CN105823569A - 一种掺杂铬酸镧薄膜型热电偶及其制备方法 - Google Patents

一种掺杂铬酸镧薄膜型热电偶及其制备方法 Download PDF

Info

Publication number
CN105823569A
CN105823569A CN201610272878.XA CN201610272878A CN105823569A CN 105823569 A CN105823569 A CN 105823569A CN 201610272878 A CN201610272878 A CN 201610272878A CN 105823569 A CN105823569 A CN 105823569A
Authority
CN
China
Prior art keywords
doped
film type
thermode
type thermocouple
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610272878.XA
Other languages
English (en)
Other versions
CN105823569B (zh
Inventor
史鹏
任巍
刘丹
刘明
田边
蒋庄德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201610272878.XA priority Critical patent/CN105823569B/zh
Publication of CN105823569A publication Critical patent/CN105823569A/zh
Priority to US15/762,819 priority patent/US20180294395A1/en
Priority to PCT/CN2016/102463 priority patent/WO2017185675A1/zh
Application granted granted Critical
Publication of CN105823569B publication Critical patent/CN105823569B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/028Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples using microstructures, e.g. made of silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O

Abstract

本发明公开了一种掺杂铬酸镧薄膜型热电偶及其制备方法,目的在于,能够用于极端环境下的高温测量需求,所采用的技术方案为:一种掺杂铬酸镧薄膜型热电偶,包括设置在陶瓷基片上的两个热电极,两个热电极相互搭接,两个热电极的材料均采用铬酸镧薄膜,铬酸镧薄膜中掺杂有Mg、Ca、Sr、Ba、Co、Cu、Sm、Fe、Ni和V中的一种或几种掺杂元素,所述两个热电极采用的铬酸镧薄膜中掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素。

