled set screw bottom this overflow valve;Described overflow valve is provided with an oil drain out, this row Hydraulic fluid port is connected to a fuel tank by pipeline.
8. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: the end of described inner core Portion is rounding mesa-shaped, and it is connected by an inner core oil exit pipe and oil returning tube, and inner core oil exit pipe is provided with an automatically controlled check-valves.
9. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: in described inner core Centre be vertically provided with a hollow cylinder, hollow cylinder be arranged over pressure difference indicator, this pressure difference indicator is installed on end cap;Institute State inner core oil inlet pipe and the tangent connection of helical flow path.
10. use the filter method pressing down ripple, magnetizing and adsorb as claimed in claim 1, it is characterised in that: the essence of described filter element Degree is 1-5 micron.
CN201610311885.6A 2016-05-12 2016-05-12 Filtering method adopting wave suppression, magnetization and adsorption Withdrawn CN105864181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610311885.6A CN105864181A (en) 2016-05-12 2016-05-12 Filtering method adopting wave suppression, magnetization and adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610311885.6A CN105864181A (en) 2016-05-12 2016-05-12 Filtering method adopting wave suppression, magnetization and adsorption

Publications (1)

Publication Number Publication Date
CN105864181A true CN105864181A (en) 2016-08-17

Family

ID=56630734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610311885.6A Withdrawn CN105864181A (en) 2016-05-12 2016-05-12 Filtering method adopting wave suppression, magnetization and adsorption

Country Status (1)

Country Link
CN (1) CN105864181A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109568A (en) * 1985-12-26 1987-07-01 中国人民解放军工程兵工程学院野战工程系工程机械教研室 The purification mechanism and the structure of multimachine reason high accuracy oil conditioner
CN87101425A (en) * 1987-11-21 1988-08-24 李培滋 Filter
CN1546198A (en) * 2003-11-28 2004-11-17 邝念曾 Method and system for purifying hydraulic-oil
CN104028391A (en) * 2013-03-08 2014-09-10 深圳中环科环保科技有限公司 Magnetic hydrocyclone separation method and magnetic hydrocyclone separation device
JP2014190524A (en) * 2013-03-28 2014-10-06 Mitsubishi Heavy Ind Ltd Hydraulic system and prime mover
CN204102661U (en) * 2014-07-14 2015-01-14 郑铁 A kind of fluid magnetizer
WO2015012696A1 (en) * 2013-07-25 2015-01-29 Lomapro B.V. Filter device and method for removing magnetizable particles from a fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109568A (en) * 1985-12-26 1987-07-01 中国人民解放军工程兵工程学院野战工程系工程机械教研室 The purification mechanism and the structure of multimachine reason high accuracy oil conditioner
CN87101425A (en) * 1987-11-21 1988-08-24 李培滋 Filter
CN1546198A (en) * 2003-11-28 2004-11-17 邝念曾 Method and system for purifying hydraulic-oil
CN104028391A (en) * 2013-03-08 2014-09-10 深圳中环科环保科技有限公司 Magnetic hydrocyclone separation method and magnetic hydrocyclone separation device
JP2014190524A (en) * 2013-03-28 2014-10-06 Mitsubishi Heavy Ind Ltd Hydraulic system and prime mover
WO2015012696A1 (en) * 2013-07-25 2015-01-29 Lomapro B.V. Filter device and method for removing magnetizable particles from a fluid
CN204102661U (en) * 2014-07-14 2015-01-14 郑铁 A kind of fluid magnetizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
桑青青: "多薄板振动式脉冲衰减器滤波机理与特性分析", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Similar Documents

Publication Publication Date Title
CN105864169A (en) Filtering device adopting work condition self-adaptive filtering, magnetizing and adsorbing
CN105864181A (en) Filtering method adopting wave suppression, magnetization and adsorption
CN105952719A (en) Method for filtering oil through full-band working condition adaptive filtering, magnetization and adsorption
CN105864192A (en) Filtering method adopting full-band variable structure filtering, magnetizing and adsorbing
CN105864193A (en) Oil filtering method adopting variable structure filtering, magnetizing and adsorbing
CN105864163A (en) Oil filter adopting full-band working condition self-adaptive filtering, magnetization and adsorption
CN105864179A (en) Filtering device adopting wave suppression, magnetization and adsorption
CN105864212A (en) Filtering method adopting wave suppression, magnetization, adsorption and rotating magnetic field
CN105909617A (en) Filtering device adopting wave suppression, magnetization, adsorption and rotating magnetic field
CN105864161A (en) Oil filter adopting variable-structure filtering, magnetization and adsorption
CN105864160A (en) Oil filtering device adopting filter, magnetization and adsorption
CN105971986A (en) Oil filter system adopting full-band filtering, magnetization and adsorption
CN105889184A (en) Oil filtering method adopting filter, magnetization and adsorption
CN105864176A (en) Oil filtering method adopting full-band work condition self-adaptive filtering, adsorption and rotating magnetic field
CN105840590A (en) Filter tank for filtering, magnetizing, adsorbing and centrifuging through full-band variable structure
CN105864191A (en) Filtering box adopting full-band variable structure filtering, magnetizing and adsorbing
CN105889204A (en) Oil filtering method adopting full-band filtering, magnetization and adsorption
CN105864180A (en) Oil filter adopting full-band variable-structure work condition self-adaptive filtering, magnetization and adsorption
CN105889219A (en) Filtering method adopting variable-structure work condition self-adaptive filtering, magnetization and adsorption
CN105864178A (en) Filtering box adopting full-band variable-structure filtering, magnetization, adsorption and rotating magnetic field
CN105840591A (en) Filtering device adopting wave suppression, magnetization, adsorption, rotating magnetic field and centrifugation
CN105864194A (en) Oil filtering device adopting variable structure filtering, magnetizing and adsorbing and rotating magnetic field
CN105864214A (en) Oil filtering method adopting variable-structure filtering, magnetization, adsorption and rotating magnetic field
CN105864158A (en) Filter method utilizing full-band variable-structure filtration, magnetization, adsorption and rotational magnetic fields
CN105889228A (en) Filter for achieving adaptive filtering, magnetization and adsorption through variable-structure working conditions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20160817