CN105845972A - 一种纤维状水系锂离子电池及其制备方法 - Google Patents

一种纤维状水系锂离子电池及其制备方法 Download PDF

Info

Publication number
CN105845972A
CN105845972A CN201610380959.1A CN201610380959A CN105845972A CN 105845972 A CN105845972 A CN 105845972A CN 201610380959 A CN201610380959 A CN 201610380959A CN 105845972 A CN105845972 A CN 105845972A
Authority
CN
China
Prior art keywords
ion battery
lithium ion
carbon nano
preparation
limn2o4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610380959.1A
Other languages
English (en)
Inventor
彭慧胜
张晔
焦丁
焦一丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201610380959.1A priority Critical patent/CN105845972A/zh
Publication of CN105845972A publication Critical patent/CN105845972A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于新能源技术领域,具体为一种纤维状水系锂离子电池及其制备方法。该纤维状水系锂离子电池由聚酰亚胺/碳纳米管复合纤维作负极,锰酸锂/碳纳米管纤维作正极,硫酸锂水溶液为电解液。其在空气中的放电功率密度能够达到10217.74W/kg,超过了绝大多数的超级电容器;而能量密度可以达到48.93 Wh/kg,与薄膜锂离子电池相当。使用水系电解液从根本上解决了易燃的有机电解液带来的安全问题。同时,器件本身呈纤维状,其可以很好的和纺织品混合编织成织物,在可穿戴电子领域具有广阔的应用前景。