Description

一种掺杂铬酸镧薄膜型热电偶及其制备方法
技术领域
本发明涉及传感器制备技术及高温温度测量技术领域,具体涉及一种掺杂铬酸镧薄膜型热电偶及其制备方法。
背景技术
在航空发动机设计及验证实验中,为了验证发动机的燃烧效率以及冷却系统的设计,需要准确测试发动机涡轮叶片表面、燃烧室内壁等部位的温度。与传统的线形和块形热电偶相比,高温陶瓷型薄膜热电偶具有热容量小、体积小、响应速度快等特点,能够捕捉瞬时温度变化,同时薄膜热电偶可直接沉积在被测对象的表面,不破坏被测部件结构,而且对被测部件工作环境影响小。因此更适合用于表面瞬态温度测量。通过薄膜热电偶可准确了解热端部件表面温度分布状况,可以优化传热、冷却方案设计,进而保证发动机工作在最优工作状态、提高发动机效率,为新一代战斗机和民航客机的设计提供可靠依据。
目前对NiCr/NiSi薄膜热电偶的研究,已经相对成熟,但是其测试温度范围低,只适应与中低温度测试场合。在高温测试领域,通常采用铂、铑等贵金属为薄膜材料,但是由于其存在成本高、误差大、恶劣环境易氧化等问题。迫切需要研制一种耐高温、性能稳定的新型陶瓷薄膜热电偶。现有的研究中,薄膜型的ITO和In2O3材料有望成为高温测量的核心首选材料。但是进一步的研究发现,ITO系列薄膜热电偶由于在大于1000℃的高温区域会出现非常剧烈的热挥发,从而造成其高温测量的不稳定以及最高温度的限制。这一点严重制约着ITO薄膜在高温热流道等高温测量领域的应用。
LaCrO3作为一种典型的p型氧化物导电材料,具有熔点高(2400℃)和较好的导电能力,且在氧化和还原气氛中物理化学性质稳定等特点。通过掺杂不同价态的元素能够提高LaCrO3导电能力和高温稳定性,现在已被广泛应用于固体氧化物燃料电池(SOFC)的阳极和连接体材料。如果将两种不同导电特性的掺杂铬酸镧材料通过合理的组合,就有可能成为一种新的高温型薄膜热电偶。
发明内容
为了解决现有技术中的问题,本发明提出一种能够用于极端环境下的高温测量需求的掺杂铬酸镧薄膜型热电偶及其制备方法。
为了实现以上目的,本发明所采用的技术方案为:一种掺杂铬酸镧薄膜型热电偶,包括设置在陶瓷基片上的两个热电极,两个热电极相互搭接,两个热电极的材料均采用铬酸镧薄膜,铬酸镧薄膜中掺杂有Mg、Ca、Sr、Ba、Co、Cu、Sm、Fe、Ni和V中的一种或几种掺杂元素,所述两个热电极采用的铬酸镧薄膜中掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素。
所述铬酸镧薄膜中掺杂元素的含量为0-40%。
所述两个热电极沿陶瓷基片中心线呈镜像对称设置,两个热电极搭接形成U型结构或V型结构。
所述每个热电极的长度在8-30cm,宽度为0.2-1.55cm,厚度为0.3-20μm,两个热电极搭接重合区的长度为0.5-3cm。
所述陶瓷基片为氧化铝、莫来石或SiC的耐高温结构陶瓷。
一种掺杂铬酸镧薄膜型热电偶的制备方法,包括以下步骤:选择掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素的两个热电极材料,采用磁控溅射、丝网印刷、脉冲激光沉积或者化学溶液法,在陶瓷基片上沉积成薄膜型热电极,再经过高温热处理,即得到掺杂铬酸镧薄膜型热电偶。
所述高温热处理温度为600-1200℃。
与现有技术相比,本发明的热电偶利用铬酸镧薄膜材料掺杂改性后所表现出来的优异的高塞贝克系数特性,采用两种不同导电特性的薄膜构成薄膜型热电偶,用于高温氧化气氛中的温度测量,能够在1200℃-1600℃高温下长期稳定工作,本发明的热电偶具有输出电压较高,从而在校准使用时灵敏度较高。本发明采用新型陶瓷热电偶材料,相比普通K型热电偶,具有测温范围更广,而且能够适应氧化和酸碱环境的优点;相比其他类型耐高温热电偶材料如铂铑等,在相同的温度测试范围内,其热电偶成本低;相比于传统ITO等陶瓷薄膜热电偶具有更高的使用温度和更长的高温服役时间,且适用于在航天航空等领域的极端环境温度测试。
与现有技术相比,本发明的方法选择掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素的两个热电极材料,通过磁控溅射、丝网印刷、脉冲激光沉积或者化学溶液法,在高温陶瓷基片上沉积制备出掺杂铬酸镧氧化物薄膜,再经过高温热处理最终获得能在高温下稳定输出信号的薄膜型热电偶,用于极端环境下的高温测量需求,制备方法过程简单可靠,制得的热电偶能够在1200℃-1600℃高温下长期稳定工作,相比普通K型热电偶,具有测温范围更广,而且能够适应氧化和酸碱环境的优点;相比其他类型耐高温热电偶材料如铂铑等,在相同的温度测试范围内,其热电偶成本低;相比于传统ITO等陶瓷薄膜热电偶具有更高的使用温度和更长的高温服役时间,且适用于在航天航空等领域的极端环境温度测试。
