CN105860982A - 一种原位氧化药剂及污染土壤原位氧化修复方法 - Google Patents

一种原位氧化药剂及污染土壤原位氧化修复方法 Download PDF

Info

Publication number
CN105860982A
CN105860982A CN201610338332.XA CN201610338332A CN105860982A CN 105860982 A CN105860982 A CN 105860982A CN 201610338332 A CN201610338332 A CN 201610338332A CN 105860982 A CN105860982 A CN 105860982A
Authority
CN
China
Prior art keywords
situ oxidation
medicament
soil
surfactant
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610338332.XA
Other languages
English (en)
Inventor
杨生哲
裴启东
朱文浩
王伟
孟藤藤
蔡亚菱
周雨
徐瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Tiansheng Environmental Technology Co Ltd
Original Assignee
Jiangsu Tiansheng Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Tiansheng Environmental Technology Co Ltd filed Critical Jiangsu Tiansheng Environmental Technology Co Ltd
Priority to CN201610338332.XA priority Critical patent/CN105860982A/zh
Publication of CN105860982A publication Critical patent/CN105860982A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种原位氧化药剂及污染土壤原位氧化修复方法,原位氧化药剂包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为60~70:20~30:10~15:5~10:1~5。修复方法包括:(1)污染区域划分;(2)布点、钻井;(3)药剂配制;(4)药剂注入。采用了原位化学氧化的方法,就能克服上述的这些问题。本发明易操作、省时省力,并且不破坏地址结构。

