CN105819003A - 一种自抗扰的超静飞轮及其应用方法 - Google Patents

一种自抗扰的超静飞轮及其应用方法 Download PDF

Info

Publication number
CN105819003A
CN105819003A CN201610195219.0A CN201610195219A CN105819003A CN 105819003 A CN105819003 A CN 105819003A CN 201610195219 A CN201610195219 A CN 201610195219A CN 105819003 A CN105819003 A CN 105819003A
Authority
CN
China
Prior art keywords
flywheel
platform
disturbance rejection
mounting plate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610195219.0A
Other languages
English (en)
Inventor
刘磊
李青
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610195219.0A priority Critical patent/CN105819003A/zh
Publication of CN105819003A publication Critical patent/CN105819003A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/285Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using momentum wheels

Abstract

本发明涉及一种自抗扰的超静飞轮,包括飞轮和主动控制平台:主动控制平台,包括上平台、下平台和若干并联的支腿,上平台、下平台通过并联支腿活动连接在一起,通过控制并联支腿的伸长控制上、下平台的相对位置;飞轮,通过飞轮安装轴安装在主动控制平台的上平台上,其绕轴线旋转以提供航天器的姿态控制力矩。本发明还公开了一种自抗扰的超静飞轮的应用方法。本发明的优点体现在:采用活动连接的主动控制平台,并将飞轮安装在其上,可以快速反应并精确补偿飞轮的高频干扰力矩,从而输出高精度控制力矩,且控制简单。

