CN1058566C - 科里奥利式质量流量传感器 - Google Patents

科里奥利式质量流量传感器 Download PDF

Info

Publication number
CN1058566C
CN1058566C CN94190503A CN94190503A CN1058566C CN 1058566 C CN1058566 C CN 1058566C CN 94190503 A CN94190503 A CN 94190503A CN 94190503 A CN94190503 A CN 94190503A CN 1058566 C CN1058566 C CN 1058566C
Authority
CN
China
Prior art keywords
signal
pipe
electromagnet
emulation
gauge line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94190503A
Other languages
English (en)
Other versions
CN1112373A (zh
Inventor
沃尔夫冈·德拉海姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of CN1112373A publication Critical patent/CN1112373A/zh
Application granted granted Critical
Publication of CN1058566C publication Critical patent/CN1058566C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Abstract

按科里奥利原理工作的质量流量传感器,该传感器可通过法兰装于待测流体所流经的给定直径的管道,从而可与该管道轴向共线。具有支撑管,和直形计量管,在输入输出侧具有结盘,其特征在于,还包括具有与该计量管平行延伸但不由液体穿过的直形仿真管,所述结盘之一将计量管的输入侧端部分固定在相应的仿真管端头部分上,以及另一个结盘将计量管的输出侧端部分固定在相应的仿真管端头部分上,使二者并排地安装,以及激励计量管的共振的装置。

