CN105826482A - Green-light quantum dot thin-film electroluminescence device and preparation method thereof - Google Patents
Green-light quantum dot thin-film electroluminescence device and preparation method thereof Download PDFInfo
- Publication number
- CN105826482A CN105826482A CN201610213168.XA CN201610213168A CN105826482A CN 105826482 A CN105826482 A CN 105826482A CN 201610213168 A CN201610213168 A CN 201610213168A CN 105826482 A CN105826482 A CN 105826482A
- Authority
- CN
- China
- Prior art keywords
- green light
- quantum dot
- layer
- green
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明公开了一种绿光量子点薄膜电致发光器件及其制备方法,包括依次层叠的基底、阳极、空穴注入层、空穴传输层、绿光量子点发光层、绿光能量传递层、电子传输层、电子注入层以及阴极;所述绿光量子点发光层的厚度为8nm~15nm;所述绿光能量传递层的厚度为0.2nm~2nm。这种绿光量子点薄膜电致发光器件,首先采用厚度为8nm~15nm的绿光量子点发光层,从而使得绿光量子点发光层形成不完全连续薄膜,使得空穴可部分穿过绿光量子点发光层而不在绿光量子点发光层与空穴传输层界面过多积累,在绿光能量传递层上形成激子后通过能量传递的方式再到达绿光量子点发光层上使其发光,解决绿光量子点薄膜电致发光器件的空穴注入势垒较高的问题。
The invention discloses a green light quantum dot thin film electroluminescent device and a preparation method thereof, comprising a sequentially stacked substrate, an anode, a hole injection layer, a hole transport layer, a green light quantum dot light-emitting layer, a green light energy transfer layer, an electronic Transport layer, electron injection layer and cathode; the thickness of the green light quantum dot light emitting layer is 8nm-15nm; the thickness of the green light energy transfer layer is 0.2nm-2nm. This green light quantum dot thin film electroluminescent device first adopts a green light quantum dot light-emitting layer with a thickness of 8nm to 15nm, so that the green light quantum dot light-emitting layer forms an incompletely continuous film, so that holes can partially pass through the green light quantum dot light-emitting layer Instead of excessive accumulation at the interface between the green light quantum dot light-emitting layer and the hole transport layer, excitons are formed on the green light energy transfer layer and then reach the green light quantum dot light-emitting layer through energy transfer to make them emit light, solving the problem of green quantum dot film The problem of high hole injection barriers in electroluminescent devices.
Description
技术领域technical field
本发明涉及薄膜电致发光器件领域,特别是涉及一种绿光量子点薄膜电致发光器件及其制备方法。The invention relates to the field of thin film electroluminescent devices, in particular to a green light quantum dot thin film electroluminescent device and a preparation method thereof.
背景技术Background technique
量子点(quantumdots,QDs)是由有限数目的原子组成,三个维度尺寸均在纳米数量级。量子点一般为球形或类球形,是由半导体材料(通常由ⅡB~ⅥA或ⅢA~ⅤA元素组成)制成的、稳定直径在2~20nm的纳米粒子。量子点是在纳米尺度上的原子和分子的集合体,既可由一种半导体材料组成,如由IIB.VIA族元素(如CdS、CdSe、CdTe、ZnSe等)或IIIA.VA族元素(如InP、InAs等)组成,也可以由两种或两种以上的半导体材料组成。作为一种新颖的半导体纳米材料,量子点具有许多独特的纳米性质,并且可以应用作为薄膜电致发光器件的发光层。Quantum dots (quantumdots, QDs) are composed of a limited number of atoms, and the three dimensions are all on the order of nanometers. Quantum dots are generally spherical or quasi-spherical, and are nanoparticles made of semiconductor materials (usually composed of IIB-VIA or IIIA-VA elements) with a stable diameter of 2-20 nm. Quantum dots are aggregates of atoms and molecules on the nanometer scale, which can be composed of a semiconductor material, such as group IIB.VIA elements (such as CdS, CdSe, CdTe, ZnSe, etc.) or group IIIA.VA elements (such as InP , InAs, etc.), can also be composed of two or more semiconductor materials. As a novel semiconductor nanomaterial, quantum dots have many unique nano-properties and can be applied as the light-emitting layer of thin-film electroluminescent devices.
然而,由于薄膜电致发光器件常用的透明阳极ITO功函数为4.8eV,其与QDs的HOMO能级(>6.0eV)相差较远,因此造成QLED器件中空穴注入势垒普遍较高,需要高HOMO能级的空穴注入材料来帮助空穴的注入,然而当前常用的空穴注入材料其HOMO能级一般为5.2eV~6.0eV,对于红光QDs(~6.0eV)来说基本能满足空穴注入的要求,然而对于绿光QDs(~6.5eV)和蓝光QDs(~6.8eV)来说,由于空穴注入势垒较高,很难满足空穴注入的要求。However, since the work function of the transparent anode ITO commonly used in thin film electroluminescent devices is 4.8eV, which is far from the HOMO energy level (>6.0eV) of QDs, the hole injection barrier in QLED devices is generally high, requiring high However, the HOMO energy level of the commonly used hole injection materials is generally 5.2eV~6.0eV, which can basically meet the hole injection requirements for red QDs (~6.0eV). However, for green QDs (~6.5eV) and blue QDs (~6.8eV), it is difficult to meet the hole injection requirements due to the high hole injection barrier.
发明内容Contents of the invention
基于此,有必要提供一种能够解决空穴注入势垒较高的问题的绿光量子点薄膜电致发光器件及其制备方法。Based on this, it is necessary to provide a green light quantum dot thin film electroluminescence device and a preparation method thereof that can solve the problem of high hole injection barrier.