Description

一种纤维状水系锂离子电池及其制备方法
技术领域
本发明属于新能源技术领域,具体涉及一种纤维状水系锂离子电池及其制备方法。
背景技术
目前,储能器件所面临的一个很大的挑战就是达到较高的功率输出的同时保持高的储能容量。[1-3]锂离子电池可以通过法拉第反应具有很高的能量密度,但是由于缓慢的充放电过程和低功率密度而受到很大局限。[4,5]超级电容器通过表面离子吸附表现出快速的充放电过程,因此表现出高的功率密度。然而,他们面对着与锂离子电池相比的能量密度过低的问题。[6-8]为此,许我们付出了许多努力以提升锂离子电池的功率密度[9,10],例如缩短锂离子的扩散距离。同时,我们也通过设计高比表面积的电极材料来提升超级电容器的能量密度。[11-13]但是,这种提升效果并不显著。
另外,柔性可穿戴的电子设备已经成为了一种时代趋势。[14]其快速发展需要具有微型化,无毒,安全和柔性等特征的储能器件。[15,16]但是,目前基于有机电解液的柔性锂离子电池面临着由于变形短路导致的起火、爆炸的危险,已经成为了制约其应用的关键因素。[17,18]。
发明内容
本发明的目的在于提供一种纤维状水系锂离子电池的制备方法,以有效克服目前锂离子电池存在的问题。
本发明提供的纤维状水系锂离子电池,其具体制备步骤如下:
(1)制备聚酰亚胺/碳纳米管复合纤维,作为负极;
(2)制备锰酸锂/碳纳米管纤维,作为正极;
(3)将两纤维电极以隔膜隔开,密封在热缩管中;
(4)加注硫酸锂电解液。
本发明中,所述的聚酰亚胺/碳纳米管复合纤维负极,其具体制备步骤如下:
(1)首先将1-10mmol的1,4,5,8-萘四甲酸酐与10-100g对氯苯酚混合,再加入0.05-0.5mL的乙二胺,作为前驱液;
(2)由可纺碳纳米管阵列纺织而成的取向碳纳米管纤维在前驱液中进行固化,随后加热、回流1-10小时,得到聚酰亚胺/碳纳米管复合纤维;
(3)把得到的复合纤维在乙醇中漂洗,之后在300℃的氮气中干燥1-10小时去除残余溶剂,最终获得干燥的聚酰亚胺/碳纳米管复合纤维。
本发明中,所述锰酸锂/碳纳米管正极,其具体制备步骤如下:
(1)首先,以水热法制备锰酸锂颗粒;
(2)然后,把制得的1mg-5mg锰酸锂与5-25mLN,N-二甲基甲酰胺混合制成浓度为0.04-1mg/mL的锰酸锂悬浮液;
(3)然后,将十层堆叠的碳纳米管纤维浸入锰酸锂悬浮液,紧接着将其卷成锰酸锂/碳纳米管纤维。
本发明中,所述锰酸锂颗粒的具体制备步骤如下:
(1)首先,0.2-0.5g的氢氧化锂和1.0-1.5g的二氧化锰被溶解于30-60mL去离子水中,混合液在室温下搅拌0.3-0.7h;
(2)在充分搅拌的混合液中加入0.1-0.4g葡萄糖和30-60mL去离子水后,反应体系被加热到100-320℃,持续12-36h;
(3)在去离子水中漂洗,干燥,氮气流中煅烧12-36h之后,得到锰酸锂颗粒。
本发明中,所述电解液为硫酸锂溶液。
本发明中,所述的碳纳米管薄膜,是从可纺取向碳纳米管阵列中拉出制得。可纺取向碳纳米管阵列通过化学气相沉积法制备得到,其具体制备方法为:通过电子束蒸发镀膜仪在硅片上沉积一层结构为Al2O3/Fe的催化剂,其中Al2O3的厚度为2-20 nm,Fe的厚度为0.5-1.5 nm。通过化学气相沉积法,用氩气作为载气,乙烯作为碳源,氢气作为还原剂,在预先镀有催化剂的硅片上合成高度取向的碳纳米管阵列。其中氩气气体流量为350-450sccm, 乙烯气体流量为60-120 sccm, 氢气气体流量为30-90 sccm。反应温度为700-800oC,反应时间为10-15 min。
本发明制备的纤维状水系锂离子电池,具有超高的能量密度、较好的循环稳定性以及很好的柔性。其在空气中的放电功率密度能够达到10217.74W/kg,超过了绝大多数的超级电容器;而能量密度可以达到48.93 Wh/kg,与薄膜锂离子电池相当。使用水系电解液从根本上解决了易燃的有机电解液带来的安全问题。同时,器件本身呈纤维状,其可以很好的和纺织品混合编织成织物,在可穿戴电子领域具有广阔的应用前景。
附图说明
图1为本发明纤维状水系锂离子电池结构图示。
图2为聚酰亚胺/碳纳米管和锰酸锂/碳纳米管的电化学性能。其中,(a)聚酰亚胺/碳纳米管电极在不断增加的放电电流下的充放电曲线和倍率性能(1C=183 mA/g)(b) 锰酸锂/碳纳米管电极在不断增加的放电电流下的充放电曲线和倍率性能(1C=148 mA/g)。
图3为纤维状水系锂离子电池在不断提升的放电速率下(10C-100C)的电化学性能。
图4为纤维状水系锂离子电池纺织成织物。其中,由纤维状水系锂离子电池纺织而成的储能织物在弯曲、折叠、卷曲下的状态。图1中的箭头指示了织物中一根水系锂离子电池纤维。
具体实施方式
以下结合具体实施案例,示例性的说明及帮助进一步理解本发明,但实施案例具体细节仅是为了说明本发明,并不代表本发明构思下全部的技术方案,因此不应理解为对本发明总的技术方案的限定,一些在技术人员看来,不偏离本发明构思的非实质性增加和改动,例如以具有相同或相似技术效果的技术特征简单改换或替换,均属于本发明保护范围。
制备取向碳纳米管薄膜。通过电子束蒸发镀膜仪在硅片上沉积一层结构为Al2O3/Fe的催化剂,其中Al2O3的厚度为3 nm,Fe的厚度为1.2 nm。通过化学气相沉积法,用氩气作为载气,乙烯作为碳源,氢气作为还原剂,在预先镀有催化剂的硅片上合成高度取向的碳纳米管阵列。其中氩气气体流量为400 sccm, 乙烯气体流量为90 sccm, 氢气气体流量为60sccm。反应温度为740 ℃,反应时间为10 min。直接从可纺取向碳纳米管阵列中拉出得到取向碳纳米管薄膜。
制备聚酰亚胺/碳纳米管复合纤维负极:首先将2.3mmol的1,4,5,8-萘四甲酸酐与40g对氯苯酚混合,再加入0.15mL的乙二胺;由可纺碳纳米管阵列纺织而成的取向碳纳米管纤维在前驱液中进行固化,随后加热、回流2,6或8小时以进行比较;得到的复合纤维在乙醇中漂洗,之后在300℃的氮气中干燥8小时去除残余溶剂。
