CN105808508B - 一种求解不确定热传导问题的随机正交展开方法 - Google Patents
一种求解不确定热传导问题的随机正交展开方法 Download PDFInfo
- Publication number
- CN105808508B CN105808508B CN201610146069.4A CN201610146069A CN105808508B CN 105808508 B CN105808508 B CN 105808508B CN 201610146069 A CN201610146069 A CN 201610146069A CN 105808508 B CN105808508 B CN 105808508B
- Authority
- CN
- China
- Prior art keywords
- orthogonal
- random
- point
- temperature
- stochastic variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000004044 response Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000011002 quantification Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000013076 uncertainty analysis Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 13
- 238000012546 transfer Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/17—Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/13—Differential equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Operations Research (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种求解不确定热传导问题的随机正交展开方法,步骤如下:引入随机变量对热传导问题中的不确定参数进行定量化表示;结合随机变量建立热传导问题的随机微分控制方程;根据随机变量分布类型选用正交多项式基底函数,将随机温度响应进行正交展开;给定每个随机变量的配点数量,利用张量积法则构造整个不确定空间的配点集合;计算所有配点处的温度响应,利用矩阵的广义逆求得温度响应正交展开式中的各项系数;根据基底函数的正交关系计算随机温度响应的均值和标准差。本发明可系统化解决含有随机不确定参数的热传导问题,进一步提高了随机不确定分析方法的计算精度,这是一般商用软件所不能实现的。
Description
技术领域
本发明属于机械工程领域,具体涉及一种求解不确定热传导问题的随机正交展开方法。
背景技术
在对工程系统进行分析和设计时,要求能正确地计算系统响应,以便保证工程系统满足某些指标的要求。但是,由于人们认识客观世界水平和手段的限制,实际工程中经常存在着与材料属性、外力载荷、初始条件、边界约束以及加工装配有关的不确定性。对复杂系统而言,即使很小的不确定因素,通过各子系统之间的传播和扩散,也可能会对最终的响应输出产生明显的扰动。因此,研究这些不确定性对系统响应的影响有着广泛的工程背景和重要的学术价值。
热分析在工程中普遍存在,尤其是在航空航天领域,其核心问题是先要确定结构的温度场。传热模型输入参数的不确定性必然会导致结构温度场的不确定性特征。传统的安全因子法仅仅根据工程师的经验,在计算过程中对传热模型进行不同程度的修正,以完善不确定性带来的不足。安全因子的大小是根据经验粗略制定的,这使得计算结果非常粗糙,不能满足精细化要求。而随机模型是将系统中的不确定性看作随机变量或随机过程,进而利用概率论和统计方法研究不确定性传播规律。随机建模及数值计算方法具有成熟的理论基础,在不确定分析领域发挥了重要作用。目前,将随机分析理论与有限元计算方法相结合衍生出来的随机有限元法在不确定结构的静、动力特性分析方面已经取得了不少研究成果,但在传热领域的应用还十分有限。另外,传统的随机模拟方法,通过数字模拟和统计分析来求取系统响应的概率特征。尽管操作简单,但其计算精度依赖于大量的抽样实验,因此很难应用于复杂的工程系统。随机摄动方法计算量小,但由于忽略了部分高阶项,计算精度难以满足工程需求。因此,如何建立准确高效的随机分析方法对不确定传热问题进行数值求解,是目前学术领域的一个研究热点,对于弥补现有传热数值计算方法的不足,具有重要的工程应用价值。
发明内容
本发明所要解决的技术问题为:克服现有技术在热传导问题求解中存在的不足,基于正交多项式展开理论和配点分析技术,提出了一种有效预测结构温度场概率特征的数值计算方法,可系统化解决含有随机不确定参数的热传导问题,在保证计算效率的同时,进一步提高了随机分析方法的计算精度。
本发明为解决上述技术问题采用的技术方案为:一种求解不确定热传导问题的随机正交展开方法,包括以下步骤:
步骤一:引入随机变量对热传导问题中的不确定参数进行定量化表示;
步骤二:结合步骤一中引入的随机变量,建立热传导问题的随机微分控制方程;
步骤三:根据步骤一中随机变量的分布类型选用正交多项式基底函数,将步骤二随机微分控制方程中涉及的温度响应进行正交展开,得到随机温度响应的正交展开式;
步骤四:给定每个随机变量所对应的配点数量,利用张量积法则构造整个不确定空间的配点集合;
步骤五:利用现有软件或程序计算步骤四配点集合中所有配点处的温度响应,建立关于步骤三随机温度响应正交展开式中各项系数的线性方程组,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数的一组值;