一种绿光量子点薄膜电致发光器件,包括依次层叠的基底、阳极、空穴注入层、空穴传输层、绿光量子点发光层、绿光能量传递层、电子传输层、电子注入层以及阴极;A green light quantum dot thin film electroluminescent device, comprising a substrate, an anode, a hole injection layer, a hole transport layer, a green light quantum dot light-emitting layer, a green light energy transfer layer, an electron transport layer, an electron injection layer and a cathode stacked in sequence ;
所述绿光量子点发光层的材料为绿光量子点,所述绿光量子点发光层的厚度为8nm~15nm;The material of the green light quantum dot light-emitting layer is green light quantum dots, and the thickness of the green light quantum dot light-emitting layer is 8nm-15nm;
所述绿光能量传递层的材料为绿光有机发光材料,所述绿光能量传递层的厚度为0.2nm~2nm。The material of the green light energy transfer layer is a green light organic luminescent material, and the thickness of the green light energy transfer layer is 0.2nm-2nm.
在一个实施例中,所述绿光量子点为核壳结构的CdSeZnS绿光量子点,所述核壳结构的CdSeZnS绿光量子点的粒径为6nm~15nm,其中,“CdSeZnS”为ZnS包覆CdSe。In one embodiment, the green light quantum dots are CdSeZnS green light quantum dots with a core-shell structure, and the particle size of the CdSeZnS green light quantum dots with a core-shell structure is 6nm-15nm, wherein "CdSeZnS" is ZnS-coated CdSe.
在一个实施例中,所述绿光有机发光材料选自三(8-羟基喹啉)铝、2,3,6,7-四氢-1,1,7,7-四甲基-1H,5H,11H-10-(2-苯并噻唑基)-喹嗪并[9,9A,1GH]香豆素和三(2-苯基吡啶)合铱中的至少一种。In one embodiment, the green light organic light-emitting material is selected from tris(8-quinolinolato)aluminum, 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, At least one of 5H,11H-10-(2-benzothiazolyl)-quinazino[9,9A,1GH]coumarin and tris(2-phenylpyridine)iridium.
在一个实施例中,所述阳极的材料为ITO、FTO、AZO或IZO,所述阳极的厚度为80nm~200nm。In one embodiment, the material of the anode is ITO, FTO, AZO or IZO, and the thickness of the anode is 80nm-200nm.
在一个实施例中,所述空穴注入层的材料为聚3,4-二氧乙烯噻吩和聚苯磺酸盐的混合物,所述空穴注入层的厚度为20nm~40nm。In one embodiment, the material of the hole injection layer is a mixture of poly-3,4-dioxyethylenethiophene and polybenzenesulfonate, and the thickness of the hole injection layer is 20nm-40nm.
在一个实施例中,所述空穴传输层的材料选自聚(N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺)和聚((9,9-二辛基芴-2,7-二基)-共(4,4'-(N-(4-仲-丁基苯基)二苯胺))中的至少一种,所述空穴传输层的厚度为20nm~40nm。In one embodiment, the material of the hole transport layer is selected from poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) and poly(( At least one of 9,9-dioctylfluorene-2,7-diyl)-co(4,4'-(N-(4-sec-butylphenyl)diphenylamine)), the empty The thickness of the hole transport layer is 20 nm to 40 nm.
在一个实施例中,所述电子传输层的材料选自N-芳基苯并咪唑、二苯基邻菲咯啉、氧化锌和二氧化钛中的至少一种,所述电子传输层的厚度为30nm~60nm。In one embodiment, the material of the electron transport layer is selected from at least one of N-arylbenzimidazole, diphenylphenanthroline, zinc oxide and titanium dioxide, and the thickness of the electron transport layer is 30nm ~60nm.
在一个实施例中,所述电子注入层的材料选自氟化锂、碳酸锂、碳酸铯、氮化铯、氯化铯和氟化铯中的至少一种,所述电子注入层的厚度为0.5nm~5nm。In one embodiment, the material of the electron injection layer is selected from at least one of lithium fluoride, lithium carbonate, cesium carbonate, cesium nitride, cesium chloride and cesium fluoride, and the thickness of the electron injection layer is 0.5nm ~ 5nm.
在一个实施例中,所述阴极的材料为铝、银、镁、钡或钙,所述阴极的厚度为80nm~150nm。In one embodiment, the material of the cathode is aluminum, silver, magnesium, barium or calcium, and the thickness of the cathode is 80nm-150nm.
上述的绿光量子点薄膜电致发光器件的制备方法,包括如下步骤:The preparation method of the above-mentioned green light quantum dot thin film electroluminescence device comprises the following steps:
提供基底并对所述基底进行清洗;providing a substrate and cleaning the substrate;
在清洗干净的所述基底上形成阳极;forming an anode on the cleaned substrate;
在所述阳极上通过溶液旋涂法依次形成空穴注入层、空穴传输层和绿光量子点发光层,其中,所述绿光量子点发光层的材料为绿光量子点,所述绿光量子点发光层的厚度为8nm~15nm;以及A hole injection layer, a hole transport layer, and a green quantum dot light-emitting layer are sequentially formed on the anode by a solution spin coating method, wherein the material of the green quantum dot light-emitting layer is a green quantum dot, and the green quantum dot emits light the thickness of the layer is 8 nm to 15 nm; and
在所述绿光量子点发光层上通过真空蒸镀法依次形成绿光能量传递层、电子传输层、电子注入层和阴极,其中,所述绿光能量传递层的材料为绿光有机发光材料,所述绿光能量传递层的厚度为0.2nm~2nm。A green light energy transfer layer, an electron transfer layer, an electron injection layer and a cathode are sequentially formed on the green light quantum dot light-emitting layer by a vacuum evaporation method, wherein the material of the green light energy transfer layer is a green light organic light-emitting material, The thickness of the green light energy transmission layer is 0.2nm-2nm.