附图说明
图1为实施例1的U型结构La0.8Sr0.2CrO3-LaCrO3厚膜热电偶结构示意图,其中1-La0.8Sr0.2CrO3热偶电极材料,2-LaCrO3热偶电极材料,3-氧化铝陶瓷基板、4-电极;
图2为实施例1丝网印刷用La0.8Sr0.2CrO3和LaCrO3粉体的XRD结果图;
图3a为实施例1丝网印刷用La0.8Sr0.2CrO3的粉体SEM图,图3b为LaCrO3的粉体SEM图;
图4为实施例1丝网印刷工艺制备得到的La0.8Sr0.2CrO3-LaCrO3厚膜热电偶的时间-温度-电压曲线。
具体实施方式
下面结合具体实施例对本发明作进一步的解释说明。
本发明的热电偶选取两种不同掺杂的铬酸镧薄膜作为薄膜热电偶的两组热电极材料,可以是同一元素掺杂,但是含量不同;也可以是不同组份元素的单一掺杂和共掺杂,掺杂元素主要为Mg、Ca、Sr、Ba、Co、Cu、Sm、Fe、Ni、V等;然后按照设计好的掺杂组份,采用磁控溅射、丝网印刷或者化学旋涂工艺,在高温陶瓷基片上沉积制备可用于高温温度测量的氧化物薄膜热电偶,并采用图形化技术组成具有热电偶结构特征的器件结构,热电偶的图形化可以为V型或者U型,两个热电极之间通过部分重叠区域构成薄膜热电偶的热端重合区,重合区的长度为0.5-3cm之间,薄膜热电偶中热电极的厚度在0.3-20微米范围内,热电极的长度在8-30cm之间,每个热电极的宽度为0.2-1.55cm;最后,将制备得到的薄膜热电偶在600-1200℃高温热处理1-3小时,提高薄膜的致密度;最终获得能够在高温氧化气氛下稳定工作的氧化物薄膜型热电偶。
按照化学计量法,各种元素掺杂后形成的化学式为:
Mg部分取代Cr:LaCr1-xMgxO3
Ca部分取代La:La1-xCaxCrO3
Sr部分取代La:La1-xSrxCrO3
Ba部分取代La:La1-xBaxCrO3
Fe部分取代Cr:LaCr1-xFexO3
Sm部分取代La:La1-xSmxCrO3
Cu部分取代Cr:LaCr1-xCuxO3
Co部分取代Cr:LaCr1-xCoxO3
Ni部分取代Cr:LaCr1-xNixO3
本发明的原理:塞贝克(Seebeck)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。而塞贝克系数S是基于温度的材质特性,知道一个材质的塞贝克系数S(T),从公式转化即可得知两个热电极间的电压差,从而可以间接得到冷热段的温度差。
Δ V = ∫ T 1 T 2 S d T
从上面公式可以看出,随着温度的上升,费米分布函数中的能量也快速攀升,所以受热端的每电子平均能量较高,相应的,受热端的电子不断向冷段发散,直到形成一个电压差阻止其进一步发散。进一步通过数理推导可以得出赛贝克系数的表达式为:其中,EFO为0K时的费米能。从公式可以看出,塞贝克系数与材料本身的费米能有关,也和实际绝对温度值有关。那么,对于两组热电极材料,如果冷热端温度确定,它们之间的温差和电压差就是固定的。这正是作为高温型热电偶所必须的基本要求。同样,当两个热电极材料的赛贝克系数不一致时就会在两个热电极的冷锻形成可以感知的热电势差值。
LaCrO3作为一种典型的p型氧化物导电材料,具有熔点高(2400℃)、导电能力好,且在氧化和还原气氛中物理化学性质稳定等特点。通过不同的掺杂能够提高LaCrO3导电能力和高温稳定性,由于掺杂后载流子散射机制变化而导致电学性能改变,材料的费米能级和本征赛贝克系数均发生改变。因此,我们选用两种不同掺杂的铬酸镧薄膜作为薄膜热电偶的两组热电极材料,就能够构成能够在高温下稳定工作的薄膜型热电偶。
实施例1
选用的La0.8Sr0.2CrO3和LaCrO3粉体作为热电偶电极材料,采用丝网印刷工艺在厚度为1mm的氧化铝陶瓷基板3上沉积厚膜电极,用于丝网印刷的陶瓷浆料分别由La0.8Sr0.2CrO3和LaCrO3的粉体其粒度均为200nm左右,采用乙基纤维素和松油醇1:2的混合溶液作为有机溶剂,将陶瓷粉体按照1:1的比例加入到有机物中并进行强力搅拌混合,作为用于丝网印刷的陶瓷浆料。为了获得良好的图形化,选取热电极长度为12cm,宽度为0.8cm的U型结构掩模板进行厚膜电极的丝网印刷制备,所用网版为200目。先在基板上印刷ITO厚膜,然后再印刷氧化铟厚膜,两种厚膜材料都沉积结束以后,将厚膜样品在马弗炉中700℃热处理1小时,升温速度保持在5℃/min,最终制备出厚膜厚度为50微米的具有U型结构的La0.8Sr0.2CrO3-LaCrO3厚膜型热电偶。图1为U型结构La0.8Sr0.2CrO3-LaCrO3薄膜热电偶结构示意图,La0.8Sr0.2CrO3热偶电极材料1和LaCrO3热偶电极材料2搭接形成U型结构热电偶,热电偶两端连接电极4,图2丝网印刷用La0.8Sr0.2CrO3和LaCrO3粉体XRD结果,图3丝网印刷用La0.8Sr0.2CrO3和LaCrO3的SEM图,图4丝网印刷工艺制备得到的该结构的厚膜热电偶的时间-温度-电压曲线,表明该氧化物厚膜热电偶能够在1270℃下稳定工作。