Description

一种自抗扰的超静飞轮及其应用方法
技术领域
本发明涉及一种航天技术领域,具体涉及一种自抗扰的超静飞轮及其应用方法。
背景技术
飞轮系统是在航天器上得到广泛应用的姿态控制系统,其通过动量矩定理为航天器提供姿态控制力矩。实际中的飞轮系统由于其动不平衡特性,会产生高频干扰力矩从而诱发航天器微振动,对航天器的高精度姿态控制产生严重影响。
发明内容
本发明的目的是针对现有技术中的不足,提供一种自抗扰的超静飞轮及其应用方法,该方案能够补偿掉飞轮的高频干扰力矩,从而输出高精度控制力矩。
为实现上述目的,本发明公开了如下技术方案:
一种自抗扰的超静飞轮,包括飞轮和主动控制平台:
主动控制平台,包括上平台、下平台和若干并联的支腿,上平台、下平台通过并联支腿活动连接在一起,通过控制并联支腿的伸长控制上、下平台的相对位置;
飞轮,通过飞轮安装轴安装在主动控制平台的上平台上,其绕轴线旋转以提供航天器的姿态控制力矩。
进一步的,所述并联支腿为压电驱动杆。
进一步的,所述支腿数量为四个。
进一步的,所述支腿通过铰链与上平台和下平台连接。
本发明还公开了一种自抗扰的超静飞轮的应用方法,沿着航天器三方向惯量主轴各安装一个自抗扰超静飞轮,以分别提供绕XYZ轴的三方向控制力矩;当飞轮安装在上平台时,上平台位置发生微小倾斜,根据动量矩定理飞轮会产生一个陀螺力矩,该力矩的大小可以通过控制上、下平台相对位置,即飞轮倾斜程度来调整,用以补偿飞轮的干扰力矩。
进一步的,沿X轴安装的飞轮,其工作时会产生绕Y、Z轴的干扰力矩,其估计值表示如下:
Tdy=μx·Ωx 2cos(Ωxt)
Tdz=μx·Ωx 2sin(Ωxt)
其中,μx为X轴安装飞轮的动不平衡因子,Ωx为飞轮的转动角速度,t为飞轮工作时间,同理,Y、Z轴的安装飞轮也会在和安装轴正交的两个轴上产生类似的干扰力矩。
进一步的,为了控制简单,主动控制平台在补偿时只使每个飞轮输出单一方向的补偿力矩,让X方向安装的飞轮补偿Y方向干扰力矩,Y方向飞轮补偿Z方向干扰力矩,Z方向飞轮补偿X方向干扰力矩。
本发明公开的一种自抗扰的超静飞轮及其应用方法,具有以下有益效果:
采用活动连接的主动控制平台,并将飞轮安装在其上,可以快速反应并精确补偿飞轮的高频干扰力矩,从而输出高精度控制力矩,且控制简单。
附图说明
图1是自抗扰超静飞轮示意图;
图2是主动控制平台结构图;
图3是飞轮系统安装方位示意图;
图4是飞轮补偿力矩产生原理图。
附图标记说明:
1.飞轮安装轴,2.飞轮,3.主动控制平台,4.上平台,5.下平台铰点,6.支腿,7.下平台,8.下平台铰点。
具体实施方式
下面结合实施例并参照附图对本发明作进一步描述。
请参见图1、图2。
本发明公开的一种自抗扰的超静飞轮,包括飞轮2和主动控制平台3:
主动控制平台3,包括上平台4、下平台5和若干并联的支腿6,上平台4、下平台5通过并联支腿6活动连接在一起,通过控制并联支腿6的伸长控制上、下平台的相对位置;其中,上平台4用以安装飞轮2,下平台5和航天器固连。
飞轮2,通过飞轮安装轴1安装在主动控制平台3的上平台4上,其绕轴线旋转以提供航天器的姿态控制力矩。
本实施例中,所述并联支腿6为压电驱动杆,压电驱动杆具有动态响应频率高,精度高的优点。
本实施例中,为保证飞轮控制的精确性,所述支腿6数量为四个。
本实施例中,所述支腿6通过铰链与上平台和下平台连接。
请参见图3。本发明还公开了一种自抗扰的超静飞轮的应用方法,沿着航天器三方向惯量主轴各安装一个自抗扰超静飞轮,以分别提供绕XYZ轴的三方向控制力矩;
当飞轮2安装在上平台4时,上平台4位置发生微小倾斜,根据动量矩定理飞轮会产生一个陀螺力矩,该力矩的大小可以通过控制上、下平台相对位置,即飞轮倾斜程度来调整,用以补偿飞轮的干扰力矩。
由于实际中飞轮自身的动不平衡特性,其在旋转工作时除了输出绕安装轴的控制力矩外,还会在另外两个方向产生高频干扰力矩。以沿X轴安装的飞轮为例,沿X轴安装的飞轮,其工作时会产生绕Y、Z轴的干扰力矩,其估计值表示如下:
Tdy=μx·Ωx 2cos(Ωxt)
Tdz=μx·Ωx 2sin(Ωxt)
其中,μx为X轴安装飞轮的动不平衡因子,Ωx为飞轮的转动角速度,t为飞轮工作时间,同理,Y、Z轴的安装飞轮也会在和安装轴正交的两个轴上产生类似的干扰力矩。这就是飞轮的高频干扰力矩的由来,其诱发的微振动会严重影响航天器的高精度姿态控制。
