CN105823964B - 面向智能变电站的输电线路综合故障定位方法 - Google Patents

面向智能变电站的输电线路综合故障定位方法 Download PDF

Info

Publication number
CN105823964B
CN105823964B CN201610327010.5A CN201610327010A CN105823964B CN 105823964 B CN105823964 B CN 105823964B CN 201610327010 A CN201610327010 A CN 201610327010A CN 105823964 B CN105823964 B CN 105823964B
Authority
CN
China
Prior art keywords
attribute
fault
decision
transmission line
data set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610327010.5A
Other languages
English (en)
Other versions
CN105823964A (zh
Inventor
姚旭
康小宁
程蓉
智勇
崔力心
倪赛赛
陈新
赵杰
拜润卿
赵毅
王春光
梅姚
张坤贤
张大伟
郭文科
王永年
刘巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Xian Jiaotong University
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Xian Jiaotong University
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Xian Jiaotong University, State Grid Gansu Electric Power Co Ltd, Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610327010.5A priority Critical patent/CN105823964B/zh
Publication of CN105823964A publication Critical patent/CN105823964A/zh
Application granted granted Critical
Publication of CN105823964B publication Critical patent/CN105823964B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种面向智能变电站的输电线路综合故障定位方法,当输电线路发生故障时,该方法在已有的单端工频测距方法中选择出测距精度最高的方法,给出准确的故障位置信息;目前已有的工频测距方法存在不同的系统误差来源,测距精度会受到电源、对端系统阻抗以及过渡电阻等参数的综合影响,在不同的故障情况下,各方法的测距精度会有不同的表现,给出不同的测距结果;本发明首先获取输电线路发生故障时的大量训练样本,应用粗糙集理论对训练样本进行属性约简,找出测距精度与故障条件之间的内在关系,删除影响因素较小的参数,加快求解过程;在系统发生故障时,应用KNN算法在多种工频测距方法中找到测距结果最准确的方法,有效提高测距精度。