这种绿光量子点薄膜电致发光器件,首先采用厚度为8nm~15nm的绿光量子点发光层,从而使得绿光量子点发光层形成不完全连续薄膜,使得空穴可部分穿过绿光量子点发光层而不在绿光量子点发光层与空穴传输层界面过多积累,然后在绿光量子点发光层与电子传输层之间插入HOMO能级相对绿光量子点发光层的HOMO能级较低的绿光能量传递层,空穴由阳极注入后经过空穴注入层、空穴传输层之后可部分穿过绿光量子点发光层到达绿光能量传递层的位置并形成激子,然后通过能量传递(ET,EnergyTransfer)的方式再到达绿光量子点发光层上使其发光,该绿光能量传递层同时位于绿光量子点发光层与电子传输层的界面,绿光能量传递层的厚度为0.2nm~2nm,从而使得绿光能量传递层无法形成自身的强烈发光,不影响绿光量子点薄膜电致发光器件的发光光谱及其色纯度,解决绿光量子点薄膜电致发光器件的空穴注入势垒较高的问题。This green light quantum dot thin film electroluminescent device first adopts a green light quantum dot light-emitting layer with a thickness of 8nm to 15nm, so that the green light quantum dot light-emitting layer forms an incompletely continuous film, so that holes can partially pass through the green light quantum dot light-emitting layer Instead of excessively accumulating at the interface between the green light quantum dot light-emitting layer and the hole transport layer, then insert green light energy with a lower HOMO energy level than that of the green light quantum dot light-emitting layer between the green light quantum dot light-emitting layer and the electron transport layer The transfer layer, holes are injected from the anode and then pass through the hole injection layer and the hole transport layer, and then partly pass through the green light quantum dot light-emitting layer to reach the position of the green light energy transfer layer and form excitons, and then pass through the energy transfer (ET, EnergyTransfer ) to reach the green light quantum dot light-emitting layer to make it emit light. The green light energy transfer layer is located at the interface of the green light quantum dot light-emitting layer and the electron transport layer at the same time. The thickness of the green light energy transfer layer is 0.2nm to 2nm, so that The green light energy transfer layer cannot form its own strong luminescence, does not affect the luminescence spectrum and color purity of the green quantum dot thin film electroluminescent device, and solves the problem of high hole injection barrier of the green quantum dot thin film electroluminescent device.
附图说明Description of drawings
图1为一实施方式的绿光量子点薄膜电致发光器件的结构示意图;Fig. 1 is a schematic structural view of a green light quantum dot thin film electroluminescent device according to an embodiment;
图2为如图1所示的绿光量子点薄膜电致发光器件的制备方法的流程图;Fig. 2 is the flowchart of the preparation method of the green light quantum dot thin film electroluminescence device as shown in Fig. 1;
图3为实施例1~实施例4制得的绿光量子点薄膜电致发光器件的发光性能对比图。Fig. 3 is a comparison chart of the luminous performance of the green light quantum dot thin film electroluminescent devices prepared in Examples 1 to 4.
具体实施方式detailed description
下面主要结合附图及具体实施例对绿光量子点薄膜电致发光器件的制备方法作进一步详细的说明。The preparation method of the green light quantum dot thin film electroluminescence device will be further described in detail mainly in conjunction with the accompanying drawings and specific examples below.
如图1所示的一实施方式的绿光量子点薄膜电致发光器件,包括依次层叠的基底10、阳极20、空穴注入层30、空穴传输层40、绿光量子点发光层50、绿光能量传递层60、电子传输层70、电子注入层80以及阴极90。The green light quantum dot thin film electroluminescence device of an embodiment as shown in Figure 1, comprises the substrate 10, anode 20, hole injection layer 30, hole transport layer 40, green light quantum dot light-emitting layer 50, green light layer stacked in sequence Energy transfer layer 60 , electron transfer layer 70 , electron injection layer 80 , and cathode 90 .
基底10通常选择透过率较高的玻璃。The substrate 10 is usually made of glass with high transmittance.
阳极20的材料为铟锡氧化物(ITO)、掺氟氧化锡(FTO)、掺铝的氧化锌(AZO)或掺铟的氧化锌(IZO)。The material of the anode 20 is indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum doped zinc oxide (AZO) or indium doped zinc oxide (IZO).
阳极20的厚度为80nm~200nm。The thickness of the anode 20 is 80nm-200nm.
空穴注入层30的材料为聚3,4-二氧乙烯噻吩(PEDOT)和聚苯磺酸盐(PSS)的混合物。优选的,空穴注入层30的材料为质量比为3:1的聚3,4-二氧乙烯噻吩(PEDOT)和聚苯磺酸盐(PSS)的混合物。The material of the hole injection layer 30 is a mixture of poly-3,4-dioxyethylenethiophene (PEDOT) and polybenzenesulfonate (PSS). Preferably, the material of the hole injection layer 30 is a mixture of poly-3,4-dioxyethylenethiophene (PEDOT) and polybenzenesulfonate (PSS) with a mass ratio of 3:1.
空穴注入层30的厚度为20nm~40nm。The hole injection layer 30 has a thickness of 20 nm to 40 nm.
空穴传输层40的材料选自聚(N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)和聚((9,9-二辛基芴-2,7-二基)-共(4,4'-(N-(4-仲-丁基苯基)二苯胺))(TFB)中的至少一种。The material of the hole transport layer 40 is selected from poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD) and poly((9, At least one of 9-dioctylfluorene-2,7-diyl)-co(4,4′-(N-(4-sec-butylphenyl)diphenylamine)) (TFB).
空穴传输层40的厚度为20nm~40nm。The hole transport layer 40 has a thickness of 20 nm to 40 nm.
绿光量子点发光层50的材料为绿光量子点。优选的,绿光量子点为核壳结构的CdSeZnS绿光量子点,核壳结构的CdSeZnS绿光量子点的粒径为6nm~15nm,其中,“CdSeZnS”为ZnS包覆CdSe。核壳结构的CdSeZnS绿光量子点可以直接购买得到。The material of the green light quantum dot light-emitting layer 50 is green light quantum dots. Preferably, the green light quantum dots are CdSeZnS green light quantum dots with a core-shell structure, and the particle size of the CdSeZnS green light quantum dots with a core-shell structure is 6 nm to 15 nm, wherein "CdSeZnS" is ZnS-coated CdSe. CdSeZnS green light quantum dots with core-shell structure can be purchased directly.
优选的,核壳结构的CdSeZnS绿光量子点的粒径为12.5nm。Preferably, the particle diameter of the CdSeZnS green light quantum dots with core-shell structure is 12.5nm.