下面以沿航天器Y方向主轴安装的飞轮为实施例说明补偿力矩产生的基本原理。Y方向安装飞轮如图4所示,图中O’-X’Y’Z’坐标系和航天器惯量主轴坐标系O-XYZ平行。飞轮转速为Ωy,转动惯量为Jy,此时飞轮动量矩大小为Jy·Ωy,方向沿Y轴(由于飞轮的输出力矩在O’-X’Y’Z’和O-XYZ中是等效的,在之后的描述中为简单起见不区分两个坐标系)。此时,若将飞轮沿X轴转动一个微小角度δ,从图4可以看出,飞轮将在Z方向上产生一个动量矩分量,其大小为Jy·Ωy·sinδ≈Jy·Ωy·δ。根据动量矩定理,飞轮Z方向上将产生一个力矩,其大小为其中是飞轮绕X轴转动的角速度。如此产生的力矩就是补偿力矩,可以用来补偿Z方向的干扰力矩。同理,若将Y方向安装飞轮绕Z轴转动微小角度,在X方向上也会产生类似的力矩。这就是补偿力矩产生的基本原理。同样地,对于X向安装的飞轮,可以产生绕Y轴和Z轴的补偿力矩,对于Z向安装的飞轮,可以产生绕X轴和Y轴的补偿力矩。
图3所示飞轮系统输出的干扰力矩是三方向飞轮各自产生的干扰力矩的合力矩,其共有三个分量,分别绕航天器的三个主轴。主动控制平台可以调整飞轮的姿态使其输出陀螺力矩从而对干扰力矩进行补偿。图3所示飞轮系统的每个飞轮理论上可以提供两个方向的补偿力矩,但为了控制简单,主动控制平台在补偿时只使每个飞轮输出单一方向的补偿力矩,让X方向安装的飞轮补偿Y方向干扰力矩,Y方向飞轮补偿Z方向干扰力矩,Z方向飞轮补偿X方向干扰力矩。这样,在测得飞轮系统的干扰力矩大小后,每个飞轮的主动控制平台可根据所需补偿力矩的大小计算出需要的支腿伸长量,然后通过支腿伸长使得上平台的姿态发生倾斜,由于飞轮和上平台固连,飞轮将随着上平台同时倾斜并输出相应的陀螺力矩来补偿干扰力矩。飞轮的干扰力矩是高频力矩,主动控制平台的支腿是压电驱动杆,压电驱动杆动态响应频率高、精度高,可以快速反应并精确补偿飞轮的高频干扰力矩。
本发明通过上述方法在飞轮产生干扰力矩时,主动控制平台能够对飞轮的干扰力矩进行补偿,通过控制上平台姿态使飞轮发生倾斜,利用动量矩定理使飞轮产生补偿力矩来抵消干扰力矩。
以上所述仅是本发明的优选实施方式,而非对其限制;应当指出,尽管参照上述各实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,其依然可以对上述各实施例所记载的技术方案进行修改,或对其中部分或者全部技术特征进行等同替换;而这些修改和替换,并不使相应的技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种自抗扰的超静飞轮,其特征在于,包括飞轮和主动控制平台:
主动控制平台,包括上平台、下平台和若干并联的支腿,上平台、下平台通过并联支腿活动连接在一起,通过控制并联支腿的伸长控制上、下平台的相对位置;
飞轮,通过飞轮安装轴安装在主动控制平台的上平台上,其绕轴线旋转以提供航天器的姿态控制力矩。
2.根据权利要求1所述的一种自抗扰的超静飞轮,其特征在于,所述并联支腿为压电驱动杆。
3.根据权利要求1所述的一种自抗扰的超静飞轮,其特征在于,所述支腿数量为四个。
4.根据权利要求1所述的一种自抗扰的超静飞轮,其特征在于,所述支腿通过铰链与上平台和下平台连接。
5.一种如权利要求1-4所述的自抗扰的超静飞轮的应用方法,其特征在于,沿着航天器三方向惯量主轴各安装一个自抗扰超静飞轮,以分别提供绕XYZ轴的三方向控制力矩;当飞轮安装在上平台时,上平台位置发生微小倾斜,根据动量矩定理飞轮会产生一个陀螺力矩,该力矩的大小可以通过控制上、下平台相对位置,即飞轮倾斜程度来调整,用以补偿飞轮的干扰力矩。
6.根据权利要求5所述的一种自抗扰的超静飞轮的应用方法,其特征在于,沿X轴安装的飞轮,其工作时会产生绕Y、Z轴的干扰力矩,其估计值表示如下:
Tdy=μx·Ωx 2cos(Ωxt)
Tdz=μx·Ωx 2sin(Ωxt)
其中,μx为X轴安装飞轮的动不平衡因子,Ωx为飞轮的转动角速度,t为飞轮工作时间,同理,Y、Z轴的安装飞轮也会在和安装轴正交的两个轴上产生类似的干扰力矩。
7.根据权利要求5所述的一种自抗扰的超静飞轮的应用方法,其特征在于,为了控制简单,主动控制平台在补偿时只使每个飞轮输出单一方向的补偿力矩,让X方向安装的飞轮补偿Y方向干扰力矩,Y方向飞轮补偿Z方向干扰力矩,Z方向飞轮补偿X方向干扰力矩。
CN201610195219.0A 2016-03-31 2016-03-31 一种自抗扰的超静飞轮及其应用方法 Pending CN105819003A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610195219.0A CN105819003A (zh) 2016-03-31 2016-03-31 一种自抗扰的超静飞轮及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610195219.0A CN105819003A (zh) 2016-03-31 2016-03-31 一种自抗扰的超静飞轮及其应用方法