Description

面向智能变电站的输电线路综合故障定位方法
技术领域
本发明属于输电线路故障定位技术领域,具体涉及一种面向智能变电站的输电线路综合故障定位方法。
背景技术
输电线路准确的故障定位、及时修复对于快速查找故障点,保证电网安全稳定运行具有重要的意义。行波测距的高精度使得其成为目前我国输电线路故障定位的主要方法,但随着智能数字化变电站技术的推广应用,特别是电子式互感器的使用,行波信号的获取因电子式互感器采集单元采样频率的限制(4kHz),导致行波定位方法难于应用到数字化智能变电站。对此,目前有三种应对措施,一是装设专为故障定位服务的电磁式电流互感器和行波采集单元;二是对电子式互感器采集单元进行改造,增加独立的行波采集卡;三是采用工频测距方法。前两种方法需要增加投资并对已有设备进行改造,因此有必要研究替代行波测距的经济可靠的工频测距方法。此外,对于没有安装行波测距装置的变电站,工频测距方法仍是主要的故障定位方法。但是,单端工频测距方法原理上无法消除系统性误差,其定位效果不理想,尤其是对同一故障,不同方法给出的定位结果往往大相径庭,让运行人员无法选择。因此,研究智能变电站条件下高压输电线路的工频故障定位问题,对于提高电网运行的可靠性具有重要意义。
现有的多种单端工频测距方法构造的测距方程中含有三个未知量:故障点的故障电流、故障距离和过渡电阻,但仅有实部、虚部两个方程,不满足定解条件。对此现有方法往往根据电网的特点增加一个接近工程实际的假设条件得到定解。其中,阻抗法假设故障点电流与测量点故障分量电流同相位得到定解,该方法易受系统运行方式和负荷电流的影响;解微分方程法易受高过渡电阻的影响;解复数方程法在电压方程的左右两端分别乘以测量端故障分量电流的共轭复数再取方程的虚部得到故障距离,当两侧系统阻抗角相差较大或线路重载时会产生较大误差;解二次方程法补充定义了测量点零序或正序电流分布系数表达式代入电压方程联立得到关于故障距离的一元二次方程,方法需要典型对端系统的参数值,同时必须解决伪根的判别问题;回路电流法假定对侧系统为无穷大系统,故障后对侧母线电压不变,方法的运算量较小,但假设条件过于理想。
综上所述,目前常用的几种工频测距方法采用了不同的简化假设,均存在系统性误差,测距精度会受到电源、对端系统阻抗以及过渡电阻等参数的综合影响,测距误差会随着故障条件,运行参数的变化而表现出不同的特性。当输电线路发生故障时,如果能根据故障条件,系统参数,波形信息等影响测距精度的因素,在各种方法中选择出测距结果最准确的方法,就可以在工程应用中大幅提高测距精度,同时避免运行人员面对多个定位结果无从选择的难题。
发明内容
为了克服上述现有技术存在的问题,本发明的目的在于提供一种面向智能变电站的输电线路综合故障定位方法,可以在工程应用中大幅提高测距精度,对智能变电站条件下的输电线路故障准确定位起到积极作用。
为了达到上述目的,本发明采用如下技术方案:
面向智能变电站的输电线路综合故障定位方法,首先获取大量的训练样本得到输电线路综合故障定位数据集;然后对数据集进行属性约简,找出测距精度与故障条件之间的内在关系;最后当输电线路发生故障时,应用KNN算法在多种工频测距方法中预测出测距结果最准确的方法,计算故障距离;具体步骤如下:
步骤一:确定输电线路综合故障定位数据集
首先,搭建双端电源系统三相输电线路经过渡电阻单相接地故障模型,在模型中分别设置七个参数:本端电源幅值、本端电源相位;对端电源幅值、对端电源相位;对端系统正序阻抗角、零序阻抗角和过渡电阻;
然后,通过改变上述七个参数得到不同情况下的故障波形数据,分别用阻抗法、解微分方程法、解复数方程法、解二次方程法和回路电流法这五种工频测距方法进行计算得到五个相应的故障距离;