Description

一种原位氧化药剂及污染土壤原位氧化修复方法
技术领域
本发明涉及一种原位污染土壤和地下水修复技术,具体涉及一种原位氧化药剂以及通过注射原位氧化药剂去除污染区域中的污染物。
背景技术
土壤及地下水的修复已成为当前国内外环保研究的热点。土壤位于自然环境的中心位置,是人类赖以生存的物质基础,是联结自然环境中无机界和有机界、生物界和非生物界的中心环节。它作为农业生产的基础和环境要素的重要组成部分,承担着环境中大约90 %的来自各方面的污染物。近年来,现代工业社会日益发达的同时,进入土壤中的污染物亦日益增多。而且,土壤和地下水相互作用,相互影响。土壤一旦受到污染,会直接影响农作物,污染物还会对地表水和地下水形成二次污染,并通过饮用水或土壤-植物系统,经由食物链进入人体,直接危及人体健康,对社会、经济发展和生态环境有着无法估量的影响。因此,土壤及地下水的污染问题受到了越来越多的关注。
异位修复需要挖掘土壤,使得工程设施较多、费用较高,且易破坏土壤的结构性质,一般只适用于污染区受污面积较小时或实验室模拟实验中。而原位修复不需挖掘和输送土壤,可节约处理成本,操作简单,对环境的破坏较小。
针对土壤和地下水污染的现状,人们已经对原位修复开发了多种修复技术,包括生物修复、植物修复和化学修复等。生物修复法中的微生物,在土壤中的迁移性差,易受污染物的毒性效应的抑制,且运行周期缓慢,易对修复环境带来次生污染;植物修复中超积累植物对污染物的吸收和积累极为缓慢,修复往往需要几个生长季节,运行周期较生物修复还要缓慢。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种具有所需周期短、见效快、成本低和处理效果好的原位氧化药剂及利用该原位氧化药剂进行污染土壤原位氧化修复的方法。
为达到上述目的,本发明是通过以下的技术方案来实现的。
一种原位氧化药剂,包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为60~70:20~30:10~15:5~10:1~5。
表面活性剂活化过硫酸钠在酸性和碱性条件下都能产生还原性物质和亲核物质。所述表面活性剂是阴离子表面活性剂、非离子表面活性剂和阳离子表面活性剂中的任意一种。阴离子表面活性剂、非离子表面活性剂和阳离子表面活性剂分别是Lankropol4500、polyethylene glycol 400和Ethoduomeen T/25。阳离子表面活性剂活化过硫酸钠产生了较多的·OH、还原性物质和亲核物质,具有较强的活化潜能。研究为过硫酸钠新型活化方法提供了科学依据。表面活性剂活化过硫酸钠技术不受土壤pH 的限制,效果较好,优先进行选用。
为了能在中性条件下保持铁离子的浓度,加入螯合剂或络合剂可维持金属离子溶解度,提高反应效率,所述助溶剂为无机酸(无机酸包括草酸、柠檬酸),EDTA(乙二胺四乙酸、NTA(氮基三乙酸)、三聚磷酸钠(钠三聚磷酸酯)、HEDPA (羟基乙叉二膦酸)等,其中以柠檬酸的效果最好,选取其中任意一种都可以。
利用上述原位氧化药剂进行污染土壤原位氧化修复方法,包括以下步骤:
(1)在土壤污染区域进行划分;
(2)在划分好的土壤污染区域进行布点、钻眼,然后进行药剂注射井、监测井的构建;
(3)按照配比进行配制原位氧化药剂;备用;
(4)将步骤(3)得到的原位氧化药剂通过注入到注射井内后从而进入地下污染区域中,反应1~7d,即可去除土壤中的污染物。
由于添加的药剂会有影响半径,步骤(1)中的区域划分为(10m*10m)~(20m*20m)规模的方形区域。
步骤(2)中的药剂注射井在每个方形区域的中间,3~4个区域公用一个监测井。
监测井深度范围在5~10m,药剂注射井内设有石英砂填料与水泥质过硫酸盐缓释材料。
所述石英砂填料与水泥质过硫酸盐缓释材料中,过硫酸钾:水泥:砂:水的质量比为1:2:1~4:1。在工程应用方面进行考虑,不同污染区域具有不同的污染特征,往往对氧化剂的量及其释放速率具有不同的要求。因此,填充具有差异性的过硫酸盐缓释材料具有实际应用价值。
有益效果:与现有技术相比,本发明的优点在于:
1)过硫酸盐因其具有较好的稳定性、水溶性、强氧化性、反应产物的友好性等可以弥补其它氧化剂的不足;
2)氧化剂可以充分地与污染物接触.过硫酸盐经活化后还能够产生·OH,使得其甚至能够氧化处理较难降解的物质可;
3)该方法反应效率高、易于推广、成本低、使用安全,且在修复过程中没有二次污染的产生,在修复有机类污染土壤领域具有巨大的应用价值。
附图说明
图1为本发明的工艺流程图;
图2为注射井结构图;
图3是本发明中修复区域布局图;
图4为1,2-二氯乙烷浓度随时间变化趋势图;
图5为氯仿污染物浓度随时间变化趋势图。
具体实施方式
下面通过具体实施例来进一步阐述本发明。
本发明中所采用的表面活性剂包括阴离子表面活性剂、非离子表面活性剂和阳离子表面活性剂。其中阴离子表面活性剂、非离子表面活性剂和阳离子表面活性剂分别是Lankropol4500【购买自阿克苏诺贝尔化学品(博兴)有限公司】、polyethylene glycol 400【购买自梯希爱(上海)化成工业发展有限公司,聚乙烯二醇分子量在400左右】和Ethoduomeen T/25【购买自深圳市新志和化工原料有限公司)二异丙醚】。