Description

科里奥利式质量流量传感器
本发明涉及按科里奥利原理工作的质量流量传感器,它包括被测液体流经的作为振动体的一个直型计量管。
本申请人所有的美国专利4,793,191陈述了可通过法兰安装于给定直径的管道中的质量流量传感器,这种安装法是使得传感器与被计量的液体所流经的上述管道成一条线。
-具有一个输入管和一个输出管,
-这些管用来连接该质量流量传感器与管道,
-具有一个输入歧管和一个输出歧管,
-具有一个外部支撑管,
-其末端分别固定在输入管和输出管上,
-具有两个环状膜片,
-输入管和输出管通过这两膜片分别连接到输入歧管与输出歧管上,
-具有两个平行的相同内径和相同壁厚的直型计量管,每一计量管其两端分别固定在输入歧管与输出歧管中,以及
-具有激励计量管对抗共振的装置。
而且,本申请人所有的美国专利4,949,583陈述了具有单一直型计量管的质量流量传感器,该计量管被激励,在其横截面作蠕动振动。
具有两个直型计量管以弹簧方式作振动按上述原理工作的质量流量传感器在实践中证明是有效的。然而由于各种原因,例如由于该质量流量传感器对来自管道的振动的敏感性,或由于计量的结果与液压的相关性,而膜片不能做成任意柔软的,必须有一最小刚度,于是上述影响不能被完全抑制。
此外,由于液体中温度的变化造成质量流量传感器不均匀的温度分布,而在振动的直型计量管中和膜片中引起应力。如果这种应力达到膜片屈服点以上的数值,则会引起不可逆的塑性变型,这会引发振动系统特性的改变,于是就要对质量流量传感器进行重新校准。
如进一步的先有技术所显示,长时间以来专家们为解决这些问题而努力。例如,EP-A437919,描述了按科里奥利工作并形成剂量机构一部分的质量流量传感器。
-该传感器可以法兰安装在给定直径的被测流体流经的管道之中,
-具有弯曲的延伸在法兰之间的并由流体穿过的计量管,
-具有与计量管平行延伸而流体不通过的弯曲的仿真管,
-计量管和仿真管(dummy tube)夹持在一内部的支架上,
-具有一外部支架,以及
-其作用仅在于激励该计量管使之共振的装置。
在这一先有技术的质量流量传感器中,仿真管的作用是作为反共振器,从而得到了由计量管,反共振器和内部支架构成的已调谐内部振动系统。其尺寸是事先通过有限元方法计算好的。可是,由于振动系统的共振特性基本上与流体的类型及流体当时的温度和密度有关,因而显然对于每种流体要分别作计算,于是得到不同的结果,从而得到不同的尺寸。对于要计量许多不同类型的流体的通用质量流量传感器,EP-A437919实际是不适用的。
DE-A4143361描述了一种按科里奥利原理工作的质量流量传感器,
-该传感器可由法兰装在给定直径的管道之中而使得与被计量的流体流经的上述管道轴向共线,
-具有单一直型,或基本为直型的计量管延伸在法兰之间并由流体流过,
-具有一支撑管,其端头分别固定在法兰上,
-具有一补偿筒,其中计量管固定在支撑管内,并且补偿筒不与该支撑管接触,
-具有安置在计量管与补偿筒之间的用于激励计量管共振的装置,以及
-具有装在计量管上的质体以便影响其自然频率。
在这一先有技术的质量流量传感器中,计量管是这样安装在补偿筒之中的,使得在正常的流体温度之下是处于张力之中的。当温度上升时,该张力由于补偿筒与计量管的膨胀系数不同而降低,当温度进一步升高时,张力变为压力。因而温度上限与无预应张力的计量管比较是可增加的。
从上述对比文献的第一个即美国专利4,793,191出发,本发明的目的是要提供一种装有两个直型管的质量流量传感器,但其中歧管、从而膜片可不一同配置,并且其中在计量管上不必要补偿质体。但是尽可能没有振动从计量管传递到支架上。于是,基于应用膜片的美国专利4,793,191的质量流量传感器性能被保留,但这是以另一种方式实现的。
于是,本发明在于提供一种按科里奥利原理工作的质量流量传感器,
-该传感器可通过法兰装于待测流体所流经的给定直径的管道,从而可与该管道轴向共线。
-具有支撑管,其端头分别固定在法兰上,
-具有延伸于法兰之间并由流体穿过的直形计量管,
-在输入侧具有结盘,在输出侧具有结盘,
其特征在于,还包括:
-具有与该计量管平行延伸但不由液体穿过的直形仿真管,
-所述结盘之一将计量管的输入侧端部分固定在相应的仿真管端头部分上,以及
-另一个结盘将计量管的输出侧端部分固定在相应的仿真管端头部分上,从而使得计量管与仿真管并排地安装,以及
-具有仅对仿真管有作用的装置以便激励计量管的共振。
在本发明的一较佳实施例中,仿真管是同轴地围绕计量管的。在本发明的另一实施例中,仿真管的端头是固定在两个结盘上的,从而是封闭的,最好是真空的。
在本发明的另一实施例中,仿真管的共振频率可调节,使得仿真管的振动与计量管的振动之间的相位关系可以是180°或尽可能接近这一数值。
在本发明的又一实施例中,用于激励共振的装置包括一个电磁装置和一个驱动电路,
-具有的电磁系统包括:
-围绕仿真管的软磁性材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁铁,以及
-具有第二U形磁芯和第二线圈的第二电磁铁,
-上述电磁铁的位置相对于该套管彼此径向相对,以及
-具有产生迭加于直流电流上的交流电流的驱动器电路,
-通过向相位比较器的第一输入端施加表示计量管的信号,
-通过向相位比较器的第二输入端施加由一可调移相器所产生自表示仿真管振动的信号的信号,并且
-通过对相位比较器输出的积分,
-将可调移相器调至在支撑管处仅可探测到最小的振动,以及
-通过锁相回路相应计量管的频率而调节交流电流。本发明的又一实施例中,用于激励共振的装置包括一电磁装置和一驱动电路。
-该电磁装置包括,
-围绕仿真管的软磁性材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁铁,以及
-具有第二U形磁芯和第二线圈的第二电磁铁,
-这些电磁铁相对于该套管彼此径向相对配置,以及