绿光量子点发光层50的厚度为8nm~15nm,从而使得绿光量子点发光层50为不完全连续薄膜,使得空穴可部分穿过绿光量子点发光层50而不在绿光量子点发光层50与空穴传输层40界面过多积累。The thickness of the green quantum dot light-emitting layer 50 is 8 nm to 15 nm, so that the green quantum dot light-emitting layer 50 is an incomplete continuous film, so that holes can partly pass through the green quantum dot light-emitting layer 50 without forming a gap between the green quantum dot light-emitting layer 50 and the hole. Excess accumulation at the hole transport layer 40 interface.
绿光能量传递层60的材料为绿光有机发光材料。具体的,绿光有机发光材料选自三(8-羟基喹啉)铝(Alq3)、2,3,6,7-四氢-1,1,7,7-四甲基-1H,5H,11H-10-(2-苯并噻唑基)-喹嗪并[9,9A,1GH]香豆素(C545)和三(2-苯基吡啶)合铱(III)(Ir(ppy)3)中的至少一种。The material of the green light energy transfer layer 60 is a green light organic light emitting material. Specifically, the green organic luminescent material is selected from tris(8-hydroxyquinoline)aluminum (Alq3), 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H-10-(2-Benzothiazolyl)-quinazino[9,9A,1GH]coumarin (C545) and tris(2-phenylpyridine)iridium(III)(Ir(ppy) 3 ) at least one of the
绿光能量传递层60的厚度为0.2nm~2nm,从而使得绿光能量传递层60无法形成自身的强烈发光,不影响绿光量子点发光层50的发光光谱和色纯度。The thickness of the green light energy transfer layer 60 is 0.2nm-2nm, so that the green light energy transfer layer 60 cannot form its own strong light emission, and does not affect the light emission spectrum and color purity of the green light quantum dot light emitting layer 50 .
电子传输层70的材料选自N-芳基苯并咪唑(TPBi)、二苯基邻菲咯啉(Bphen)、氧化锌(ZnO)和二氧化钛(TiO2)中至少一种。The material of the electron transport layer 70 is at least one selected from N-arylbenzimidazole (TPBi), diphenylphenanthroline (Bphen), zinc oxide (ZnO) and titanium dioxide (TiO 2 ).
电子传输层70的厚度为30nm~60nm。The electron transport layer 70 has a thickness of 30 nm to 60 nm.
电子注入层80的材料选自氟化锂(LiF)、碳酸锂(Li2CO3)、碳酸铯(Cs2CO3)、氮化铯(CsN3)、氯化铯(CsCl)和氟化铯(CsF)中的至少一种。The material of the electron injection layer 80 is selected from lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), cesium nitride (CsN 3 ), cesium chloride (CsCl) and fluoride At least one of cesium (CsF).
电子注入层80的厚度为0.5nm~5nm。The electron injection layer 80 has a thickness of 0.5 nm to 5 nm.
阴极90的材料为铝(Al)、银(Ag)、镁(Mg)、钡(Ba)或钙(Ca)。The material of the cathode 90 is aluminum (Al), silver (Ag), magnesium (Mg), barium (Ba), or calcium (Ca).
阴极90的厚度为80nm~150nm。The thickness of the cathode 90 is 80 nm to 150 nm.
这种绿光量子点薄膜电致发光器件,首先采用厚度为8nm~15nm的绿光量子点发光层50,从而使得绿光量子点发光层50形成不完全连续薄膜,使得空穴可部分穿过绿光量子点发光层50而不在绿光量子点发光层50与空穴传输层40界面过多积累,然后在绿光量子点发光层50与电子传输层70之间插入HOMO能级相对绿光量子点发光层50的HOMO能级较低的绿光能量传递层60,空穴由阳极20注入后经过空穴注入层30、空穴传输层40之后可部分穿过绿光量子点发光层50到达绿光能量传递层60的位置并形成激子,然后通过能量传递(ET,EnergyTransfer)的方式再到达绿光量子点发光层50上使其发光,该绿光能量传递层60同时位于绿光量子点发光层50与电子传输层70的界面,绿光能量传递层60的厚度为0.2nm~2nm,从而使得绿光能量传递层60无法形成自身的强烈发光,不影响绿光量子点薄膜电致发光器件的发光光谱及其色纯度,解决绿光量子点薄膜电致发光器件的空穴注入势垒较高的问题。This green light quantum dot thin film electroluminescent device first adopts a green light quantum dot light-emitting layer 50 with a thickness of 8nm-15nm, so that the green light quantum dot light-emitting layer 50 forms an incomplete continuous film, so that holes can partially pass through the green light quantum dots The light-emitting layer 50 does not accumulate too much at the interface between the green light quantum dot light-emitting layer 50 and the hole transport layer 40, and then inserts the HOMO energy level relative to the HOMO of the green light quantum dot light-emitting layer 50 between the green light quantum dot light-emitting layer 50 and the electron transport layer 70. In the green light energy transfer layer 60 with a lower energy level, after the holes are injected from the anode 20 and pass through the hole injection layer 30 and the hole transport layer 40, they can partially pass through the green quantum dot light-emitting layer 50 to reach the green light energy transfer layer 60. position and form excitons, and then reach the green quantum dot light-emitting layer 50 to emit light through energy transfer (ET, EnergyTransfer). interface, the thickness of the green light energy transfer layer 60 is 0.2 nm to 2 nm, so that the green light energy transfer layer 60 cannot form its own strong light emission, and does not affect the light emission spectrum and color purity of the green quantum dot thin film electroluminescent device. The invention solves the problem of high hole injection potential barrier of the green light quantum dot thin film electroluminescent device.
如图2所示的上述绿光量子点薄膜电致发光器件的制备方法,包括如下步骤:The preparation method of the above-mentioned green light quantum dot thin film electroluminescent device as shown in Figure 2 comprises the following steps:
S10、提供基底10并对基底10进行清洗。S10 , providing a substrate 10 and cleaning the substrate 10 .
基底10通常选择透过率较高的玻璃。The substrate 10 is usually made of glass with high transmittance.