最后,将每种参数设置情况下得到的五个故障距离与故障模型中实际的故障距离相比较,相对误差最小的方法就定义为该参数设置情况下的最优方法;在获取了这些输电线路发生故障时的大量训练样本信息之后,就构造出一个数据集供后面使用,数据集的前七列分别为各个故障情况下七个系统参数的设置值,第八列为各个故障情况下其最优测距方法的编号;
步骤二:数据集属性约简
对步骤一得到的数据集应用粗糙集理论中的属性约简方法进行简化,目的是找出对测距精度影响最大的关键因素,删除关联度小的参数以及实际工程上难于获取的参数,最终利用约简后的数据集确定最优测距方法;
根据属性约简的主要原理,想要对输电线路故障定位数据集进行属性约简,首先需要构造决策表。数据集中构造的大量的不同故障情况为决策表的论域,前七列的系统参数为条件属性,最后一列的最优测距方法编号为决策属性。整个决策表的含义就是,根据前七列条件属性(系统参数)的值可以决定最后一列决策属性(最优测距方法对应的编号)的值。因此,数据集与决策表是一一对应的,在对其进行属性约简时能够直接拿来使用;
对决策表进行属性约简的关键步骤就是计算依赖度,从七种条件属性中选取几个组合成新的条件属性组合,决策属性对该条件属性组合的依赖度大小就决定着这个条件属性组合对于决策的重要性大小,当依赖度大于95%时认为只需保留该条件属性组合中包含的这几个属性,删除其他属性就能做出正确决策;
计算依赖度的数学方法如下:定义两元组决策表S=(U,A),为论域,其一共包含了m行训练样本的决策信息e1,e2…em;A=C∪D且有为属性集合,其中C为条件属性集合C1,C2…Cn,D为决策属性。设为某些条件属性组成的集合,用U/C′表示C′的所有等价类构成的集合。D的C′正域|posC′(D)|表示集合包含的元素个数。则决策属性D对条件属性组合C′的依赖度为k=γC′(D)=|posC′(D)|/m。
本发明首先分别计算决策属性对单个条件属性的依赖度,若得到的七个依赖度数值中有超过95%的,则约简只需保留该条件属性即可;若得到的七个依赖度数值较小,则取出前两个依赖度较大的条件属性组成一个集合,对该集合计算一次依赖度,若数值达到95%,则完成计算,属性约简保留该两个条件属性即可,若仍未达到,则继续添加条件属性组成新的集合,计算依赖度直至达到标准;
最终的约简结果就是在原本的决策表中保留决策属性和使依赖度达标的条件属性组合,删除掉剩下的冗余条件属性;约简后的数据集简单清晰,只需根据保留的几个系统参数的值就能够给出决策,判断出该故障条件下哪种工频测距方法为最优测距方法;
步骤三:基于K近邻法的综合定位
约简后的决策表是一个离散的表格,输电线路发生某次故障时的系统参数未必就正好对应表格中的某个决策,在输电线路发生故障时,采用KNN算法判断实际故障数据与决策表决策的对应关系,选择最优测距方法,实现综合定位;
KNN算法需首先给定一个训练样本集,所有训练样本所属的类别事先给定;其基本思想为:计算待分类样本x和每个训练样本的欧式距离,取出与待分类点最近的k个训练样本点,统计出这k个训练样本点中大多数属于哪一类,则认为待分类点x也属于该类。
在本发明中,约简后的数据集就是这个给定的训练样本集,所有样本的决策属性值域构成了所有的类别数,各个样本的条件属性值依次排列构成它们的特征坐标,其决策属性的值决定了所属的类别;当线路发生故障并已知故障时的系统参数后,确定了待分类点的特征坐标,此时根据KNN算法计算待分类点与所有训练样本的欧式距离,选出距离它最近的k个点,若这k个点中大多数点属于类别1,则认为该待分类点也应属类别1,也就是线路此次发生的故障使用方法1测距的精度最高,其他情况同理;
KNN算法的效果很大程度上依赖于k值的选则,如果k值选择过小,意味着有效的近邻数过少,放大了噪声数据的干扰,分类精度相应降低;如果k值选择过大,一方面加大了运算量,另一方面,假设待分类样本属于训练集中总数据量较小的那一类,在实际上选择k个近邻时,会由于k值过大,使得总数据量较大的类别的数据也会被包含进来,导致分类结果错误。