制备锰酸钾颗粒:首先,0.4g的氢氧化锂和1.2g的二氧化锰被溶解于50mL去离子水中,混合液在室温下搅拌0.5h;在充分搅拌的混合液中加入0.3g葡萄糖和50mL去离子水后,反应体系被加热到180℃,持续24h;在去离子水中漂洗,干燥,氮气流中煅烧24h之后,得到锰酸锂颗粒。
制备锰酸钾/碳纳米管纤维正极:将制得的2.25mg锰酸锂与15mLN,N-二甲基甲酰胺混合制成浓度为0.15mg/mL的锰酸锂悬浮液;然后,将十层堆叠的碳纳米管纤维浸入锰酸锂悬浮液,紧接着将其卷成锰酸锂/碳纳米管纤维。
所制备的纤维状水系锂离子电池具有优秀的倍率性能。在100C的放电速率下比容量能够达到91.8 mAh/g。特别的,其可以达到10217.74W/kg的功率密度,高于绝大多数的超级电容器。其能量密度可达到48.93Wh/kg,与薄片状锂离子电池相当。使用的水系电解液从根本上解决了有机电解液带来的安全性问题。其也具有很好的柔性,在不同程度的弯曲下,都能维持稳定的电化学性能。并且由于纤维状的构型,其可以很好的和纺织品混合编织成织物,在可穿戴电子领域具有广阔的应用前景。
参考文献
[1] S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B. S. Kim, P. T.Hammond, Y. S. Horn, Nat. Nanotechnol.2010, 5, 531-537.
[2] H. Zhang, X. Yu, P. V. Braun, Nat. Nanotechnol.2011, 6, 277-281.
[3] Y. Zhang, Y. Zhao, X. Cheng, W. Weng, J. Ren, X. Fang, Y. Jiang, P.Chen, Z. Zhang, Y. Wang, H. Peng, Angew. Chem. Int. Ed.2015, 54, 11177-11182.
[4] H. Song, H. X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang,Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, K. Chen, Adv. Funct. Mater.2016, 26,524-531.
[5] K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science2006, 311, 977-980.
[6] P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210-1211.
[7] L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C.Gao, Nat. Commun.2014, 5, 3754.
[8] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534-537.
[9] J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei, T. Liu, J. Hu, H. Guo, Z.Zhuo, L. Liu, Z. Chang, X. Wang, D. Zherebetskyy, Y. Fang, Y. Lin, K. Xu, L.W. Wang, Y. Wu, F. Pan, Nano Lett.2015, 15, 6102-6109.
[10] Y. Wang, X. Xu, C. Cao, C. Shi, W. Mo, H. Zhu, J. Power Sources2013, 242, 230-235.
[11] N. Li, Z. Chen, W. Ren, F. Li, H. M. Cheng, Proc. Natl. Acad.Sci.USA 2012, 109, 17360-17365.
[12] R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, Nano Lett.2012, 12,2559-2567.
[13] W. Gu, M. Sevilla, A. Magasinski, A. B. Fuertes, G. Yushin, EnergyEnviron. Sci.2013, 6, 2465-2476.
[14] F. Zhao, Y. Zhao, H. Cheng, L. Qu, Angew. Chem. Int. Ed.2015, 54,14951-14955.
[15] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen,Nat. Nanotechnol.2014, 9, 555-562.
[16] P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M.Respaud, A. Demortière, B. Daffos, P. Taberna, Science 2016, 351, 691-695.
[17] Y. Zhang, Y. Zhao, J. Ren, W. Weng, H. Peng, Adv. Mater.2015, DOI:10.1002/adma.201503891.
[18] H. Kim, J. Hong, K.-Y. Park, H. Kim, S. W. Kim, K. Kang, Chem.Rev.2014, 114, 11788-11827。