对基底10进行清洗的操作为:对基底10依次用洗涤剂、丙酮、乙醇和异丙醇各超声处理15min。The operation of cleaning the substrate 10 is as follows: the substrate 10 is ultrasonically treated with detergent, acetone, ethanol and isopropanol for 15 minutes respectively.
S20、在S10得到的清洗干净的基底10上形成阳极20。S20 , forming an anode 20 on the cleaned substrate 10 obtained in S10 .
阳极20的材料为铟锡氧化物(ITO)、掺氟氧化锡(FTO)、掺铝的氧化锌(AZO)或掺铟的氧化锌(IZO)。The material of the anode 20 is indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum doped zinc oxide (AZO) or indium doped zinc oxide (IZO).
阳极20的厚度为80nm~200nm。The thickness of the anode 20 is 80nm-200nm.
在S10得到的清洗干净的基底上形成阳极20的操作中,阳极20的形成方法包括蒸镀、喷镀、溅射、电化学蒸发沉积、电化学方式等,优选为溅射。In the operation of forming the anode 20 on the cleaned substrate obtained in S10, the formation method of the anode 20 includes evaporation, spraying, sputtering, electrochemical evaporation deposition, electrochemical methods, etc., preferably sputtering.
S20还包括对形成有阳极20的基板10依次用洗涤剂、丙酮、乙醇和异丙醇各超声处理15min,再进行UV-ozone作15min处理的操作。S20 also includes the operation of ultrasonically treating the substrate 10 formed with the anode 20 with detergent, acetone, ethanol and isopropanol in sequence for 15 minutes, and then performing UV-ozone treatment for 15 minutes.
S30、在S20形成的阳极20上通过溶液旋涂法依次形成空穴注入层30、空穴传输层40和绿光量子点发光层50。S30 , sequentially forming a hole injection layer 30 , a hole transport layer 40 and a green quantum dot light emitting layer 50 on the anode 20 formed in S20 by a solution spin coating method.
空穴注入层30的材料为聚3,4-二氧乙烯噻吩(PEDOT)和聚苯磺酸盐(PSS)的混合物。优选的,空穴注入层30的材料为质量比为3:1的聚3,4-二氧乙烯噻吩(PEDOT)和聚苯磺酸盐(PSS)的混合物。The material of the hole injection layer 30 is a mixture of poly-3,4-dioxyethylenethiophene (PEDOT) and polybenzenesulfonate (PSS). Preferably, the material of the hole injection layer 30 is a mixture of poly-3,4-dioxyethylenethiophene (PEDOT) and polybenzenesulfonate (PSS) with a mass ratio of 3:1.
空穴注入层30的厚度为20nm~40nm。The hole injection layer 30 has a thickness of 20 nm to 40 nm.
空穴传输层40的材料选自聚(N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)和聚((9,9-二辛基芴-2,7-二基)-共(4,4'-(N-(4-仲-丁基苯基)二苯胺))(TFB)中的至少一种。The material of the hole transport layer 40 is selected from poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD) and poly((9, At least one of 9-dioctylfluorene-2,7-diyl)-co(4,4′-(N-(4-sec-butylphenyl)diphenylamine)) (TFB).
空穴传输层40的厚度为20nm~40nm。The hole transport layer 40 has a thickness of 20 nm to 40 nm.
绿光量子点发光层50的材料为绿光量子点。优选的,绿光量子点为核壳结构的CdSeZnS绿光量子点,核壳结构的CdSeZnS绿光量子点的粒径为6nm~15nm,其中,“CdSeZnS”为ZnS包覆CdSe。核壳结构的CdSeZnS绿光量子点可以直接购买得到。The material of the green light quantum dot light-emitting layer 50 is green light quantum dots. Preferably, the green light quantum dots are CdSeZnS green light quantum dots with a core-shell structure, and the particle size of the CdSeZnS green light quantum dots with a core-shell structure is 6 nm to 15 nm, wherein "CdSeZnS" is ZnS-coated CdSe. CdSeZnS green light quantum dots with core-shell structure can be purchased directly.
优选的,核壳结构的CdSeZnS绿光量子点的粒径为12.5nm。Preferably, the particle diameter of the CdSeZnS green light quantum dots with core-shell structure is 12.5nm.
绿光量子点发光层50的厚度为8nm~15nm,从而使得绿光量子点发光层50为不完全连续薄膜,使得空穴可部分穿过绿光量子点发光层50而不在绿光量子点发光层50与空穴传输层40界面过多积累。The thickness of the green quantum dot light-emitting layer 50 is 8 nm to 15 nm, so that the green quantum dot light-emitting layer 50 is an incomplete continuous film, so that holes can partly pass through the green quantum dot light-emitting layer 50 without forming a gap between the green quantum dot light-emitting layer 50 and the hole. Excess accumulation at the hole transport layer 40 interface.
S40、在S30形成的绿光量子点发光层50上通过真空蒸镀法依次形成绿光能量传递层60、电子传输层70、电子注入层80和阴极90。S40 , sequentially forming a green light energy transfer layer 60 , an electron transfer layer 70 , an electron injection layer 80 and a cathode 90 on the green quantum dot light-emitting layer 50 formed in S30 by vacuum evaporation.
绿光能量传递层60的材料为绿光有机发光材料。具体的,绿光有机发光材料选自三(8-羟基喹啉)铝(Alq3)、2,3,6,7-四氢-1,1,7,7-四甲基-1H,5H,11H-10-(2-苯并噻唑基)-喹嗪并[9,9A,1GH]香豆素(C545)和三(2-苯基吡啶)合铱(III)(Ir(ppy)3)中的至少一种。The material of the green light energy transfer layer 60 is a green light organic light emitting material. Specifically, the green organic luminescent material is selected from tris(8-hydroxyquinoline)aluminum (Alq3), 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H-10-(2-Benzothiazolyl)-quinazino[9,9A,1GH]coumarin (C545) and tris(2-phenylpyridine)iridium(III)(Ir(ppy) 3 ) at least one of the
绿光能量传递层60的厚度为0.2nm~2nm,从而使得绿光能量传递层60无法形成自身的强烈发光,不影响绿光量子点发光层50的发光光谱和色纯度。The thickness of the green light energy transfer layer 60 is 0.2nm-2nm, so that the green light energy transfer layer 60 cannot form its own strong light emission, and does not affect the light emission spectrum and color purity of the green light quantum dot light emitting layer 50 .