实施例2
选用的La0.9Sr0.1CrO3和LaCrO3粉体作为热电偶电极材料,采用丝网印刷工艺在厚度为3mm的氧化铝陶瓷基板上沉积厚膜电极,用于丝网印刷的陶瓷浆料分别由La0.9Sr0.1CrO3和LaCrO3的粉体其粒度均为100nm左右,采用乙基纤维素和松油醇1:2的混合溶液作为有机溶剂,将陶瓷粉体按照2:3的比例加入到有机物中并进行强力搅拌混合,作为用于丝网印刷的陶瓷浆料。为了获得良好的图形化,选取热电极长度为25cm,宽度为1.5cm的U型结构掩模板进行厚膜电极的丝网印刷制备。先在基板上印刷LaCrO3厚膜,然后再印刷La0.9Sr0.1CrO3厚膜,两种厚膜材料都沉积结束以后,将厚膜样品在马弗炉中1200℃热处理5小时,升温速度保持在3℃/min,最终制备出厚膜厚度为40微米的具有U型结构的La0.9Sr0.1CrO3-LaCrO3厚膜型热电偶。
实施例3
选用的La0.8Sr0.2CrO3和La0.9Sr0.1CrO3粉体作为热电偶电极材料,采用丝网印刷工艺在厚度为10mm的氧化铝陶瓷基板上沉积厚膜电极,用于丝网印刷的陶瓷浆料分别由La0.8Sr0.2CrO3和La0.9Sr0.1CrO3的粉体其粒度均为200nm左右,采用乙基纤维素和松油醇1:2的混合溶液作为有机溶剂,将陶瓷粉体按照1:1的比例加入到有机物中并进行强力搅拌混合,作为用于丝网印刷的陶瓷浆料。为了获得良好的图形化,选取热电极长度为20cm,宽度为1.0cm的U型结构掩模板进行厚膜电极的丝网印刷制备,所用网版为200目。先在基板上印刷ITO厚膜,然后再印刷氧化铟厚膜,两种厚膜材料都沉积结束以后,将厚膜样品在马弗炉中700℃热处理3小时,升温速度保持在5℃/min,最终制备出厚膜厚度为50微米的具有U型结构的La0.8Sr0.2CrO3-La0.9Sr0.1CrO3厚膜型热电偶。
实施实例4
选取Ca元素不同掺杂量的铬酸镧薄膜作为薄膜热电偶的两组热电极材料,掺杂浓度分别为10%、30%,分别记作LCC1和LCC3,采用磁控溅射技术在厚度为2mm的99氧化铝基片上进行薄膜的沉积和制备。首先,合成出与设计组份完全相同的氧化物陶瓷靶材用于薄膜的溅射。通过调整溅射工艺中的溅射气压(5Pa)、氧氩比(1:6)和溅射功率(120w),溅射8小时获得厚度为5微米、热电极的长度为20cm,热电极的宽度为0.6cm,具有U型结构的LCC1-LCC3薄膜型热电偶,两个热电极之间热端重合区长度为1.5cm。最后,将制备得到的薄膜热电偶在800℃热处理3小时,最终获得能够在高温氧化气氛下稳定工作的氧化物薄膜型热电偶。
实施实例5
选取Sr、Ca两种不同元素掺杂的铬酸镧薄膜作为薄膜热电偶的两组热电极材料,掺杂浓度分别为40%和10%,分别记作LSC4和LCC1,采用化学溶液沉积技术进行薄膜的沉积和制备。首先,分别合成出符合化学计量比的掺Sr和掺Ca的钛酸锶溶胶前驱体溶液(溶液浓度为0.4mol/L),采用旋涂工艺进行薄膜的制备。先旋涂制备LSC4薄膜,然后再制备LCC1薄膜。设定薄膜的旋涂转速为2500rpm,每次旋涂得到的湿膜先后在400℃干燥5分钟、650℃热处理10分钟后再重复进行旋涂沉积,每个热电极均重复15次,获得厚度为1微米、热电极的长度为20cm,热电极的宽度为0.3cm,具有U型结构的LSC4-LCC1薄膜型热电偶,两个热电极之间热端重合区长度为1.2cm。最后,将制备得到的薄膜热电偶在900℃热处理4小时,最终获得能够在高温氧化气氛下稳定工作的氧化物薄膜型热电偶。
实施实例6
选取Sr、Ni元素不同共掺杂量的铬酸镧薄膜作为薄膜热电偶的两组热电极材料,掺杂浓度分别为10%、20%和10%、40%,分别记作LSCN2和LSCN4,采用磁控溅射技术在厚度为2mm的99氧化铝基片上进行薄膜的沉积和制备。首先,合成出与设计组份完全相同的氧化物陶瓷靶材用于薄膜的溅射。通过调整溅射工艺中的溅射气压(5Pa)、氧氩比(1:6)和溅射功率(120w),溅射8小时获得厚度为5微米、热电极的长度为20cm,热电极的宽度为0.6cm,具有U型结构的LSCN2-LSCN4薄膜型热电偶,两个热电极之间热端重合区长度为1.5cm。最后,将制备得到的薄膜热电偶在800℃热处理3小时,最终获得能够在高温氧化气氛下稳定工作的氧化物薄膜型热电偶。