Claims (5)

1.一种纤维状水系锂离子电池的制备方法,其特征在于,具体步骤如下:
(1)制备聚酰亚胺/碳纳米管复合纤维,作为负极;
(2)制备锰酸锂/碳纳米管纤维,作为正极;
(3)将两纤维电极以隔膜隔开,密封在热缩管中;
(4)加注硫酸锂电解液。
2.如权利要求1所述的制备方法,其特征在于,所述聚酰亚胺/碳纳米管复合纤维负极的具体制备步骤如下:
(1)首先将1-10mmol的1,4,5,8-萘四甲酸酐与10-100g对氯苯酚混合,再加入0.05-0.5mL的乙二胺,作为前驱液;
(2)由可纺碳纳米管阵列纺织而成的取向碳纳米管纤维在前驱液中进行固化,随后加热、回流1-10小时,得到聚酰亚胺/碳纳米管复合纤维;
(3)得到的复合纤维在乙醇中漂洗,之后在300℃的氮气中干燥1-10小时去除残余溶剂,最终获得干燥的聚酰亚胺/碳纳米管复合纤维。
3.如权利要求1或2所述的制备方法,其特征在于,所述锰酸锂/碳纳米管纤维正极的具体制备步骤如下:
(1)首先,以水热法制备锰酸锂颗粒;
(2)然后,制得的1mg-5mg锰酸锂与5-25mLN,N-二甲基甲酰胺混合制成浓度为0.04-1mg/mL的锰酸锂悬浮液;
(3)最后,将十层堆叠的碳纳米管纤维浸入锰酸锂悬浮液,紧接着将其卷成锰酸锂/碳纳米管纤维。
4.如权利要求3所述的制备方法,其特征在于,所述锰酸锂颗粒的具体制备步骤如下:
(1)首先,0.2-0.5g的氢氧化锂和1.0-1.5g的二氧化锰被溶解于30-60mL去离子水中,混合液在室温下搅拌0.3-0.7h;
(2)在充分搅拌的混合液中加入0.1-0.4g葡萄糖和30-60mL去离子水后,反应体系被加热到100-320℃,持续12-36h;
(3)在去离子水中漂洗,干燥,氮气流中煅烧12-36h之后,得到锰酸锂颗粒。
5.一种如权利要求1-4之一所述制备方法得到的纤维状水系锂离子电池。
CN201610380959.1A 2016-06-01 2016-06-01 一种纤维状水系锂离子电池及其制备方法 Pending CN105845972A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610380959.1A CN105845972A (zh) 2016-06-01 2016-06-01 一种纤维状水系锂离子电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610380959.1A CN105845972A (zh) 2016-06-01 2016-06-01 一种纤维状水系锂离子电池及其制备方法

Publications (1)

Publication Number Publication Date
CN105845972A true CN105845972A (zh) 2016-08-10