电子传输层70的材料选自N-芳基苯并咪唑(TPBi)、二苯基邻菲咯啉(Bphen)、氧化锌(ZnO)和二氧化钛(TiO2)中至少一种。The material of the electron transport layer 70 is at least one selected from N-arylbenzimidazole (TPBi), diphenylphenanthroline (Bphen), zinc oxide (ZnO) and titanium dioxide (TiO 2 ).
电子传输层70的厚度为30nm~60nm。The electron transport layer 70 has a thickness of 30 nm to 60 nm.
电子注入层80的材料选自氟化锂(LiF)、碳酸锂(Li2CO3)、碳酸铯(Cs2CO3)、氮化铯(CsN3)、氯化铯(CsCl)和氟化铯(CsF)中的至少一种。The material of the electron injection layer 80 is selected from lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), cesium nitride (CsN 3 ), cesium chloride (CsCl) and fluoride At least one of cesium (CsF).
电子注入层80的厚度为0.5nm~5nm。The electron injection layer 80 has a thickness of 0.5 nm to 5 nm.
阴极90的材料为铝(Al)、银(Ag)、镁(Mg)、钡(Ba)或钙(Ca)。The material of the cathode 90 is aluminum (Al), silver (Ag), magnesium (Mg), barium (Ba), or calcium (Ca).
阴极90的厚度为80nm~150nm。The thickness of the cathode 90 is 80 nm to 150 nm.
这种绿光量子点薄膜电致发光器件的制备方法,工艺简单,操作便利,可以适用于绿光量子点薄膜电致发光器件的制备。The preparation method of the green light quantum dot thin film electroluminescent device has simple process and convenient operation, and is applicable to the preparation of the green light quantum dot thin film electroluminescent device.
以下为具体实施例。The following are specific examples.
实施例1Example 1
先将玻璃基底依次用洗涤剂、丙酮、乙醇和异丙醇各超声处理15min。然后玻璃基板上溅射一层厚度为150nm的ITO导电膜,再进行UV-ozone作15min处理。First, the glass substrate was ultrasonically treated with detergent, acetone, ethanol and isopropanol for 15 min each. Then sputter a layer of ITO conductive film with a thickness of 150nm on the glass substrate, and then perform UV-ozone treatment for 15min.
接着采用溶液旋涂法旋涂质量比为3:1的PEDOT和PSS的混合物制备空穴注入层,转速为5000rpm,150℃下退火30min,空穴注入层的厚度为20nm。接着旋涂18mg/mL的poly-TPD的氯苯溶液制备空穴传输层,转速为3000rpm,110℃下退火60min,厚度为40nm。之后制备绿光量子点发光层,采用7mg/mL的绿光CdSeZnS量子点的甲苯溶液,转速2000rpm,150℃下退火30min,厚度为12nm,得到半成品。Then, the solution spin coating method was used to spin the mixture of PEDOT and PSS with a mass ratio of 3:1 to prepare the hole injection layer, the rotation speed was 5000 rpm, annealed at 150 ° C for 30 min, and the thickness of the hole injection layer was 20 nm. Then spin-coat 18 mg/mL poly-TPD in chlorobenzene solution to prepare a hole transport layer at a rotation speed of 3000 rpm, anneal at 110° C. for 60 min, and have a thickness of 40 nm. Then prepare the green light quantum dot light-emitting layer, using 7mg/mL green light CdSeZnS quantum dot toluene solution, rotating speed 2000rpm, annealing at 150°C for 30min, with a thickness of 12nm, to obtain a semi-finished product.
之后将半成品转移至压力为10-4Pa下的高真空腔体内,用真空蒸镀的方法依次沉积0.5nm的Alq3作为绿光能量传递层,30nm的TPBi作为电子传输层,1nm的LiF作为电子注入层,最后真空蒸镀100nm的Al作为阴极,得到所需的绿光量子点薄膜电致发光器件。Afterwards, the semi-finished product was transferred to a high-vacuum chamber with a pressure of 10 -4 Pa, and 0.5nm Alq 3 was sequentially deposited as the green light energy transfer layer, 30nm TPBi as the electron transfer layer, and 1nm LiF as the green light energy transfer layer by vacuum evaporation. The electron injection layer, and finally vacuum-evaporated 100nm Al as the cathode, to obtain the required green light quantum dot thin film electroluminescence device.
实施例2Example 2
先将玻璃基底依次用洗涤剂、丙酮、乙醇和异丙醇各超声处理15min。然后玻璃基板上溅射一层厚度为150nm的ITO导电膜,再进行UV-ozone作15min处理。First, the glass substrate was ultrasonically treated with detergent, acetone, ethanol and isopropanol for 15 min each. Then sputter a layer of ITO conductive film with a thickness of 150nm on the glass substrate, and then perform UV-ozone treatment for 15min.
接着采用溶液旋涂法旋涂质量比为3:1的PEDOT和PSS的混合物制备空穴注入层,转速为5000rpm,150℃下退火30min,厚度为20nm。接着旋涂18mg/mL的poly-TPD的氯苯溶液制备空穴传输层,转速为3000rpm,110℃下退火60min,厚度为40nm。之后制备绿光量子点发光层,采用5mg/mL的绿光CdSeZnS量子点的甲苯溶液,转速2000rpm,150℃下退火30min,厚度为8nm,得到半成品。Next, the solution spin coating method was used to spin a mixture of PEDOT and PSS with a mass ratio of 3:1 to prepare a hole injection layer at a rotation speed of 5000 rpm, annealing at 150° C. for 30 min, and a thickness of 20 nm. Then spin-coat 18 mg/mL poly-TPD in chlorobenzene solution to prepare a hole transport layer at a rotation speed of 3000 rpm, anneal at 110° C. for 60 min, and have a thickness of 40 nm. Then prepare the green light quantum dot light-emitting layer, using 5mg/mL green light CdSeZnS quantum dot toluene solution, rotating speed 2000rpm, annealing at 150°C for 30min, with a thickness of 8nm, to obtain a semi-finished product.