-具有向第一电磁铁施加驱动信号正半波和向第二电磁铁施加该信号的负半波的驱动电路,
-该驱动信号是移相器的输出信号
-其信号输入是以表示计量管振动的信号提供的,以及
-其控制输入是以相位比较器被积分的输出信号所提供的,
-其输入之一是以计量管振动表示信号提供的,以及
-其另一输入是以仿真管的振动经由可调移相器的表示信号提供的,
-移相器被调节至在支撑管处最小的振动亦可探测到。
本发明的又一实施例中,用于激励共振的装置包括一电磁装置和一驱动电路,
-该电磁装置包括
-围绕仿真管的软磁性材料,
-具有第一U形磁芯和第一线圈的第一电磁铁,以及
-具有第二U形磁芯和第二线圈的第二电磁铁,以及
-相对于该套管这两电磁铁径向彼此相对配置,并且
-具有向第一电磁铁施加驱动信号正半波并向第二电磁铁施加该驱动信号负半波的驱动电路,
-该驱动信号是压控振荡器的输出信号,
-其控制输入是由相位比较器被积分了的输出信号所提供,
-其一个输入是由表示计量管振动的信号所提供,以及
-其另一输入是经由一可调移相器由表示仿真管振动的信号所提供,
-该移相器调节至使在支撑管处仅可探测到最小振动。
在本发明的此三个电路实施例中,可调移相器可由用于计量支撑管的加速度的传感器所代替,而相位比较器可由乘法器代替。
在本发明的最后一个实施例中,液体的粘滞性可由计量管和仿真管的振动幅度来确定。
以下将参照附图对本发明进行详细说明,这些图是机械部分与各驱动电路实施例的图示。
图1是基于本发明的质量流量传感器机械部分垂直纵向剖面图;
图2是基于本发明的质量流量传感器机械部分的一个实施例的垂直纵向剖面图;
图3表示用于激励仿真管的电磁装置简图;
图4是图3电磁装置的第一驱动器电路部分的框图;
图5是图3电磁装置的第二驱动器电路部分的框图;
图6是图3的电磁装置第三驱动器电路部分的框图;
图7是图3的电磁装置的驱动器电路进一步发展部分的框图;
图8是用于计量液体粘滞性的电路的框图。
图1a中纵向剖面中以及沿图1a的A-A线所取的横向剖面中的图1b中所示的质量流量传感器10的机械部分可通过法兰11,12安装到被计量的液体所流经的给定直径的管道中,为简化说明未示出该液体。该机械部分具有直型计量管13,该计量管其端头分别固定在法兰11与12上。
还装有一直型仿真管14,该仿真管平行于计量管延伸,但无液体流过,该管可被封闭并宜抽为真空。代替仿真管,也可装置一任意截面的,最好是柱形的,特别是圆柱形的实心杆。
仿真管14通过输入侧的结盘15和输出侧的结盘16与计量管13相连接,结盘15将计量管13的输入端部分固定到仿真管14对应的一端部分,将计量管13的输出端部分固定到仿真管14的对应端部分,从而使得计量管与仿真管14并排装置。
图1表示了这一固定方式的较佳变形,即仿真管14的两端分别顶在结盘15,16中,其中它们被紧固在一起,特别是真空紧固,例如焊接或熔接。
法兰11,12固定在支撑管17之中,支撑管中装有两个传感元件18,19,通过这两个元件,计量管13的振动可被转换为电计量信号。这些传感元件例如可以是美国专利4,801,897中所述的光电传感器,或例如EP-A83144中所说明的电磁传感器。
在操作中,仅仿真管14被以适当的器件激励到共振状态,该共振通过结盘15,16传送到计量管13,从而后者也被激励到共振态,该共振与仿真管共振相对;因而彼此相对的计量管与仿真管的部件彼此相向或相反地振动。
这些用于激励仿真管共振的器件包括电磁驱动器装置20,该装置安装在两法兰之间中部仿真管14上,驱动器的电子线路例如可以是美国专利4,801,897中所述的类型,它包括一个用于自动调节振动管的共振频率的锁相回路。
在运行中,计量管13的输入侧部分与该管输出侧部分的振动相位差通过传感元件18,19以及相关的评测电子电路来测定,这些电路从该相位差来判定流体的质量流量速率和/或从计量管13的振动频率来判定流体的粘滞性。用于上述光电子传感器的评测电子线路例如在刊物“Automatisierungstechnische Praxis atp”1988,NO.5页224-230上所述。
图2a中以纵剖面及图2b中以沿图2aB-B线所取的横剖面所示的本发明之另一实施例的机械部分与图1实施例不同之点在于,计量管13′与仿真管14′不是并排配置的而是彼此同轴的,计量管13′在内部,仿真管必在外部。
其中结盘15′,16′也最好形成仿真管14′的紧密的包封。特别适当的传感元件18′,19′,如上述光学传感器,因为易于使得光信号穿过仿真管14′的壁,例如在这个管壁中置入密封的透明材料窗口。
图2的配置中其他部件与图1相应的部件相同,因而可参见这些部件前面的说明。
结盘15,15′,16,16′除了如上述被固定到计量管和仿真管之外,也可安装在支撑管17,17′上。
在图1a及2a的支撑管17上,最好在其中部装设传感元件59,用于计量各支撑管的加速度,这一传感器与以下参见图4至7所要说明的驱动电路相连接。
图3简略示出用于激励仿真管14,14′的电磁装置30。该电磁装置30包括软磁材料(诸如软铁)套管31,该套管围绕在仿真管周围。还装有带有第一U形铁芯33和第一线圈34的第一电磁铁32以及带有第二U形铁芯36和第二线圈37的第二电磁铁35。该两电磁铁32,35相对于套管31因而也就相对于仿真管14,14′是彼此径向相对配置的。
图3中所示的X方向的力F(x)决定于流经线圈36,37的线圈电流Is,以及空气间隙d,按以下方程计算:
F(x)=0.5μ0Is2W2A〔1/(d-x)2-1/(d+x)2〕,
其中μ0=电介常数(=1.256×10-8Vs/Acm)
W=线圈匝数
A=线圈电磁场所通过的截面,基本是U形两腿的端面积。
两线圈34,37交替地以来自驱动电路的交流电流i的半波供给,最好是正弦波电流。这一交流电流i与管子的振动之间的必须的90°相位领先程度是在该驱动电路中产生的。