Family

ID=56596067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610380959.1A Pending CN105845972A (zh) 2016-06-01 2016-06-01 一种纤维状水系锂离子电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105845972A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785013A (zh) * 2016-12-23 2017-05-31 宁国市龙晟柔性储能材料科技有限公司 基于石墨烯复合纤维的线状水系锂离子电池的制备方法
CN109256564A (zh) * 2018-09-10 2019-01-22 江西克莱威纳米碳材料有限公司 碳纳米管-石墨复合材料、锂硫电池正极材料和锂硫电池
CN111263991A (zh) * 2017-10-23 2020-06-09 诺基亚技术有限公司 用于制造一种装置的方法、装置和计算机程序
US10811644B2 (en) 2018-02-14 2020-10-20 City University Of Hong Kong Conductive yarn-based nickel-zinc textile batteries
US10957939B2 (en) 2017-11-07 2021-03-23 City University Of Hong Kong Rechargeable polyacrylamide based polymer electrolyte zinc-ion batteries
US11075406B2 (en) 2017-11-07 2021-07-27 City University Of Hong Kong Gel polymer electrolytes comprising electrolyte additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305961A (zh) * 2013-07-17 2013-09-18 中国科学院长春应用化学研究所 一种聚酰亚胺-碳纳米管复合纤维的制备方法
CN103904366A (zh) * 2014-03-09 2014-07-02 复旦大学 一种柔性线状锂离子电池及其制备方法
CN104779394A (zh) * 2015-04-17 2015-07-15 复旦大学 一种水系锂(钠)离子电池混合负极材料
CN104795567A (zh) * 2015-04-17 2015-07-22 复旦大学 基于碘离子溶液正极和有机物负极的水系锂离子/钠离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305961A (zh) * 2013-07-17 2013-09-18 中国科学院长春应用化学研究所 一种聚酰亚胺-碳纳米管复合纤维的制备方法
CN103904366A (zh) * 2014-03-09 2014-07-02 复旦大学 一种柔性线状锂离子电池及其制备方法
CN104779394A (zh) * 2015-04-17 2015-07-15 复旦大学 一种水系锂(钠)离子电池混合负极材料
CN104795567A (zh) * 2015-04-17 2015-07-22 复旦大学 基于碘离子溶液正极和有机物负极的水系锂离子/钠离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAEGYEOM KIM: "Aqueous Rechargeable Li and Na Ion Batteries", 《CHEMICAL REVIEWS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785013A (zh) * 2016-12-23 2017-05-31 宁国市龙晟柔性储能材料科技有限公司 基于石墨烯复合纤维的线状水系锂离子电池的制备方法
CN111263991A (zh) * 2017-10-23 2020-06-09 诺基亚技术有限公司 用于制造一种装置的方法、装置和计算机程序
US10957939B2 (en) 2017-11-07 2021-03-23 City University Of Hong Kong Rechargeable polyacrylamide based polymer electrolyte zinc-ion batteries
US11075406B2 (en) 2017-11-07 2021-07-27 City University Of Hong Kong Gel polymer electrolytes comprising electrolyte additive
US10811644B2 (en) 2018-02-14 2020-10-20 City University Of Hong Kong Conductive yarn-based nickel-zinc textile batteries
CN109256564A (zh) * 2018-09-10 2019-01-22 江西克莱威纳米碳材料有限公司 碳纳米管-石墨复合材料、锂硫电池正极材料和锂硫电池
CN109256564B (zh) * 2018-09-10 2021-07-09 江西克莱威纳米碳材料有限公司 碳纳米管-石墨复合材料、锂硫电池正极材料和锂硫电池

Similar Documents

Publication Publication Date Title
CN105845972A (zh) 一种纤维状水系锂离子电池及其制备方法
Qiu et al. Highly nitridated graphene–Li2S cathodes with stable modulated cycles
CN105006375B (zh) 一种氮、磷共掺杂多孔碳纳米管、制备方法及应用
Zeng et al. Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
Hsieh et al. Integrated graphene-sulfur cathode and separator with plasma enhancement for Li-S batteries
CN105152161B (zh) 杂原子掺杂表面带孔中空球石墨烯材料及其制法与应用
CN103794769A (zh) 锂离子电池负极材料的制备方法
Sun et al. Porous Si/C anode materials by Al–Si dealloying method with PEA surfactant assisted cross-linked carbon coating for lithium-ion battery applications
Chen et al. Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries
CN107093727B (zh) 一种合成锂离子电池高容量负极材料的方法
CN104979535A (zh) 一种石墨烯多孔纳米硅复合材料、其制备方法及其应用
WO2014118547A1 (en) A cathode structure for an electrical energy storage device and the method of fabricating the cathode structure
Zhang et al. Si@ Cu3Si nano-composite prepared by facile method as high-performance anode for lithium-ion batteries
Yu et al. High performance of porous silicon/carbon/RGO network derived from rice husks as anodes for lithium-ion batteries
CN106531969B (zh) 一种锂离子电池负极用柔性复合纳米材料的制备方法
CN114122352A (zh) 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
Wang et al. Chelation-Assisted formation of carbon nanotubes interconnected Yolk-Shell Silicon/Carbon anodes for High-Performance Lithium-ion batteries
CN114122372A (zh) 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
Meng et al. Defect-repaired reduced graphene oxide caging silicon nanoparticles for lithium-ion anodes with enhanced reversible capacity and cyclic performance
Jin et al. Enhanced lithium storage performance of Si/C composite nanofiber membrane with carbon coating as binder-free and self-supporting anode for lithium-ion battery
CN104638248A (zh) 一种石墨烯/铅化合物复合材料的制备方法
Wang et al. Fabrication of the ZnFe2O4 fiber-in-tube and tubular mesoporous nanostructures via single-spinneret electrospinning: characterization, mechanism and performance as anodes for Li-ion batteries
Wei et al. Nanostructured SiOx/Si composite confined by carbon layer as anode materials for high-performance lithium-ion battery
CN113809286B (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160810