实施例1:一种原位氧化药剂,包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为65:25:12:8:3。
其中,含铁化合物是指硫酸亚铁;表面活性剂是阴离子表面活性剂;助溶剂是柠檬酸。
实施例2:一种原位氧化药剂,包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为60:20:10:5:1。
其中,含铁化合物是氯化亚铁与硫酸亚铁的混合物按照1:5的重量比混合。表面活性剂是非离子表面活性剂。助溶剂是草酸、柠檬酸,EDTA、NTA、三聚磷酸钠、HEDPA中任意一种。
实施例3:一种原位氧化药剂,包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为70: 30: 15: 10:5。
其中,含铁化合物主要是氯化亚铁与硫酸亚铁的混合物按照1:3的重量比混合。
表面活性剂是阳离子表面活性剂。
助溶剂是草酸、柠檬酸,EDTA、NTA、三聚磷酸钠、HEDPA中任意一种。
实施例4:与实施例1基本相同,所不同的是:含铁化合物主要是氯化亚铁与硫酸亚铁的混合物按照1:10的重量比混合。
实施例5:一种污染土壤原位氧化修复方法,包括以下步骤:如图1至图3所示,
(1)在土壤污染区域进行划分;划分为10m*10m规模的方形区域;
(2)在划分好的土壤污染区域进行布点、钻眼,一般在划分的区域中间进行钻眼,然后进行药剂注射井、监测井的构建;图3中,药剂1是过硫酸钠和氧化钙;药剂2是含铁化合物;药剂3是表面活性剂和助溶剂;
监测井深度范围在5~10m,药剂注射井内设有石英砂填料与水泥质过硫酸盐缓释材料。所述石英砂填料与水泥质过硫酸盐缓释材料中,过硫酸钾:水泥:砂:水的质量比为1:2:1:1。
(3)按照实施例1中的配比进行配制原位氧化药剂;备用;
(4)将步骤(3)得到的原位氧化药剂通过注入到注射井内后,从而进入地下污染区域中,反应7d,即可去除土壤中的污染物。注药管上有注射阀、流量计与压力泵。
将上述方法对江苏某化工污染场地进行土壤修复,具体操作如下:
江苏某化工污染场地的现状:土壤与地下水层中主要污染物为多环芳烃、氯仿。中试区位于污染区域内,尺寸为10m*10m,中试修复的目标含水层位于地下4~8m。含水层土质为砂土为主,少部分为粘土,容积密度为2100kg/m3。该层地下水流向为自东南向西北,水力梯度4‰,地下水流速为0.08m/d。
进行修复主要分为三个阶段,第一阶段,在污染区域建造三口地下水监测井,监控修复前后地下水中污染物浓度的变化;注射井在按照大小划分好的每个区域中间部分,监测井一般在要考虑场地的水文地质条件在水文地质参数在水平方向有明显较高异质性和异相性,污染源下方为透水性高的砾石层时,场地水利梯度较高、流速较快、地下水流向变化较大时,都需要缩小监测井的间距。
第二阶段,按照实施例1的原位氧化药剂的组分配比进行配制,然后将配制好的氧化药剂高压注入至钻好的药剂注射井内,进行药剂的注射作业,将压力激活钻头钻到预定深度,开启注浆泵进行作业,注浆泵压力在12.5MPa,药剂流量在16.8L/min。每个药剂注射井在6~8m深度进行注浆作业。药剂注射开始与2014年12月10日,完成于2014年12月18日;
第三阶段为采样监测分析阶段,药剂注射工作完成后,每月采集修复区域内的监测井中采集地下水样品,分析其中污染物含量及相应理化参数的变化。主要是1,2-二氯乙烷、氯仿特征污染物的浓度与地下水理化性质的监测。在地下水采样前需要进行洗井作业,使所采水样具有充分代表性。使用贝勒管手动洗井,并采集地下水样品。根据采样的监测数据,制成了污染物浓度变化趋势表,如图4和图5所示。
修复工程结束时,场地中两种污染物浓度分别为0.41mg/L、0.36mg/L,这与未进行修复之前的4253mg/L、3280mg/L对比可得,污染物去除率分别为99.99%、99.98%。
实施例6:与实施例5基本相同,所不同的是,一种污染土壤原位氧化修复方法,包括以下步骤:
(1)在土壤污染区域进行划分;划分为20m*20m规模的方形区域;
(2)在划分好的土壤污染区域进行布点、钻眼,然后进行药剂注射井、监测井的构建;药剂注射井在每个方形区域的中间,3~4个区域公用一个监测井。监测井深度范围在5~10m,药剂注射井内设有石英砂填料与水泥质过硫酸盐缓释材料。所述石英砂填料与水泥质过硫酸盐缓释材料中,过硫酸钾:水泥:砂:水的质量比为1:2: 4:1。
(3)按照实施例2中的配比进行配制原位氧化药剂;备用;
(4)将步骤(3)得到的原位氧化药剂通过注入到注射井内后,从而进入地下污染区域中,反应5d,即可去除土壤中的污染物。注药管上有注射阀、流量计与压力泵。
实施例7:与实施例5基本相同,所不同的是:步骤(4)中的进行反应1天。
本发明按照上述实施例进行了说明,应当理解,上述实施例不以任何形式限定本发明,凡采用等同替换或等效变换方式所获得的技术方案,均落在本发明的保护范围之内。