为了保证计量管13,13′与仿真管14,14′彼此相对振动,即实际上的相位相反,以及保证没有振动传送到支撑管17,要有一直流电流I迭加到交流电流i上。于是线圈的电流Is
Is=i+I
通过迭加被调节的直流电流I,仿真管14,14′的共振频率可被改变,因为直流电I会引起电磁装置30行为犹如一个张力可调的电弹簧。
为了简化计算,上述用于表达FPD的方程式可由如下的线性方程式所替代而不至引起显著的误差:
F′(x)=0.5μ0Is2N2AKx,
其中K为由具体的尺寸测量所得出的尺寸“长度-3”不变的常数。
观察由直流电流I所引起的力的作用可以看到力的方向是与X偏移的方向重合的,而力的大小是与直流电流成正比的。对比之下,机械弹簧所产生的力是与其位移方向相反的。因而此处电弹簧的弹性常数Ce是负的。
为了确定必要的弹性常数Ce,应注意以下事实:即电弹簧是与由可振动的仿真管构成的具有弹性常数Cm的机械弹簧装置并连着的。
如果质量为m的仿真管的共振频率fres要借助于电弹簧,即直流电流I改变频差δf,则
Ce=-〔Cm-4mπ2(fres-δf02)〕
为了提高电磁系统30的性能并改进其线性,各铁芯33,36至少部分地是永磁铁而产生一恒定磁通,于是对于各线圈34,37,该磁通可按电流Is与其方向而增减。
用于产生直流电流I的电路以框图形成示于图4之中。这一电路在此被视为产生交流电流i的上述驱动电路的一部分。
如图4所示,来自传感器18,18′或19,19′即表示计量管13,13′的振动的信号被施加于差动放大器41的非反相输入端。由电磁装置30的线圈34,37之所取得的电压,即表示仿真管14,14′振动的信号施加于差动放大器42的非反相输入端。
两个差动入大器41,42的各反相输入端是接地的,最好是运算放大器的差动放大器41,42被加于它们的信号过驱动,于是其各输出提供了方波信号。
差动放大器41的输出连接到D触发器43′的D输入端,该触发器实现一个相位比较器43,差动放大器42的输出耦合到可调移相器48的输入,该移相器的输出供给到D触发器43′的时钟输出端。
D触发器43′的Q输出通过一高值电阻R连接到积分器44的输入端。积分器44由差动放大器44′和从输出端到该差动放大器的非反相输入端的反馈通路中的电容器C所构成,该非反相输入端也是积分器44的输入器。反向输入端是连接到DC参考电压U的。
积分器44的输出端耦合到第一功放级45的输入端并通过一模拟反相器46,例如一单位增益电压放大器,耦合到第二功放级47的输入端。该两个功放级45,47也是电压到电流的转换器,从而接有线圈34与37的它们的各输出端分别引起上述定义好的直流电流I流经各线圈而添加到交流电流i上。
替代取自电磁装置30表示仿真管14,14′的振动的信号,可在仿真管14,14′上安装一个振荡传感器(未示出)。
可调移相器48例如在质量流量传感器在车间中定刻度时被调节至实际上在支撑管17处检测不出振动为止,即直至这些振动已减至最小。
因为将支撑管的振动调至最小,计量管13,13′与仿真管14,14′也以设定在可调移相器48的相位差Φ而振动。这一相位差归于结构参数并表示着装置的常数。
由于利用上述其作用犹如一个相位比较器的D触发器43′进行信号组合,于是在仿真管14,14′与计量管13,13′之间可获得所希望的(180°-Φ)相位关系,于是显然地:在D触发器43′的输出端的脉冲的持续时间决定了直流电流I的数值。
用于向线圈34,37供电的另一电路以框图形式示于图5之中。具有与图4中相同功能的部件以同样的标号标出,并不再加以说明。
替代图4中直流电流和交流电流i的迭加,这里所用的是驱动信号T的正半波和负半波;正半波施加于第一电磁铁32,而负半波加于第二电磁铁35。
驱动信号T是移相器49的输出信号,该移相器的输入信号连接到差动放大器41,从而是接收了表示计量管13,13′振动的信号。移相器49的控制输入由来自相位比较器43被积分了的输入信号所提供,即由来自D触发43′由积分器44所积分的输出信号提供。
二极管57,58反向平行连于移相器49与功放级45,47各输入端之间。于是功放级45只由移位器49的输出的正半波供电,而功放级47由负半波供电。
图5的驱动电路连同仿真管是自激励的,即为产生交流电流i图4中所需锁相回路在图5中不是必须的。这一点除其他方面之外预示着在成本上也有优越性。
用于向线圈34,37供电的另一电路在图6中以框图形式表示出;这是图5的驱动电路的变形。与图5中具有相同功能的部件以相同的标号标出并不再作说明。
图6中,替代图4中直流电流I与交流电流i的迭加也是使用了驱动器信号T′的正半波和负半波。驱动器信号不象是在图5中由移相器提供,而是由一个压控振荡器50提供,该振荡器的控制输入接收相位比较器43的被积分的输出信号,即被积分器44所积分的D触发43′的输出信号。
用于向线圈34,37供电的另一电路以框图的形式示于图7之中。图7是图5和图6驱动电路的发展。相应于图6中的部件在图7中以相同的部件标出,并不再作说明。
图4,图5和图6中的可调移相器48在图7中已由用于计量支撑管17加速度的传感元件59所代替,并且相位比较器43,包括D触发器43′已被乘法器60所代替。这就免去了必须人工调节支撑管的振荡极小值;这一极小值是自动进行自我调节的。这样的替换在图4的电路中也是可行的。
在图5到7的实施例中,包括永磁体和移动线圈的电动装置可用于代替电磁装置30。
基于本发明的装置亦可用于确定流体的粘滞性。这可由图8的电路来进行。来自传感元件18,18′或19,19′之一的信号和由驱动电路提供并表示仿真管14,14′振幅的信号,例如上述来自电磁装置30的信号,由二极管51与52结合电容器53与54分别进行峰值整流。二极管51的输出信号通过模拟除法器55被二极管52的输出信号所除。除法器55的信号通过微控制器56转换为粘滞信号V。在此末端,微处理控制器56可包括一个速查表,该表包含了事先存储好的除法器55的输出信号值与粘滞度V之间的指定值。