Claims (7)

1.一种掺杂铬酸镧薄膜型热电偶,其特征在于,包括设置在陶瓷基片上的两个热电极,两个热电极相互搭接,两个热电极的材料均采用铬酸镧薄膜,铬酸镧薄膜中掺杂有Mg、Ca、Sr、Ba、Co、Cu、Sm、Fe、Ni和V中的一种或几种掺杂元素,所述两个热电极采用的铬酸镧薄膜中掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素。
2.根据权利要求1所述的一种掺杂铬酸镧薄膜型热电偶,其特征在于,所述铬酸镧薄膜中掺杂元素的含量为0-40%。
3.根据权利要求1所述的一种掺杂铬酸镧薄膜型热电偶,其特征在于,所述两个热电极沿陶瓷基片中心线呈镜像对称设置,两个热电极搭接形成U型结构或V型结构。
4.根据权利要求3所述的一种掺杂铬酸镧薄膜型热电偶,其特征在于,所述每个热电极的长度在8-30cm,宽度为0.2-1.55cm,厚度为0.3-20μm,两个热电极搭接重合区的长度为0.5-3cm。
5.根据权利要求1所述的一种掺杂铬酸镧薄膜型热电偶,其特征在于,所述陶瓷基片为氧化铝、莫来石或SiC的耐高温结构陶瓷。
6.如权利要求1-5任一项所述的一种掺杂铬酸镧薄膜型热电偶的制备方法,其特征在于,包括以下步骤:选择掺杂有不同种掺杂元素,或者掺杂有含量不同的同种掺杂元素的两个热电极材料,采用磁控溅射、丝网印刷、脉冲激光沉积或者化学溶液法,在陶瓷基片上沉积成薄膜型热电极,再经过高温热处理,即得到掺杂铬酸镧薄膜型热电偶。
7.根据权利要求6所述的一种掺杂铬酸镧薄膜型热电偶的制备方法,其特征在于,所述高温热处理温度为600-1200℃。
CN201610272878.XA 2016-04-27 2016-04-27 一种掺杂铬酸镧薄膜型热电偶及其制备方法 Expired - Fee Related CN105823569B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610272878.XA CN105823569B (zh) 2016-04-27 2016-04-27 一种掺杂铬酸镧薄膜型热电偶及其制备方法
US15/762,819 US20180294395A1 (en) 2016-04-27 2016-10-18 Doped lanthanum chromate thin-film thermocouple and preparation method thereof
PCT/CN2016/102463 WO2017185675A1 (zh) 2016-04-27 2016-10-18 一种掺杂铬酸镧薄膜型热电偶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610272878.XA CN105823569B (zh) 2016-04-27 2016-04-27 一种掺杂铬酸镧薄膜型热电偶及其制备方法

Publications (2)

Publication Number Publication Date
CN105823569A true CN105823569A (zh) 2016-08-03
CN105823569B CN105823569B (zh) 2018-10-30

Family

ID=56527706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610272878.XA Expired - Fee Related CN105823569B (zh) 2016-04-27 2016-04-27 一种掺杂铬酸镧薄膜型热电偶及其制备方法

Country Status (3)