Claims (10)

1.一种原位氧化药剂,其特征在于,包括如下组分以及配比为:过硫酸钠、氧化钙、含铁化合物、表面活性剂和助溶剂的重量比为60~70:20~30:10~15:5~10:1~5。
2.根据权利要求1所述的一种原位氧化药剂,其特征在于,所述含铁化合物是硫酸亚铁,或者是氯化亚铁与硫酸亚铁的混合物按照1:3~10的重量比混合。
3.根据权利要求1所述的一种原位氧化药剂,其特征在于,所述表面活性剂是阴离子表面活性剂、非离子表面活性剂和阳离子表面活性剂中的任意一种。
4.根据权利要求1所述的一种原位氧化药剂,其特征在于,所述助溶剂是无机酸,EDTA、氮基三乙酸、钠三聚磷酸酯、羟基乙叉二膦酸中的任一种。
5.利用权利要求1所述的原位氧化药剂进行污染土壤原位氧化修复方法,其特征在于,包括以下步骤:
(1)在土壤污染区域进行划分;
(2)在划分好的土壤污染区域进行布点、钻眼,然后进行药剂注射井、监测井的构建;
(3)按照配比进行配制原位氧化药剂;备用;
(4)将步骤(3)得到的原位氧化药剂通过注入到注射井内后从而进入地下污染区域中,反应1-7d,即可去除土壤中的污染物。
6.根据权利要求5所述的污染土壤原位氧化修复方法,其特征在于,所述步骤(1)中的区域划分为(10m*10m)~(20m*20m)规模的方形区域。
7.根据权利要求5所述的一种污染土壤原位氧化修复方法,其特征在于,所述步骤(2)中的药剂注射井在每个方形区域的中间,3~4个区域公用一个监测井。
8.根据权利要求5所述的一种污染土壤原位氧化修复方法,其特征在于,监测井深度范围在5~10m,药剂注射井内设有石英砂填料与水泥质过硫酸盐缓释材料。
9.根据权利要求8所述的污染土壤原位氧化修复方法,其特征在于,所述石英砂填料与水泥质过硫酸盐缓释材料中,过硫酸钾:水泥:砂:水的质量比为1:2:1~4:1。
10.根据权利要求5所述的污染土壤原位氧化修复方法,其特征在于,所述步骤(4)中,原位氧化药剂通过注药管注入注射井内,且注药管上有注射阀、流量计与压力泵。
CN201610338332.XA 2016-05-19 2016-05-19 一种原位氧化药剂及污染土壤原位氧化修复方法 Pending CN105860982A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610338332.XA CN105860982A (zh) 2016-05-19 2016-05-19 一种原位氧化药剂及污染土壤原位氧化修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610338332.XA CN105860982A (zh) 2016-05-19 2016-05-19 一种原位氧化药剂及污染土壤原位氧化修复方法

Publications (1)

Publication Number Publication Date
CN105860982A true CN105860982A (zh) 2016-08-17

Family

ID=56635580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610338332.XA Pending CN105860982A (zh) 2016-05-19 2016-05-19 一种原位氧化药剂及污染土壤原位氧化修复方法

Country Status (1)