Claims (11)

1.按科里奥利原理工作的质量流量传感器,
-该传感器可通过法兰装于待测流体所流经的给定直径的管道,从而可与该管道轴向共线。
-具有支撑管,其端头分别固定在法兰上,
-具有延伸于法兰之间并由流体穿过的直形计量管,
-在输入侧具有结盘,在输出侧具有结盘,
其特征在于,还包括:
-具有与该计量管平行延伸但不由液体穿过的直形仿真管,
-所述结盘之一将计量管的输入侧端部分固定在相应的仿真管端头部分上,以及
-另一个结盘将计量管的输出侧端部分固定在相应的仿真管端头部分上,从而使得计量管与仿真管并排地安装,以及
-具有仅对仿真管有作用的装置以便激励计量管的共振。
2.按科里奥利原理工作的质量流量传感器,
-该传感器可通过法兰装于待测流体所流经的给定直径的管道,从而可与该管道轴向共线。
-具有支撑管,其端头分别固定在法兰上,
-具有延伸于法兰之间并由流体穿过的直形计量管,
-在输入侧具有结盘,在输出侧具有结盘,
其特征在于,还包括:
-具有与该计量管平行延伸但不由液体穿过的直形仿真管,
-所述结盘之一将计量管的输入侧端部分固定在相应的仿真管端头部分上,以及
-另一个结盘将计量管的输出侧端部分固定在相应的仿真管端头部分上,使得所述的仿真管同轴地围绕在计量管周围,以及
-具有仅对仿真管有作用的装置以便激励计量管的共振。
3.权利要求1或2中所述的质量流量传感器,其特征在于所述的仿真管的端头分别装于结盘之上,于是仿真管被封闭。
4.权利要求3所述的质量流量传感器,其特征在于所述的仿真管被抽成真空。
5.权利要求1中所述质量流量传感器,其特征在于所述的仿真管的共振频率可被调节,使得仿真管与计量管之间的相位关系为180°或尽可能接近这个数值。
6.如权利要求1或5所述的质流传感器,其特征在于用于激励共振的装置包括一电磁装置及一个驱动电路,
-该电磁装置包括:
-围绕在仿真管周围的软磁材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体
-电磁体相对于该套管彼此径向相对配置,以及
-具有生成迭加于直流电流的交流电流的驱动电路,
-通过所表示计量管振动的信号施加于相位比较器的第一输入端,
-通过由可调移相器产生自代表仿真管振动的信号的信号施加到相位比较器的第二输入端,以及
-通过将相位比较器的输出积分,
-具可调移相器,调至支撑管处可探测到的最小振动,以及
-交流电通过锁相回路被调至计量管的共振频率。
7.权利要求1或5中所述之质量流量传感器,其特征在于用于激励共振的装置包括一电磁体装置和一驱动电路
-该电磁体装置包括
-围绕仿真管的软磁材料套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体,
-电磁体相对于该套管彼此相对地径向配置
-该驱动电路向第一电磁体施加驱动信号的正半波,并向第二电磁体施加该信号的负半波,
-该驱动信号是移相器的输出信号
-其输入信号是由代表计量管振动的信号所提供,以及
其控制输入由被积分的相位比较器的输出信号所供给,
-该比较器的输入之一内表示计量管振动的信号所提供,以及
-比较器的另一输入由表示仿真管振动的信号通过一可调移相器提供,
-该移相器调至在支撑管处只能探测到最小的振动为止。
8.权利要求1或5中所述之质量流量传感器,其特征在于用于激励共振的装置包括一电磁装置和一驱动电路
-该电磁装置包括
-围绕仿真管的软磁性材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体,
-电磁体关于套管彼此径向相对配置,以及
-该驱动电路向第一电磁体施加驱动信号的正半波,并向第二电磁体施加该信号的负半波,
-该驱动信号是一压控振荡器的输出信号,
-该振荡器的控制输入由一相位比较器信号的积分输出所提供,
-比较器的一个输入由表示计量管振动的信号所提供,以及
-比较器的另一个输入是由表示仿真管振动的信号通过一可调移相器提供,
-该移相器被调至在支撑管处仅可探测到最小振动为止(图6)。
9.如权利要求1或5所述的质流传感器,其特征在于用于激励共振的装置包括一电磁装置及一个驱动电路,
-该电磁装置包括:
-围绕在仿真管周围的软磁材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体
-电磁体相对于该套管彼此径向相对配置,以及
-具有生成迭加于直流电流的交流电流的驱动电路,
-通过所表示计量管振动的信号施加于乘法器的第一输入端,
-通过由检测支撑管加速度的一个传感器产生自代表仿真管振动的信号的信号施加到乘法器的第二输入端,以及
-通过将乘法器的输出积分,
-调节所述的传感器,调至支撑管处可探测到的最小振动,以及
-交流电通过锁相回路被调至计量管的共振频率。
10.权利要求1或5中所述之质量流量传感器,其特征在于用于激励共振的装置包括一电磁体装置和一驱动电路
-该电磁体装置包括
-围绕仿真管的软磁材料套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体,
-电磁体相对于该套管彼此相对地径向配置
-该驱动电路向第一电磁体施加驱动信号的正半波,并向第二电磁体施加该信号的负半波,
-该驱动信号是移相器的输出信号
-其输入信号是由代表计量管振动的信号所提供,以及
其控制输入由被积分的乘法器的输出信号所供给,
-该乘法器的输入之一由表示计量管振动的信号所提供,以及
-乘法器的另一输入由表示仿真管振动的信号通过传感器提供,
-该传感器调至在支撑管处只能探测到最小的振动为止。
11.权利要求1或5中所述之质量流量传感器,其特征在于用于激励共振的装置包括一电磁装置和一驱动电路
-该电磁装置包括
-围绕仿真管的软磁性材料的套管,
-具有第一U形磁芯和第一线圈的第一电磁体,以及
-具有第二U形磁芯和第二线圈的第二电磁体,
-电磁体关于套管彼此径向相对配置,以及
-该驱动电路向第一电磁体施加驱动信号的正半波,并向第二电磁体施加该信号的负半波,
-该驱动信号是一压控振荡器的输出信号,
-该振荡器的控制输入由一乘法器信号的积分输出所提供,
-乘法器的一个输入由表示计量管振动的信号所提供,以及
-乘法器的另一个输入是由表示仿真管振动的信号通过一用于检测支撑管加速度的传感器提供,
-该传感器被调至在支撑管处仅可探测到最小振动为止。
CN94190503A 1993-07-21 1994-07-15 科里奥利式质量流量传感器 Expired - Fee Related CN1058566C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93810523 1993-07-21
EP93810523.6 1993-07-21