Publications (1)

Publication Number Publication Date
CN105819003A true CN105819003A (zh) 2016-08-03

Family

ID=56525419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610195219.0A Pending CN105819003A (zh) 2016-03-31 2016-03-31 一种自抗扰的超静飞轮及其应用方法

Country Status (1)

Country Link
CN (1) CN105819003A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112278255A (zh) * 2020-10-29 2021-01-29 西北工业大学 一种用飞轮进行姿态控制的无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305981A (en) * 1991-10-31 1994-04-26 Honeywell Inc. Multiaxis vibration isolation system
US5626332A (en) * 1994-07-29 1997-05-06 Harris Corporation Vibration isolation system using plural signals for control
CN102141110A (zh) * 2011-01-24 2011-08-03 北京航空航天大学 一种液压振动主动隔离平台
CN102155516A (zh) * 2011-01-24 2011-08-17 北京航空航天大学 一种八杆冗余构型六自由度振动主动控制装置
CN102923318A (zh) * 2012-11-26 2013-02-13 上海宇航系统工程研究所 异体同构、刚度阻尼闭环反馈控制的弱撞击式对接系统
CN103587724A (zh) * 2013-09-24 2014-02-19 南京航空航天大学 一种基于Stewart并联机构的六自由度隔振平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305981A (en) * 1991-10-31 1994-04-26 Honeywell Inc. Multiaxis vibration isolation system
US5626332A (en) * 1994-07-29 1997-05-06 Harris Corporation Vibration isolation system using plural signals for control
CN102141110A (zh) * 2011-01-24 2011-08-03 北京航空航天大学 一种液压振动主动隔离平台
CN102155516A (zh) * 2011-01-24 2011-08-17 北京航空航天大学 一种八杆冗余构型六自由度振动主动控制装置
CN102923318A (zh) * 2012-11-26 2013-02-13 上海宇航系统工程研究所 异体同构、刚度阻尼闭环反馈控制的弱撞击式对接系统
CN103587724A (zh) * 2013-09-24 2014-02-19 南京航空航天大学 一种基于Stewart并联机构的六自由度隔振平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李静: "柔性航天器姿控执行机构微振动集中隔离与分散隔离对比研究", 《航天器环境工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112278255A (zh) * 2020-10-29 2021-01-29 西北工业大学 一种用飞轮进行姿态控制的无人机

Similar Documents

Publication Publication Date Title
CN106886152B (zh) 一种基于二阶奇次重复控制器的磁悬浮转子奇次谐波电流抑制方法
CN109058292B (zh) 一种新型磁悬浮轴承不平衡振动力直接抑制方法
CN105180936B (zh) 一种四轴惯性稳定平台系统的伺服回路解耦方法
CN106066632A (zh) 气浮模拟器质心和转动惯量独立连续调节系统及调节方法
CN105783898B (zh) 一种基于频域自适应lms算法的磁悬浮转子谐波振动抑制方法
CN104950919B (zh) 一种设计磁悬浮转子自平衡系统自适应滤波器稳定性参数的方法
CN105300597B (zh) 三轴气浮台质心调平衡方法及装置
CN106742071A (zh) 一种利用正交安装飞轮控制避免过零的方法
CN106586034A (zh) 卫星旋转部件动静不平衡干扰力矩自补偿方法
CN104197907B (zh) 一种基于磁悬浮控制力矩陀螺的航天器姿态角速率测量方法
CN107628272A (zh) 卫星旋转部件动静不平衡干扰力矩自补偿装置
Xu et al. Synchronous force elimination in the magnetically suspended rotor system with an adaptation to parameter variations in the amplifier model
CN105115505B (zh) 一种四轴惯性稳定平台系统的二阶动态干扰力矩补偿方法
CN110162855A (zh) 遥感卫星星上旋转载荷动态精度分析及误差分配方法
CN109533396A (zh) 一种基于磁测磁控的卫星自旋定向方法
EP1165371A1 (en) System and method for controlling the attitude of a spacecraft
CN106272380A (zh) 一种抓捕高速旋转目标后机械臂组合体的姿态稳定方法
CN107607128B (zh) 一种两轴两框架稳定平台瞄准线精度补偿方法
CN107323690B (zh) 卫星大角动量补偿同步性设计方法
CN106915476A (zh) 一种分离式电磁力耦合卫星载荷指向操控方法
CN103076809B (zh) 一种利用干扰积累角动量自平衡的轨道控制方法
CN108327927A (zh) 基于微小卫星的反作用轮组自适应力矩分配控制方法
Zheng et al. Improving dynamic response of AMB systems in control moment gyros based on a modified integral feedforward method
CN105819003A (zh) 一种自抗扰的超静飞轮及其应用方法
CN106184820B (zh) 一种组合驱动多力矩输出动量轮及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803