k值的求取方法如下:再次在双端电源系统三相输电线路经过渡电阻单相接地故障模型中任意改变七个系统参数的设置值,得到十种故障波形数据,分别用五种测距算法进行测距得到它们最优方法的编号;同时根据这十种故障的系统参数,设定一个k值,应用KNN算法也可以对每种故障情况预测出一个最优方法的编号。通过改变k值使得在十种故障情况下两个编号获得最大的重合,也就是KNN算法能够最大程度上准确预测出输电线路发生故障时采用哪种测距算法能够得到最准确的结果,该k值即可选定。
和现有技术相比较,本发明具备如下优点:
在步骤一中:避开了智能变电站条件下数字式互感器采集速率低,无法提取到高频信号的限制,采用了多种工频测距方法,不需要改变变电站硬件结构。
在步骤二中,加入了粗糙集理论的属性约简方法,能够清晰的简化庞大的数据集,加快求解过程,为解除输电线路的种种故障赢得了时间,利于系统的安全可靠。
在步骤三中,K近邻法K值的确定能在最大范围内确保本发明在多种工频测距算法中选择出准确度最高的算法,提高测距精度。
附图说明
图1是双端电源系统三相输电线路经过渡电阻单相接地故障模型。
图2是KNN算法示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述:
以京津唐500kV输电线路为例,建立京津唐500kV三相输电线路经过渡电阻单相接地故障模型,如图1所示,线路长度为D=300km;线路参数为r1=0.02083Ω/km,l1=0.8984mH/km,r0=0.1148Ω/km,l1=2.2886mH/km,两侧电源幅值的变化范围是0.95倍到1.05倍的额定电压,相位的变化范围是0°到180°,对端系统零序、正序阻抗角的变化范围是50°到89°,过渡电阻的变化范围是0Ω到200Ω,分别改变七个参数,用5种单端工频测距方法进行测距按照步骤一的方法得到数据集。
为便于书写,定义本端电源幅值为参数1、本端电源相位为参数2,对端电源幅值为参数3、对端电源相位为参数4、对端系统正序阻抗角为参数5、零序阻抗角为参数6、过渡电阻为参数7,相应地,阻抗法为方法1,解微分方程法为方法2,解复数方程法为方法3,解二次方程法为方法4,回路电流法为方法5。
对数据集进行分析,结果显示五种测距方法在各种故障条件下表现出的测距准确度是不同的,测距准确度最高的方法随着参数的变化而变化。
接下来进行第二步,对数据集进行属性约简,计算得到的决策对各种条件属性集合的依赖度如表1所示。
表1 决策属性对各条件属性集合的依赖度结果
由表1结果看到,决策对条件属性集合1、3、5、6、7的依赖度为96.02%,大于95%满足要求。所以对数据集的约简需要保留五个参数:本端电源幅值、本端电源相位、对端系统正序阻抗角、零序阻抗角和过渡电阻,根据这5个参数就可以在96.02%的正确率内给出决策,选出准确度最高的测距算法。
第三步中,输电线路发生故障后首先需要求解特征向量,也就是上步约简保留的5个参数。本发明中,本端电源的幅值和相位通过故障分量网络求得本端系统阻抗和电源的各序分量,再利用对称分量变换得到;过渡电阻通过解二次方程法最终的二次方程中代入求解得到;对端系统的正序阻抗角和零序阻抗角通过对电网运行方式进行查询给出。
改变参数设定出8种故障条件,采用步骤三的方法确定了K=23,本发明的综合定位方法的选择结果如表2所示,能在输电线路发生故障时在多种单端工频测距方法中选择出最准确的测距结果,提高定位精度。
表2 方法选择结果
如图2所示,坐标系中被包围的三个圆圈是训练样本集,五角星是待分类点x,已知圆点都属于类别W1,三角形都属于类别W2,方形都属于类别W3,待分类点根据自身的特征向量(即坐标)置入特征空间,计算它与所有训练样本的欧式距离,选出距离它最近的k个点,设定k=5,在本例中k1=4,k2=0,k3=1,根据KNN算法多数表决的思想,认为该待分类点也应属类别W1