Publications (2)

Publication Number Publication Date
CN1112373A CN1112373A (zh) 1995-11-22
CN1058566C true CN1058566C (zh) 2000-11-15

Family

ID=8215004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94190503A Expired - Fee Related CN1058566C (zh) 1993-07-21 1994-07-15 科里奥利式质量流量传感器

Country Status (8)

Country Link
US (1) US5531126A (zh)
EP (1) EP0660920B1 (zh)
JP (1) JP2558091B2 (zh)
CN (1) CN1058566C (zh)
DE (1) DE59408354D1 (zh)
DK (1) DK0660920T3 (zh)
ES (1) ES2133570T3 (zh)
WO (1) WO1995003528A1 (zh)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101369B4 (de) 2013-02-12 2021-02-18 Endress + Hauser Flowtec Ag Coriolis-Massendurchfluß-Meßgerät
JPH08247816A (ja) * 1995-03-09 1996-09-27 Fuji Electric Co Ltd 質量流量計
ES2149943T3 (es) 1995-07-21 2000-11-16 Flowtec Ag Medidor de caudal masico segun el principio de coriolis con al menos un tubo de medicion.
US5945609A (en) * 1996-03-08 1999-08-31 Fuji Electric Co., Ltd. Mass flowmeter for measuring flow rate of a fluid
ES2140196T3 (es) 1996-04-27 2000-02-16 Flowtec Ag Captador de caudal masico de coriolis.
US5854430A (en) * 1996-05-07 1998-12-29 Endress + Hauser Flowtec Ag Coriolis mass flow sensor
DE19632500C2 (de) * 1996-08-12 1999-10-28 Krohne Ag Basel Massendurchflußmeßgerät
DE59700185D1 (de) * 1996-12-11 1999-07-08 Flowtec Ag Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr
US6073495A (en) * 1997-03-21 2000-06-13 Endress + Hauser Flowtec Ag Measuring and operating circuit of a coriolis-type mass flow meter
US6223605B1 (en) * 1997-04-10 2001-05-01 Endress + Hauser Flowtec Ag Coriolis-type mass flow sensor with a single measuring tube
US6053054A (en) * 1997-09-26 2000-04-25 Fti Flow Technology, Inc. Gas flow rate measurement apparatus and method
US6293157B1 (en) 1998-01-02 2001-09-25 Graco Minnesota Inc. Compensation of coriolis meter motion induced signal
US5979246A (en) * 1998-02-09 1999-11-09 Micro Motion, Inc. Spring rate balancing of the flow tube and a balance bar in a straight tube Coriolis flowmeter
US5987999A (en) * 1998-07-01 1999-11-23 Micro Motion, Inc. Sensitivity enhancing balance bar
DE19840782C2 (de) * 1998-09-08 2001-09-06 Krohne Messtechnik Kg Massendurchflußmeßgerät
US6164140A (en) * 1998-10-09 2000-12-26 Kalinoski; Richard W. Solid state transducer for Coriolis flowmeter
US6412355B1 (en) 1999-05-20 2002-07-02 Endress + Hauser Flowtec Ag Coriolis-type flow meter and method for measuring the mass flow rate of a gaseous or vaporous fluid
EP1059515B1 (de) * 1999-06-07 2008-08-27 Endress + Hauser Flowtec AG Massedurchfluss-Messschaltung eines Coriolis-Massedurchfluss/Dichtemessers
US6408700B1 (en) 1999-06-07 2002-06-25 Endress + Hauser Flowtec Ag Mass flow rate measurement circuit and method for a mass flow/density meter
DE10003784B4 (de) * 1999-12-27 2004-12-09 Krohne Ag Coriolis-Massendurchflußmeßgerät
US6684716B2 (en) * 2000-04-07 2004-02-03 Kazumasa Ohnishi Coriolis flowmeter
US6651513B2 (en) * 2000-04-27 2003-11-25 Endress + Hauser Flowtec Ag Vibration meter and method of measuring a viscosity of a fluid
ATE243844T1 (de) * 2000-04-27 2003-07-15 Flowtec Ag Vibrations-messgerät und verfahren zum messen einer viskosität eines fluids
US6694279B2 (en) 2001-02-16 2004-02-17 Micro Motion, Inc. Methods, apparatus, and computer program products for determining structural motion using mode selective filtering
US6466880B2 (en) 2001-02-16 2002-10-15 Micro Motion, Inc. Mass flow measurement methods, apparatus, and computer program products using mode selective filtering
US6535826B2 (en) 2001-02-16 2003-03-18 Micro Motion, Inc. Mass flowmeter methods, apparatus, and computer program products using correlation-measure-based status determination
US6662120B2 (en) * 2001-06-19 2003-12-09 Endress + Hauser Flowtec Ag Excitation circuits for coriolis mass flowmeters
DE10137921A1 (de) * 2001-08-02 2003-02-13 Abb Research Ltd Verfahren und Vorrichtung zum Bestimmen des Massendurchflusses
EP1291639B1 (de) * 2001-08-24 2013-11-06 Endress + Hauser Flowtec AG Viskositäts-Messgerät
US6910366B2 (en) * 2001-08-24 2005-06-28 Endress + Hauser Flowtec Ag Viscometer
US6606573B2 (en) 2001-08-29 2003-08-12 Micro Motion, Inc. Sensor apparatus, methods and computer program products employing vibrational shape control
US6678624B2 (en) 2001-08-29 2004-01-13 Micro Motion, Inc. Apparatus, methods and computer program products for generating mass flow calibration factors using a normal modal dynamic characterization of a material-containing conduit
DE10220734C1 (de) * 2002-03-06 2003-04-24 Krohne Ag Basel Massendurchflußmeßgerät
DE10220827A1 (de) * 2002-05-08 2003-11-20 Flowtec Ag Messwandler vom Vibrationstyp
CN100387943C (zh) * 2002-05-08 2008-05-14 恩德斯+豪斯流量技术股份有限公司 振动转换器
WO2004072591A1 (en) * 2003-02-04 2004-08-26 Micro Motion, Inc. Low mass coriolis mass flowmeter having a low mass drive system
US7168329B2 (en) * 2003-02-04 2007-01-30 Micro Motion, Inc. Low mass Coriolis mass flowmeter having a low mass drive system
DE10344742A1 (de) * 2003-09-25 2005-04-14 Endress + Hauser Flowtec Ag, Reinach Verfahren zum Einstellen einer mechanischen Resonanzfrequenz
DE102004011377A1 (de) * 2004-03-05 2005-09-15 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgrösse
US7284449B2 (en) * 2004-03-19 2007-10-23 Endress + Hauser Flowtec Ag In-line measuring device
US7040181B2 (en) 2004-03-19 2006-05-09 Endress + Hauser Flowtec Ag Coriolis mass measuring device
DE102004018326B4 (de) 2004-04-13 2023-02-23 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zum Messen einer Dichte und/oder einer Viskosität eines Fluids
US7077014B2 (en) * 2004-06-23 2006-07-18 Endress + Hauser Flowtec Ag Vibration-type measuring transducer
KR100898639B1 (ko) * 2005-07-28 2009-05-22 마이크로 모우션, 인코포레이티드 저 질량 구동 시스템을 갖는 저 질량 코리올리 질량 유량계
DE102005046319A1 (de) 2005-09-27 2007-03-29 Endress + Hauser Flowtec Ag Verfahren zum Messen eines in einer Rohrleitung strömenden Mediums sowie Meßsystem dafür
US7490521B2 (en) * 2005-11-15 2009-02-17 Endress + Hauser Flowtec Ag Measurement transducer of vibration type
US7472607B2 (en) * 2005-11-15 2009-01-06 Endress + Hauser Flowtec Ag Measurement transducer of vibration type
US7475603B2 (en) * 2005-11-15 2009-01-13 Endress + Hauser Flowtec Ag Measurement transducer of vibration-type
US7360452B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
US7360453B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
CN101336364B (zh) 2005-12-27 2011-04-13 恩德斯+豪斯流量技术股份有限公司 在线测量设备和用于补偿在线测量设备中的测量误差的方法
DE102006062600B4 (de) 2006-12-29 2023-12-21 Endress + Hauser Flowtec Ag Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