Country Link
CN (1) CN105860982A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238449A (zh) * 2016-08-30 2016-12-21 樊之雄 一种重金属污染土壤的修复方法
CN106495318A (zh) * 2016-11-14 2017-03-15 南京大学 一种利用强化厌氧生物技术原位修复地下水中石油烃的渗透反应墙系统与方法
CN106734167A (zh) * 2016-12-26 2017-05-31 北京高能时代环境技术股份有限公司 一种有机污染场地强化修复系统及工艺
CN108046404A (zh) * 2017-12-20 2018-05-18 浙江省环境保护科学设计研究院 一种有机物污染地下水的原位化学氧化修复方法
CN109257986A (zh) * 2018-08-02 2019-01-25 成都制然环保科技有限公司 一种具有缓释效果的环境治理模块及其施用方法
CN109513738A (zh) * 2018-10-30 2019-03-26 中铁上海工程局集团有限公司 一种基于bim技术的地下污染物迁移控制方法
CN110355199A (zh) * 2019-08-14 2019-10-22 上海傲江生态环境科技有限公司 一种多环芳烃污染土壤的化学修复方法
CN110407266A (zh) * 2019-08-01 2019-11-05 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 一种用于深层矿井氯代烃污染地下水原位修复的缓释药剂
CN110420984A (zh) * 2019-02-13 2019-11-08 云南天朗环境科技有限公司 一种用于有机物污染原位修复的药剂注入工艺及装置
CN110899319A (zh) * 2019-10-18 2020-03-24 沈阳大学 一种阿特拉津污染农田土壤修复方法
CN111676018A (zh) * 2020-06-08 2020-09-18 北京高能时代环境技术股份有限公司 一种污染场地原位修复药剂及施工方法
CN112387771A (zh) * 2020-10-14 2021-02-23 南京格洛特环境工程股份有限公司 一种苯系物污染土壤的原位化学氧化修复方法
CN112574751A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 一种含三价铁的重金属淋洗组合物及其应用以及修复重金属土壤的方法
CN112680231A (zh) * 2020-12-08 2021-04-20 广西博世科环保科技股份有限公司 一种用于修复老化石油类污染土壤的修复药剂及修复方法
CN113118198A (zh) * 2020-01-15 2021-07-16 中国石油天然气集团有限公司 一种土壤化学修复组合物及土壤化学修复方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396806A (zh) * 2013-08-02 2013-11-20 重庆远传环保科技有限公司 一种用于重金属污染土壤的修复剂及修复方法
CN105032916A (zh) * 2015-06-08 2015-11-11 杭州大地环保工程有限公司 一种有机物污染土壤和地下水的原位注射-抽提-补水循环处置系统及联合修复方法
CN105363773A (zh) * 2015-12-08 2016-03-02 湖南康盟环保科技有限公司 重金属固定剂及重金属污染土壤的原位修复方法
CN105439376A (zh) * 2015-11-18 2016-03-30 北京高能时代环境技术股份有限公司 一种用于重度有机污染地表水的修复系统及其修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396806A (zh) * 2013-08-02 2013-11-20 重庆远传环保科技有限公司 一种用于重金属污染土壤的修复剂及修复方法
CN105032916A (zh) * 2015-06-08 2015-11-11 杭州大地环保工程有限公司 一种有机物污染土壤和地下水的原位注射-抽提-补水循环处置系统及联合修复方法
CN105439376A (zh) * 2015-11-18 2016-03-30 北京高能时代环境技术股份有限公司 一种用于重度有机污染地表水的修复系统及其修复方法
CN105363773A (zh) * 2015-12-08 2016-03-02 湖南康盟环保科技有限公司 重金属固定剂及重金属污染土壤的原位修复方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238449A (zh) * 2016-08-30 2016-12-21 樊之雄 一种重金属污染土壤的修复方法
CN106495318A (zh) * 2016-11-14 2017-03-15 南京大学 一种利用强化厌氧生物技术原位修复地下水中石油烃的渗透反应墙系统与方法
CN106495318B (zh) * 2016-11-14 2019-08-06 南京大学 一种利用强化厌氧生物技术原位修复地下水中石油烃的渗透反应墙系统与方法
CN106734167A (zh) * 2016-12-26 2017-05-31 北京高能时代环境技术股份有限公司 一种有机污染场地强化修复系统及工艺
CN108046404B (zh) * 2017-12-20 2020-04-10 浙江省环境保护科学设计研究院 一种有机物污染地下水的原位化学氧化修复方法
CN108046404A (zh) * 2017-12-20 2018-05-18 浙江省环境保护科学设计研究院 一种有机物污染地下水的原位化学氧化修复方法
CN109257986A (zh) * 2018-08-02 2019-01-25 成都制然环保科技有限公司 一种具有缓释效果的环境治理模块及其施用方法
CN109513738A (zh) * 2018-10-30 2019-03-26 中铁上海工程局集团有限公司 一种基于bim技术的地下污染物迁移控制方法
CN109513738B (zh) * 2018-10-30 2021-05-28 中铁上海工程局集团有限公司 一种基于bim技术的地下污染物迁移控制方法
CN110420984A (zh) * 2019-02-13 2019-11-08 云南天朗环境科技有限公司 一种用于有机物污染原位修复的药剂注入工艺及装置
CN110407266A (zh) * 2019-08-01 2019-11-05 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 一种用于深层矿井氯代烃污染地下水原位修复的缓释药剂
CN110355199A (zh) * 2019-08-14 2019-10-22 上海傲江生态环境科技有限公司 一种多环芳烃污染土壤的化学修复方法
CN112574751A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 一种含三价铁的重金属淋洗组合物及其应用以及修复重金属土壤的方法
CN110899319A (zh) * 2019-10-18 2020-03-24 沈阳大学 一种阿特拉津污染农田土壤修复方法
CN113118198A (zh) * 2020-01-15 2021-07-16 中国石油天然气集团有限公司 一种土壤化学修复组合物及土壤化学修复方法
CN111676018A (zh) * 2020-06-08 2020-09-18 北京高能时代环境技术股份有限公司 一种污染场地原位修复药剂及施工方法
CN112387771A (zh) * 2020-10-14 2021-02-23 南京格洛特环境工程股份有限公司 一种苯系物污染土壤的原位化学氧化修复方法
CN112680231A (zh) * 2020-12-08 2021-04-20 广西博世科环保科技股份有限公司 一种用于修复老化石油类污染土壤的修复药剂及修复方法