Country Link
US (1) US20180294395A1 (zh)
CN (1) CN105823569B (zh)
WO (1) WO2017185675A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679838A (zh) * 2016-12-27 2017-05-17 西安交通大学 一种具有超大输出电压的薄膜型热电偶及其制备方法
WO2017185675A1 (zh) * 2016-04-27 2017-11-02 西安交通大学 一种掺杂铬酸镧薄膜型热电偶及其制备方法
CN109378381A (zh) * 2018-10-19 2019-02-22 包头稀土研究院 高温热电单元及其制造方法
CN110319945A (zh) * 2019-06-20 2019-10-11 西安交通大学 一种耐高温高灵敏柔性碳化硅基温度传感器及制作方法
CN112194507A (zh) * 2020-09-21 2021-01-08 江苏大学 一种抗高温热震、宽光谱高吸收的光热涂层及其制备方法
WO2021237602A1 (zh) * 2020-05-28 2021-12-02 南昌欧菲显示科技有限公司 薄膜式热电偶、温度传感器及智能穿戴设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729580B (zh) * 2020-12-23 2023-04-28 西安交通大学 一种柔性温度传感器及其制备方法
CN113174568B (zh) * 2021-04-20 2022-11-22 中国航发北京航空材料研究院 制备晶面择优取向氧化铟锡-氧化铟薄膜热电偶的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157960A1 (en) * 2003-11-07 2007-07-12 Nat'l Institute Of Advanced Industrial Science & T Composite oxide having n-type thermoelectric conversion property
CN101452762A (zh) * 2008-09-18 2009-06-10 天津市天发重型水电设备制造有限公司 一种磁极线圈编绕成型方法
CN104769401A (zh) * 2012-11-12 2015-07-08 埃普科斯股份有限公司 温度计和用于加工温度计的方法
DE102014110065A1 (de) * 2014-07-17 2016-01-21 Epcos Ag Material für ein thermoelektrisches Element und Verfahren zur Herstellung eines Materials für ein thermoelektrisches Element
CN105444911A (zh) * 2015-11-12 2016-03-30 西安交通大学 一种掺杂钛酸锶薄膜型热电偶

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326392A (ja) * 2000-05-17 2001-11-22 Unitika Ltd 高温用p型熱電素子材料
EP1211508A3 (en) * 2000-11-27 2004-10-27 Kabushiki Kaisha Riken Gas sensing and oxygen pumping device
CN1126186C (zh) * 2001-07-06 2003-10-29 清华大学 高温热源-氧浓差电池堆联合发电装置
EP1737053B1 (en) * 2004-03-25 2012-02-29 National Institute of Advanced Industrial Science and Technology Thermoelectric conversion element and thermoelectric conversion module
CN101281065B (zh) * 2007-04-06 2010-12-08 洛阳市西格马仪器制造有限公司 氧化锆温度传感器
JP4828635B2 (ja) * 2007-07-25 2011-11-30 京セラ株式会社 熱電素子、熱電モジュール及び熱電素子の製造方法
CN103017922A (zh) * 2011-09-26 2013-04-03 中国电子科技集团公司第四十八研究所 一种快速响应薄膜热电偶温度传感器及其制造方法
CN103900728B (zh) * 2014-04-23 2017-06-06 大连交通大学 一种陶瓷薄膜热电偶及其制备方法
CN105300544B (zh) * 2015-11-12 2018-11-23 西安交通大学 一种氧化物薄膜型热电偶及其制备方法
CN105823569B (zh) * 2016-04-27 2018-10-30 西安交通大学 一种掺杂铬酸镧薄膜型热电偶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157960A1 (en) * 2003-11-07 2007-07-12 Nat'l Institute Of Advanced Industrial Science & T Composite oxide having n-type thermoelectric conversion property
CN101452762A (zh) * 2008-09-18 2009-06-10 天津市天发重型水电设备制造有限公司 一种磁极线圈编绕成型方法
CN104769401A (zh) * 2012-11-12 2015-07-08 埃普科斯股份有限公司 温度计和用于加工温度计的方法
DE102014110065A1 (de) * 2014-07-17 2016-01-21 Epcos Ag Material für ein thermoelektrisches Element und Verfahren zur Herstellung eines Materials für ein thermoelektrisches Element
CN105444911A (zh) * 2015-11-12 2016-03-30 西安交通大学 一种掺杂钛酸锶薄膜型热电偶