DE102008016235A1 (de) 2008-03-27 2009-10-01 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines auf einer rotierenden Karussell-Abfüllmachine angeordneten Meßgeräts
DE102008002215A1 (de) * 2008-06-04 2009-12-10 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung eines Strömungsparameters
DE102008035877A1 (de) 2008-08-01 2010-02-04 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102008044186A1 (de) 2008-11-28 2010-06-02 Endress + Hauser Flowtec Ag Magneteinrichtung sowie Meßaufnehmer vom Vibrationstyp mit einer solchen Magneteinrichtung
DE102009012474A1 (de) 2009-03-12 2010-09-16 Endress + Hauser Flowtec Ag Meßsystem mit einem Messwandler vom Vibrationstyp
DE102009028006A1 (de) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
DE102009028007A1 (de) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
CN102753946B (zh) 2009-12-31 2016-08-17 恩德斯+豪斯流量技术股份有限公司 具有振动型测量转换器的测量系统
DE102010000760B4 (de) 2010-01-11 2021-12-23 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler vom Vibrationstyp zum Messen eines statischen Drucks in einem strömenden Medium
CA2785755C (en) 2009-12-31 2016-02-02 Vivek Kumar Measuring system having a measuring transducer of vibration-type
DE102010000761A1 (de) 2010-01-11 2011-07-28 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler vom Vibrationstyp
WO2011080173A2 (de) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Messsystem mit einem messwandler vom vibrationstyp
DE102010000759A1 (de) 2010-01-11 2011-07-14 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler vom Vibrationstyp
DE102010039543A1 (de) 2010-08-19 2012-02-23 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler vom Vibrationstyp
DE102010044179A1 (de) 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler von Vibrationstyp
DE102011006919A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Verfahren zum Trimmen eines Rohrs
DE102011006997A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Frequenzabgleichsverfahren für eine Rohranordnung
DE102011006971A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Verfahren zu dessen Herstellung
US9121550B2 (en) * 2011-07-12 2015-09-01 Baker Hughes Incorporated Apparatus of a magnetic resonance multiphase flow meter
DE102011119980A1 (de) 2011-12-02 2013-06-06 Krohne Ag Coriolis-Massedurchflussmessgerät
DE102011089808A1 (de) 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
DE102012102947B4 (de) 2012-04-03 2023-12-21 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
RU2579818C1 (ru) 2012-04-03 2016-04-10 Эндресс + Хаузер Флоутек Аг Измерительный преобразователь вибрационного типа, измерительная система для протекающей через трубопровод среды и способ постройки частоты системы труб
DE102013102711A1 (de) 2013-03-18 2014-09-18 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie damit gebildetes Meßsystem
DE102013102708A1 (de) 2013-03-18 2014-09-18 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie damit gebildetes Meßsystem
DE102013113689B4 (de) 2013-12-09 2018-02-01 Endress + Hauser Flowtec Ag Dichte-Meßgerät
CN103674143A (zh) * 2013-12-12 2014-03-26 重庆川仪自动化股份有限公司 科氏质量流量计传感器及其线圈骨架
EP3084367B1 (de) 2013-12-20 2020-10-14 Endress+Hauser Flowtec AG Spule
DE102013114731A1 (de) 2013-12-20 2015-06-25 Endress+Hauser Flowtec Ag Spule
US9587971B2 (en) * 2015-07-22 2017-03-07 Honeywell International Inc. Dual E-shaped high frequency exciter
TWI625507B (zh) * 2015-10-08 2018-06-01 壓電股份有限公司 柯氏力式質量流量計
DE102017121157A1 (de) 2017-08-09 2019-02-14 Endress+Hauser Flowtec Ag Spule sowie Meßwandler mit einer solchen Spule
DE102017131199A1 (de) 2017-12-22 2019-06-27 Endress + Hauser Flowtec Ag Coriolis-Massendurchfluß-Meßgerät
US20220099543A1 (en) 2018-12-20 2022-03-31 Endress+Hauser Flowtec Ag Coriolis mass flow meter
DE102018133117A1 (de) 2018-12-20 2020-06-25 Endress+Hauser Flowtec Ag Coriolis-Massendurchfluß-Meßgerät
EP3899447B1 (de) 2018-12-20 2023-09-20 Endress + Hauser Flowtec AG Coriolis-massendurchfluss-messgerät
CN113196016A (zh) 2018-12-21 2021-07-30 恩德斯+豪斯流量技术股份有限公司 具有磁场探测器的科里奥利质量流量计
DE102019107601A1 (de) 2019-03-25 2020-10-01 Endress + Hauser Flowtec Ag Coriolis-Messaufnehmer und Coriolis-Messgerät
DE102019133610A1 (de) 2019-12-09 2021-06-10 Endress + Hauser Flowtec Ag Vibronisches Meßsystem zum Messen eines Massestroms eines fluiden Meßstoff
CN116157655A (zh) 2020-06-18 2023-05-23 恩德斯+豪斯流量技术股份有限公司 电子振动测量系统
DE102020131649A1 (de) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
DE102020127382A1 (de) 2020-10-16 2022-04-21 Endress+Hauser Flowtec Ag Verfahren zum Überprüfen eines vibronischen Meßsystems
DE102022112523A1 (de) 2022-05-18 2023-11-23 Endress+Hauser Flowtec Ag Vibronisches Meßsystem
DE102022116111A1 (de) 2022-06-28 2023-12-28 Endress+Hauser Flowtec Ag Vibronisches Meßsystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653332A (en) * 1984-11-27 1987-03-31 Danfoss A/S Mass flow meter working on the coriolis principle
US4793191A (en) * 1986-09-26 1988-12-27 Flowtec Ag Mass flow meter operating by the cariolis principle
US4801897A (en) * 1986-09-26 1989-01-31 Flowtec Ag Arrangement for generating natural resonant oscillations of a mechanical oscillating system
DE4027936A1 (de) * 1990-09-04 1992-03-05 Rota Yokogawa Gmbh & Co Kg Massedosierautomat
DE4124295A1 (de) * 1991-07-22 1993-01-28 Krohne Ag Massendurchflussmessgeraet
EP0598287A1 (en) * 1992-11-19 1994-05-25 Oval Corporation Coriolis flowmeter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015583B1 (zh) * 1970-09-11 1975-06-06
US4422338A (en) * 1981-02-17 1983-12-27 Micro Motion, Inc. Method and apparatus for mass flow measurement
DE3877907D1 (de) * 1987-11-20 1993-03-11 Flowtec Ag Verfahren zur massendurchflussmessung nach dem coriolisprinzip und nach dem coriolisprinzip arbeitendes massendurchfluss-messgeraet.
JP2712684B2 (ja) * 1989-12-27 1998-02-16 横河電機株式会社 コリオリ質量流量計
EP0469448A1 (de) * 1990-07-28 1992-02-05 KROHNE MESSTECHNIK MASSAMETRON GmbH & Co. KG Massendurchflussmessgerät
DE4143361A1 (de) * 1991-07-22 1993-03-04 Krohne Ag Massendurchflussmessgeraet
CA2113800C (en) * 1991-08-01 1999-05-18 Paul Zoltan Kalotay Coriolis effect mass flow meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653332A (en) * 1984-11-27 1987-03-31 Danfoss A/S Mass flow meter working on the coriolis principle
US4793191A (en) * 1986-09-26 1988-12-27 Flowtec Ag Mass flow meter operating by the cariolis principle
US4801897A (en) * 1986-09-26 1989-01-31 Flowtec Ag Arrangement for generating natural resonant oscillations of a mechanical oscillating system
DE4027936A1 (de) * 1990-09-04 1992-03-05 Rota Yokogawa Gmbh & Co Kg Massedosierautomat
DE4124295A1 (de) * 1991-07-22 1993-01-28 Krohne Ag Massendurchflussmessgeraet
EP0598287A1 (en) * 1992-11-19 1994-05-25 Oval Corporation Coriolis flowmeter