Similar Documents

Publication Publication Date Title
CN105860982A (zh) 一种原位氧化药剂及污染土壤原位氧化修复方法
CN105032916B (zh) 一种有机物污染土壤和地下水的原位注射‑抽提‑补水循环处置系统及联合修复方法
CN106799396B (zh) 一种土壤及地下水高压旋喷与浅层搅拌联合原位修复方法
CN105598154B (zh) 修复砷污染土壤的方法
JP2019519702A (ja) 土壌と地下水の原位置注入−高圧ジェットグラウト注入原位置修復システム及び方法
CN105772499A (zh) 一种石油类污染场地土壤的原位联合修复方法
CN104724818B (zh) 一种四氯化碳分离系统及其分离工艺
CN103639190A (zh) 一种利用氨基三甲叉膦酸修复铅污染土壤的方法
CN105436185A (zh) 深层原位搅拌改良方法及深层搅拌桩机
US7160471B2 (en) In-situ generation of oxygen-releasing metal peroxides
CN101224467A (zh) 修复土壤多环芳烃-铜复合污染的淋洗剂及方法
CN110014036A (zh) 一种热强化辅助原位化学氧化修复有机污染土壤的方法
Hall et al. Techno-economic assessment of liquefaction mitigation by microbially induced desaturation
CN211538968U (zh) 一种石油类污染土壤及地下水原位生物修复系统
CN102241454A (zh) 一种基于过硫酸盐热活化技术原位修复受污染的地下水的方法
CN113102482A (zh) 一种石油类污染土壤及地下水原位生物修复系统及方法
Naskar et al. A Comprehensive Review of Grouts: Unraveling Biogrout Technologies for Environmental Sustainability and Limitations
Sethi et al. Remediation of contaminated groundwater
KR20150077709A (ko) 금속 오염물의 현장에서의 화학적 고착
CN206550129U (zh) 一种土壤及地下水固相浅层搅拌原位化学氧化修复系统
Houlihan et al. Remediation of Contaminated Groundwater
JP2009006265A (ja) 土壌浄化システム
Akyel Improving pH and temperature stability of urease for ureolysis-induced calcium carbonate precipitation
Wilkens et al. Arsenic removal from groundwater using a PRB of BOF slag at the Dupont East Chicago site
CN204643944U (zh) 一种四氯化碳分离系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817