之后将半成品转移至压力为10-4Pa下的高真空腔体内,用真空蒸镀的方法依次沉积1.8nm的C545作为绿光能量传递层,30nm的TPBi作为电子传输层,1nm的LiF作为电子注入层,最后真空蒸镀100nm的Al作为阴极,得到所需的绿光量子点薄膜电致发光器件。Afterwards, the semi-finished product was transferred to a high vacuum chamber with a pressure of 10 -4 Pa, and 1.8nm C545 was sequentially deposited as the green light energy transfer layer, 30nm TPBi as the electron transfer layer, and 1nm LiF as the electron transfer layer by vacuum evaporation. Inject the layer, and finally vacuum-deposit 100nm Al as the cathode to obtain the required green light quantum dot thin film electroluminescent device.
实施例3Example 3
先将玻璃基底依次用洗涤剂、丙酮、乙醇和异丙醇各超声处理15min。然后玻璃基板上溅射一层厚度为150nm的ITO导电膜,再进行UV-ozone作15min处理。First, the glass substrate was ultrasonically treated with detergent, acetone, ethanol and isopropanol for 15 min each. Then sputter a layer of ITO conductive film with a thickness of 150nm on the glass substrate, and then perform UV-ozone treatment for 15min.
接着采用溶液旋涂法旋涂质量比为3:1的PEDOT和PSS的混合物制备空穴注入层,转速为5000rpm,150℃下退火30min,厚度为20nm。接着旋涂18mg/mL的poly-TPD的氯苯溶液制备空穴传输层,转速为3000rpm,110℃下退火60min,厚度为40nm。之后制备绿光量子点发光层,采用7mg/mL的绿光CdSeZnS量子点的甲苯溶液,转速2000rpm,150℃下退火30min,厚度为12nm,得到半成品。Next, the solution spin coating method was used to spin a mixture of PEDOT and PSS with a mass ratio of 3:1 to prepare a hole injection layer at a rotation speed of 5000 rpm, annealing at 150° C. for 30 min, and a thickness of 20 nm. Then spin-coat 18 mg/mL poly-TPD in chlorobenzene solution to prepare a hole transport layer at a rotation speed of 3000 rpm, anneal at 110° C. for 60 min, and have a thickness of 40 nm. Then prepare the green light quantum dot light-emitting layer, using 7mg/mL green light CdSeZnS quantum dot toluene solution, rotating speed 2000rpm, annealing at 150°C for 30min, with a thickness of 12nm, to obtain a semi-finished product.
之后将半成品转移至压力为10-4Pa下的高真空腔体内,用真空蒸镀的方法依次沉积0.2nm的Ir(ppy)3作为绿光能量传递层,30nm的TPBi作为电子传输层,1nm的LiF作为电子注入层,最后真空蒸镀100nm的Al作为阴极,得到所需的绿光量子点薄膜电致发光器件。Afterwards, the semi-finished product was transferred to a high-vacuum chamber with a pressure of 10 -4 Pa, and 0.2nm Ir(ppy) 3 was sequentially deposited by vacuum evaporation as the green light energy transfer layer, 30nm TPBi as the electron transfer layer, and 1nm LiF is used as the electron injection layer, and finally 100nm Al is vacuum-deposited as the cathode to obtain the required green light quantum dot thin film electroluminescent device.
实施例4Example 4
实施例4制备绿光量子点薄膜电致发光器件的过程与实施例1基本相同,唯一区别在于,实施例4中绿光量子点发光层的厚度为15nm。Example 4 The process of preparing a green quantum dot thin film electroluminescent device is basically the same as that of Example 1, the only difference being that the thickness of the green quantum dot light-emitting layer in Example 4 is 15 nm.
对实施例1~4中制得的绿光量子点薄膜电致发光器件分别进行发光测试,得到图3。Luminescence tests were performed on the green light quantum dot thin film electroluminescent devices prepared in Examples 1 to 4, and FIG. 3 was obtained.
由图3可以看出,实施例1~实施例4制得的绿光量子点薄膜电致发光器件均具有较好的发光性能。It can be seen from FIG. 3 that the green light quantum dot thin film electroluminescent devices prepared in Examples 1 to 4 all have good luminous properties.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610213168.XA CN105826482B (en) | 2016-04-07 | 2016-04-07 | Green light quantum point membrane electro luminescent device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610213168.XA CN105826482B (en) | 2016-04-07 | 2016-04-07 | Green light quantum point membrane electro luminescent device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105826482A true CN105826482A (en) | 2016-08-03 |
CN105826482B CN105826482B (en) | 2017-12-22 |
Family
ID=56525667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610213168.XA Expired - Fee Related CN105826482B (en) | 2016-04-07 | 2016-04-07 | Green light quantum point membrane electro luminescent device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105826482B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110311058A (en) * | 2019-06-05 | 2019-10-08 | 河南大学 | A positive QLED device based on AZO electrode and its preparation method |
CN111244310A (en) * | 2018-11-29 | 2020-06-05 | 固安鼎材科技有限公司 | Organic electroluminescent device and organic electroluminescent display device |
CN119233665A (en) * | 2024-11-29 | 2024-12-31 | 烟台大学 | Perovskite light-emitting device and preparation method and application thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1886844A (en) * | 2003-12-02 | 2006-12-27 | 皇家飞利浦电子股份有限公司 | Electroluminescent device |
US20090039764A1 (en) * | 2005-03-17 | 2009-02-12 | Cho Kyung Sang | Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer |
CN101810055A (en) * | 2007-09-28 | 2010-08-18 | 大日本印刷株式会社 | Light emitting element |
CN101889480A (en) * | 2007-10-16 | 2010-11-17 | Hcf合伙人股份两合公司 | Organic light-emitting diodes with electrophosphorescent-coated emissive quantum dots |
CN103904178A (en) * | 2014-04-11 | 2014-07-02 | 浙江大学 | Quantum dot luminescent device |
CN104979485A (en) * | 2015-07-08 | 2015-10-14 | Tcl集团股份有限公司 | High-performance quantum dot LED and preparation method thereof |
CN105140412A (en) * | 2015-09-01 | 2015-12-09 | Tcl集团股份有限公司 | QLED device with high light-emitting efficiency and preparation method thereof |
CN105140361A (en) * | 2015-09-11 | 2015-12-09 | Tcl集团股份有限公司 | Quantum dot light emitting diode and preparation method thereof |