Also Published As

Publication number Publication date
CN1112373A (zh) 1995-11-22
ES2133570T3 (es) 1999-09-16
EP0660920A1 (de) 1995-07-05
DE59408354D1 (de) 1999-07-08
DK0660920T3 (da) 1999-12-13
US5531126A (en) 1996-07-02
JPH07507638A (ja) 1995-08-24
EP0660920B1 (de) 1999-06-02
JP2558091B2 (ja) 1996-11-27
WO1995003528A1 (de) 1995-02-02

Similar Documents

Publication Publication Date Title
CN1058566C (zh) 科里奥利式质量流量传感器
CN1105301C (zh) 振动管密度计
RU2569048C2 (ru) Вибрационный измеритель и соответствующий способ для определения резонансной частоты
JP2731381B2 (ja) 唯一の測定管を備えたコリオリ式質量流量センサー
CN1115548C (zh) 科里奥利流量计
CN1516808A (zh) 粘度测量装置
CA1259064A (en) Apparatus and method for self-resonant vibrational mixing
CN1227514C (zh) 用于当材料密度引起流速中不可接受误差时补偿材料质量流速的装置和方法
JP2004500538A5 (zh)
CN1068115C (zh) 科里奥利质量流量传感器
CN1613002A (zh) 振动式仪用互感器
CN1934426A (zh) 在线测量仪表
CN1409093A (zh) 电磁流量计
CN1860350A (zh) 用于科里奥利流量计的诊断装置及方法
CN1311853A (zh) 产生补偿的质量流量估计的振动管道及其方法
EP0629568A2 (en) Method and apparatus for controlling the drive of self-excited vibrating parts feeder
CN1839296A (zh) 用于科里奥利流量计的诊断设备和方法
RU2727865C2 (ru) Управление колебаниями вибродатчика на основании фазового рассогласования
CN1547663A (zh) 粘度测量仪器
CN1114745A (zh) 粘度计
CN1942742A (zh) 用于力平衡的方法和设备
CN1616947A (zh) 使用振荡电路测量微质量的装置和方法
CN1246674C (zh) 制造具有直流量管的科氏流量计的方法
CN1208601C (zh) 具有单弯曲测量管的质量流速传感器
CN1856697A (zh) 用于检测振动元件密度计和科里奥利流量计上的腐蚀、侵蚀或产品集结的方法和校准确认

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20001115