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KISHORI DESHPANDE 等: "Aqueous Combustion Synthesis of Strontium-Doped Lanthanum Chromite Ceramics", 《J. AM. CERAM. SOC.》 *
SHIGEAKI ONO: "Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions:Implications for water transport in subduction zones", 《JOURNAL OF GEOPHYSICAL RESEARCH》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017185675A1 (zh) * 2016-04-27 2017-11-02 西安交通大学 一种掺杂铬酸镧薄膜型热电偶及其制备方法
CN106679838A (zh) * 2016-12-27 2017-05-17 西安交通大学 一种具有超大输出电压的薄膜型热电偶及其制备方法
CN106679838B (zh) * 2016-12-27 2020-04-28 西安交通大学 一种具有超大输出电压的薄膜型热电偶及其制备方法
CN109378381A (zh) * 2018-10-19 2019-02-22 包头稀土研究院 高温热电单元及其制造方法
CN110319945A (zh) * 2019-06-20 2019-10-11 西安交通大学 一种耐高温高灵敏柔性碳化硅基温度传感器及制作方法
WO2021237602A1 (zh) * 2020-05-28 2021-12-02 南昌欧菲显示科技有限公司 薄膜式热电偶、温度传感器及智能穿戴设备
CN112194507A (zh) * 2020-09-21 2021-01-08 江苏大学 一种抗高温热震、宽光谱高吸收的光热涂层及其制备方法
CN112194507B (zh) * 2020-09-21 2022-02-15 江苏大学 一种抗高温热震、宽光谱高吸收的光热涂层及其制备方法
WO2022056967A1 (zh) * 2020-09-21 2022-03-24 江苏大学 一种抗高温热震、宽光谱高吸收的光热涂层及其制备方法

Also Published As

Publication number Publication date
CN105823569B (zh) 2018-10-30
WO2017185675A1 (zh) 2017-11-02
US20180294395A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
CN105823569A (zh) 一种掺杂铬酸镧薄膜型热电偶及其制备方法
EP2529085B1 (en) Turbine component instrumented to provide thermal measurements
Xu et al. Cu doped Mn–Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications
CN102112854A (zh) 用于燃气涡轮机环境的热电偶
CN101882490B (zh) 一种稀土氧化物掺杂负温度系数热敏电阻材料
CN110903087B (zh) 一种低b高阻型宽温区高温热敏电阻材料及其制备方法和应用
CN103011811B (zh) 一种高温负温度系数热敏电阻材料的制备方法
CN105300544B (zh) 一种氧化物薄膜型热电偶及其制备方法
CN111579126B (zh) 一种高温热流传感器
CN105444911A (zh) 一种掺杂钛酸锶薄膜型热电偶
CN110042355A (zh) 一种具有一维纳米阵列结构的薄膜热电偶及其制造方法
Aleksić et al. Recent advances in NTC thick film thermistor properties and applications
Liu et al. A new kind of thermocouple made of p-type and n-type semi-conductive oxides with giant thermoelectric voltage for high temperature sensing
Li et al. Fast response and high stability Mn–Co–Ni–Al–O NTC microbeads thermistors
CN105294074B (zh) 一种采用丝网印刷工艺制备氧化物薄膜型热电偶的方法
US20050236271A1 (en) Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
CN106679838B (zh) 一种具有超大输出电压的薄膜型热电偶及其制备方法
Liu et al. Fabrication and characterization of La0. 8Sr0. 2CrO3/In2O3 thin film thermocouple for high temperature sensing
Liu et al. Investigation on thermoelectric properties of screen-printed La1-xSrxCrO3-In2O3 thermocouples for high temperature sensing
Liu et al. High temperature protection performance of sandwich structure Al2O3/Si3N4/YAlO multilayer films for Pt–Pt10% Rh thin film thermocouples
Niu et al. Design and performance evaluation of an all-ceramic high-temperature test sensor
Zhang et al. Simulation, fabrication, and characteristics of high-temperature, quick-response tungsten–rhenium thin-film thermocouples probe sensor
Liu et al. Facile high‐performance film thermocouple made of strontium lanthanum chromate for temperature sensing in air
CN115628820A (zh) 一种聚合物前驱体陶瓷薄膜热电偶及其制作方法
WO2023184886A1 (zh) 一种全陶瓷发热体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181030

Termination date: 20210427

CF01 Termination of patent right due to non-payment of annual fee