Claims (1)

1.面向智能变电站的输电线路综合故障定位方法,其特征在于:首先获取大量的训练样本得到输电线路综合故障定位数据集;然后对数据集进行属性约简,找出测距精度与故障条件之间的内在关系;最后当输电线路发生故障时,应用KNN算法在多种工频测距方法中预测出测距结果最准确的方法,计算故障距离;具体如下:
步骤一:确定输电线路综合故障定位数据集
首先,搭建双端电源系统三相输电线路经过渡电阻单相接地故障模型,在模型中分别设置七个参数:本端电源幅值、本端电源相位;对端电源幅值、对端电源相位;对端系统正序阻抗角、零序阻抗角和过渡电阻;
然后,通过改变上述七个参数得到不同情况下的故障波形数据,分别用阻抗法、解微分方程法、解复数方程法、解二次方程法和回路电流法这五种工频测距方法进行计算得到五个相应的故障距离;
最后,将每种参数设置情况下得到的五个故障距离与故障模型中实际的故障距离相比较,相对误差最小的方法就定义为该参数设置情况下的最优方法;在获取了这些输电线路发生故障时的大量训练样本信息之后,就构造出一个数据集供后面使用,数据集的前七列分别为各个故障情况下七个参数的设置值,第八列为各个故障情况下其最优测距方法的编号;
步骤二:数据集的属性约简
对步骤一得到的数据集应用粗糙集理论中的属性约简方法进行简化,目的是找出对测距精度影响最大的关键因素,删除关联度小的参数以及实际工程上难于获取的参数,最终利用约简后的数据集确定最优测距方法;
根据属性约简的主要原理,想要对输电线路故障定位数据集进行属性约简,首先需要构造决策表;数据集中构造的大量的不同故障情况为决策表的论域,前七列的系统参数为条件属性,最后一列的最优测距方法编号为决策属性;整个决策表的含义就是,根据前七列条件属性即系统参数的值可以决定最后一列决策属性即最优测距方法对应的编号的值;因此,数据集与决策表是一一对应的,在对其进行属性约简时,能够直接拿来使用;
对决策表进行属性约简的关键步骤就是计算依赖度,从七种条件属性中选取几个组合成新的条件属性组合,决策属性对该条件属性组合的依赖度大小就决定着这个条件属性组合对于决策的重要性大小,当依赖度大于95%时认为只需保留该条件属性组合中包含的这几个属性,删除其他属性就能做出正确决策;
首先分别计算决策属性对单个条件属性的依赖度,若得到的七个依赖度数值中有超过95%的,则约简只需保留该条件属性即可;若得到的七个依赖度数值较小,则取出前两个依赖度较大的条件属性组成一个集合,对该集合计算一次依赖度,若数值达到95%,则完成计算,属性约简保留该两个依赖度较大的条件属性即可,若仍未达到,则继续添加条件属性组成新的集合,计算依赖度直至达到标准;
最终的约简结果就是在原本的决策表中保留决策属性和使依赖度达标的条件属性组合,删除掉剩下的冗余条件属性;约简后的数据集简单清晰,只需根据保留的几个系统参数的值就能够给出决策,判断出该故障条件下哪种工频测距方法为最优测距方法;
步骤三:基于KNN算法的综合定位
约简后的决策表是一个离散的表格,输电线路发生某次故障时的系统参数未必就正好对应表格中的某个决策,在输电线路发生故障时,采用KNN算法判断实际故障数据与决策表决策的对应关系,选择最优测距方法,实现综合定位;
KNN算法需首先给定一个训练样本集,所有训练样本所属的类别事先给定;其基本思想为:计算待分类样本x和每个训练样本的欧式距离,取出与待分类点最近的k个训练样本点,统计出这k个训练样本点中大多数属于哪一类,则认为待分类点x也属于该类;
约简后的数据集就是这个给定的训练样本集,所有样本的决策属性值域构成了所有的类别数,各个样本的条件属性值依次排列构成它们的特征坐标,其决策属性的值决定了所属的类别;当线路发生故障并已知故障时的系统参数后,确定了待分类点的特征坐标,此时根据KNN算法计算待分类点与所有训练样本的欧式距离,选出距离它最近的k个点,若这k个点中大多数点属于类别1,则认为该待分类点也应属类别1,也就是线路此次发生的故障使用方法1测距的精度最高,其他情况同理;
KNN算法的效果很大程度上依赖于k值的选则,如果k值选择过小,意味着有效的近邻数过少,放大了噪声数据的干扰,分类精度相应降低;如果k值选择过大,一方面加大了运算量,另一方面,假设待分类样本属于训练集中总数据量小的那一类,在实际中选择k个近邻时,会由于k值过大,使得总数据量较大的类别的数据也会被包含进来,导致分类结果错误;
k值的求取方法如下:再次在双端电源系统三相输电线路经过渡电阻单相接地故障模型中任意改变七个参数的设置值,得到十种故障波形数据,分别用五种测距算法进行测距得到它们最优方法的编号;同时根据这十种故障的系统参数,设定一个k值,应用KNN算法也能够对每种故障情况预测出一个最优方法的编号;通过改变k值使得在十种故障情况下两个编号获得最大的重合,也就是KNN算法能够最大程度上准确预测出输电线路发生故障时采用哪种测距算法能够得到最准确的结果,该k值即可选定。
CN201610327010.5A 2016-05-17 2016-05-17 面向智能变电站的输电线路综合故障定位方法 Expired - Fee Related CN105823964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610327010.5A CN105823964B (zh) 2016-05-17 2016-05-17 面向智能变电站的输电线路综合故障定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610327010.5A CN105823964B (zh) 2016-05-17 2016-05-17 面向智能变电站的输电线路综合故障定位方法