CN105206715A (en) * | 2015-09-16 | 2015-12-30 | Tcl集团股份有限公司 | QLED with exciton confinement structure and manufacturing method thereof |
CN105244451A (en) * | 2015-10-16 | 2016-01-13 | Tcl集团股份有限公司 | Quantum dot light-emitting diode with mixed HTL and preparation method of quantum dot light-emitting diode |
CN105280829A (en) * | 2015-09-17 | 2016-01-27 | Tcl集团股份有限公司 | Qled and preparation method thereof |
CN105449112A (en) * | 2016-01-12 | 2016-03-30 | 纳晶科技股份有限公司 | Quantum dot electroluminescent device, display apparatus comprising the deivce and illumination apparatus comprising the device |
-
2016
- 2016-04-07 CN CN201610213168.XA patent/CN105826482B/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1886844A (en) * | 2003-12-02 | 2006-12-27 | 皇家飞利浦电子股份有限公司 | Electroluminescent device |
US20090039764A1 (en) * | 2005-03-17 | 2009-02-12 | Cho Kyung Sang | Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer |
CN101810055A (en) * | 2007-09-28 | 2010-08-18 | 大日本印刷株式会社 | Light emitting element |
CN101889480A (en) * | 2007-10-16 | 2010-11-17 | Hcf合伙人股份两合公司 | Organic light-emitting diodes with electrophosphorescent-coated emissive quantum dots |
CN103904178A (en) * | 2014-04-11 | 2014-07-02 | 浙江大学 | Quantum dot luminescent device |
CN104979485A (en) * | 2015-07-08 | 2015-10-14 | Tcl集团股份有限公司 | High-performance quantum dot LED and preparation method thereof |
CN105140412A (en) * | 2015-09-01 | 2015-12-09 | Tcl集团股份有限公司 | QLED device with high light-emitting efficiency and preparation method thereof |
CN105140361A (en) * | 2015-09-11 | 2015-12-09 | Tcl集团股份有限公司 | Quantum dot light emitting diode and preparation method thereof |
CN105206715A (en) * | 2015-09-16 | 2015-12-30 | Tcl集团股份有限公司 | QLED with exciton confinement structure and manufacturing method thereof |
CN105280829A (en) * | 2015-09-17 | 2016-01-27 | Tcl集团股份有限公司 | Qled and preparation method thereof |
CN105244451A (en) * | 2015-10-16 | 2016-01-13 | Tcl集团股份有限公司 | Quantum dot light-emitting diode with mixed HTL and preparation method of quantum dot light-emitting diode |
CN105449112A (en) * | 2016-01-12 | 2016-03-30 | 纳晶科技股份有限公司 | Quantum dot electroluminescent device, display apparatus comprising the deivce and illumination apparatus comprising the device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111244310A (en) * | 2018-11-29 | 2020-06-05 | 固安鼎材科技有限公司 | Organic electroluminescent device and organic electroluminescent display device |
CN111244310B (en) * | 2018-11-29 | 2023-12-26 | 固安鼎材科技有限公司 | Organic electroluminescent device and organic electroluminescent display device |
CN110311058A (en) * | 2019-06-05 | 2019-10-08 | 河南大学 | A positive QLED device based on AZO electrode and its preparation method |
CN119233665A (en) * | 2024-11-29 | 2024-12-31 | 烟台大学 | Perovskite light-emitting device and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105826482B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105845833B (en) | White light quanta point membrane electro luminescent device and preparation method thereof | |
CN105576139B (en) | A kind of quanta point electroluminescent diode and preparation method thereof, display | |
CN104576950B (en) | organic light emitting device | |
TWI499105B (en) | Organic photoelectric device and method of manufacturing same | |
CN105895816B (en) | A kind of inversion blue light quantum point membrane electro luminescent device and its manufacturing method | |
CN105826481B (en) | White light quanta point membrane electro luminescent device and preparation method thereof | |
JP6060361B2 (en) | Organic light emitting device | |
CN1610469A (en) | Organic Electroluminescent Devices Driven by Low Voltage | |
WO2016188041A1 (en) | Electroluminescent component, manufacturing method therefor, display substrate, and display device | |
WO2017219424A1 (en) | Organic light-emitting device and display having same | |
CN1828968B (en) | Organic light-emitting device and manufacturing method thereof | |
CN105932028A (en) | Self-luminous display device | |
CN105895813B (en) | Blue light quantum point membrane electro luminescent device and preparation method thereof | |
CN107046101A (en) | Enhanced blue light organic emissive diode of plasma resonance and preparation method thereof | |
CN105845834A (en) | Inverted green light quantum dot film electroluminescence device | |
CN112467058B (en) | A ternary exciplex composite material host and its OLED device preparation | |
CN105826482B (en) | Green light quantum point membrane electro luminescent device and preparation method thereof | |
WO2016188042A1 (en) | Electroluminescent component, manufacturing method therefor, display substrate, and display device | |
CN106058069A (en) | Top-emitting light emitting device and preparation method thereof | |
KR20130078043A (en) | Organic electroluminescence element including graphene oxide as hole transport layer | |
CN105845839B (en) | It is inverted green light quantum point membrane electro luminescent device | |
CN105845836A (en) | Inverted white light quantum dot film electroluminescence device and manufacturing method thereof | |
CN105845838A (en) | Inverted blue light quantum dot film electroluminescence device | |
CN105140413B (en) | Display panel, organic luminescent device and preparation method thereof | |
Chang et al. | ITO-free large-area top-emission organic light-emitting diode by blade coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171222 Termination date: 20200407 |