Publications (2)

Publication Number Publication Date
CN105823964A CN105823964A (zh) 2016-08-03
CN105823964B true CN105823964B (zh) 2018-07-27

Family

ID=56529699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610327010.5A Expired - Fee Related CN105823964B (zh) 2016-05-17 2016-05-17 面向智能变电站的输电线路综合故障定位方法

Country Status (1)

Country Link
CN (1) CN105823964B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618347B (zh) * 2018-06-20 2022-04-01 南京理工大学 一种基于小波变换和粗糙集理论的区域电网故障诊断方法
CN108983042B (zh) * 2018-07-25 2020-05-22 国网湖北省电力有限公司电力科学研究院 一种基于knn的配网接地故障原因识别方法
CN111208449B (zh) * 2020-01-17 2022-06-28 南京工程学院 一种混联线路单相接地故障测距方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551428B (zh) * 2009-05-12 2011-07-06 东北大学 一种基于粗糙集理论变压器故障诊断装置及诊断方法
US20150073735A1 (en) * 2013-09-11 2015-03-12 King Fahd University Of Petroleum And Minerals Method for adaptive fault location in power system networks
US20160116522A1 (en) * 2014-10-27 2016-04-28 King Fahd University Of Petroleum And Minerals Fully adaptive fault location method
CN105303296B (zh) * 2015-09-29 2019-04-23 国网浙江省电力公司电力科学研究院 一种电力设备全寿命状态评价方法

Also Published As

Publication number Publication date
CN105823964A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN111061821B (zh) 基于改进k值聚类算法的低压配电网拓扑校验方法及系统
CN113036908B (zh) 一种基于继电保护在线监视与分析系统的故障分析方法
CN106990324B (zh) 一种配电网接地故障检测定位方法
CN103308822B (zh) 辐射状配网小电流接地故障选线方法
CN105823964B (zh) 面向智能变电站的输电线路综合故障定位方法
CN108199891B (zh) 一种基于人工神经网络多角度综合决策的cps网络攻击辨识方法
CN110348114B (zh) 一种电网完备性状态信息重构的非精确故障识别方法
Zhang et al. Topology identification method of distribution network based on smart meter measurements
CN111460374A (zh) 一种考虑节点差异性的配电网d-pmu优化配置方法
CN106208050B (zh) 一种基于pmu的电网支路静态参数检测辨识方法
CN112101210A (zh) 一种基于多源信息融合的低压配电网故障诊断方法
CN111881124A (zh) 一种基于改进算法的状态估计的数据处理方法及系统
CN109726770A (zh) 一种模拟电路故障测试诊断方法
CN109239533A (zh) 一种基于人工神经网络的特高压直流输电线路的故障定位方法
Zhu et al. Faulty line identification method based on bayesian optimization for distribution network
CN106291239B (zh) 一种采用滤波器支路电流和主成分分析方法的直流输电线路故障识别方法
CN107121617A (zh) 一种采用滤波器支路电流和k最邻近算法的直流输电线路故障测距方法
CN112345972B (zh) 基于停电事件的配电网线变关系异常诊断方法、装置及系统
CN106646138B (zh) 基于多采样频率小波特征能量折算的配电网接地故障定位方法
CN109324264A (zh) 一种配电网线路阻抗数据异常值的辨识方法及装置
CN106646106B (zh) 基于变点探测技术的电网故障检测方法
CN109784777B (zh) 基于时序信息片段云相似度度量的电网设备状态评估方法
Baldwin et al. Fault locating in distribution networks with the aid of advanced metering infrastructure
CN107132500A (zh) 一种同步相量测量单元在线校准方法与装置
CN110516692A (zh) 一种基于超平面聚类的pmu数据检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180727

Termination date: 20190517

CF01 Termination of patent right due to non-payment of annual fee