步骤六:将步骤五中得到的各项系数的一组值代回到步骤三随机温度响应的正交展开式中,根据基底函数的正交关系,计算随机温度响应的均值和标准差。
其中,所述步骤三中利用正交多项式对随机微分控制方程中涉及的温度响应进行正交展开时,正交多项式的类型和截断阶数并不是固定不变的,根据随机变量分布类型和逼近精度要求进行选取,例如高斯分布的随机变量对应埃尔米特正交多项式,均匀分布的随机变量对应勒让德正交多项式,另外正交多项式截断阶数越高,逼近精度就越高。
其中,所述步骤四中配点集合的建立并不是固定不变的,根据计算耗费和计算精度的要求来选取每个随机变量所对应的配点数量,配点数量越多,计算精度就越高,而计算耗费就越大。
上述各步骤具体包括以下过程:
步骤一:引入n个随机变量ξ1,ξ2,...,ξn对热传导问题中的不确定参数进行定量化表示,并将其统一记为向量的形式ξ=(ξ1,ξ2,...,ξn)。
步骤二:结合步骤一中引入的随机变量,建立热传导问题的随机微分控制方程:
其中x为物理坐标,T为温度响应,k为材料热传导系数,f表示系统的热源强度。
步骤三:根据步骤一中随机变量的分布类型选用合适的正交多项式基底函数,将步骤二随机微分控制方程中涉及的温度响应T(x;ξ)进行正交展开,得到随机温度响应的正交展开式:
其中Φi(ξ)为事先选定的正交多项式基底函数,Ti(x)为对应的各项系数,i=(i1,i2,...,in)且满足|i|=i1+i2+...+in,N为正交多项式的截断阶数。上述正交多项式中展开项的个数可用随机变量个数n和截断阶数N计算n为随机变量的个数。
步骤四:给定每个随机变量所对应的配点数量,利用张量积法则构造整个不确定空间的配点集合。首先,对于随机变量ξi而言,确定其分布区间其中ξi 和表示此分布区间的下界和上界。其次,给定配点数量mi,则在区间中各个配点的具体位置为:
其中和称作区间的中点和半径。
然后,用点集表示随机变量ξi在分布区间内所有配点组成的集合,那么对于n个随机变量组成的整个不确定空间而言,直接利用张量积法则可得配点集合Θ:
而配点集合Θ中的配点总数M为:
在此基础上,将配点集合Θ改写为的形式,用来表示整个不确定空间中所有的配点其中上标node为配点符号。
步骤五:利用现有软件或程序计算步骤四配点集合中所有配点处的温度响应,建立关于步骤三随机温度响应正交展开式中各项系数的线性方程组,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数的一组值。首先,步骤二中的随机微分控制方程在配点处可表示为:
其次,利用现有软件或程序对上述方程进行求解,得到所有配点处的温度响应
然后,基于步骤三中随机温度响应的正交展开式,建立关于各项系数Ti(x)的线性方程组:
紧接着,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数Ti(x)的一组值。
步骤六:将步骤五中得到的各项系数Ti(x)的一组值代回到步骤三随机温度响应的正交展开式中,根据基底函数的正交关系,最终可以得到随机温度响应T(x;ξ)的均值E[T(x;ξ)]和标准差σ[T(x;ξ)]:
E[T(x;ξ)]≈E[TN(x;ξ)]=T0(x)
其中γi为表征基底函数正交关系的归一化因子。
本发明与现有技术相比的优点在于:
(1)与传统的传热数值计算方法相比,所提出的随机正交展开方法充分计及传热模型的不确定因素,计算结果对温度场分析具有更重要的指导意义。
(2)利用随机正交展开方法对温度响应进行近似表示,可有效提高逼近精度。同时,利用基底函数的正交关系,可快速得到随机温度响应均值、标准差等概率特征。
(3)基于配点理论对随机温度响应正交展开式的各项系数进行求解,可以充分利用原有确定性模型的计算程序,操作简单,实施方便。
附图说明
图1为本发明的一种求解不确定热传导问题的随机正交展开方法流程图;
图2为本发明的二维平板传热结构模型示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
本发明适用于含有随机不确定参数的热传导问题的温度场预测。本发明实施方式以某二维平板传热结构模型为例,具体说明所述的一种求解不确定热传导问题的随机正交展开方法。另外,此二维平板传热结构模型的温度响应随机正交展开方法可以推广到其他含有随机不确定参数的热传导问题温度场预测中。
一种求解不确定热传导问题的随机正交展开方法的计算过程如图1所示,引入随机变量对系统不确定参数进行定量化表示,建立热传导问题的随机微分控制方程,利用正交多项式将随机温度响应进行正交展开,同时利用张量积法则构造不确定空间的配点集合,计算所有配点处的温度响应,利用矩阵的广义逆求得温度响应正交展开式中的各项系数,最后根据基底函数的正交关系计算随机温度响应的均值和标准差。可分为如下几个步骤进行:
步骤一:考虑如图2所示的二维平板传热结构模型,矩形区域和圆形区域分别划分为100个四边形单元和188个三角形单元,阴影区域有容积热生成,板底部沿边界9施加热流载荷qs,左侧边界10给定温度值Ts,上部边界8与周围环境发生表面换热,换热系数为h,选定编号为1~7的7个节点作为结构温度场的观测点。由于制造工艺的限制、测量的误差以及环境的变化,此热传导模型热传导系数k、热流密度qs、边界温度Ts和换热系数h四个参数含有一定的不确定性,且满足高斯分布规律,引入四个随机变量对其进行定量化表示,均值Ei和标准差σi如表1所示,将四个随机变量统一记为向量的形式ξ=(ξ1,ξ2,ξ3,ξ4)=(k,qs,Ts,h)。
表1热传导模型随机不确定参数
步骤二:结合步骤一中引入的随机变量,建立热传导问题的随机微分控制方程:
其中x,y为两个空间方向上的物理坐标,T为温度响应,k为材料热传导系数,f表示系统的热源强度。
步骤三:根据步骤一中随机变量的高斯分布特点选用埃尔米特正交多项式基底函数,将步骤二随机微分控制方程中涉及的温度响应T(x,y;ξ)进行正交展开,截断阶数设定为N=3,得到随机温度响应的正交展开式:
其中Φi(ξ)为事先选定的埃尔米特正交多项式基底函数,Ti(x,y)为对应的各项系数,i=(i1,i2,...,i4)且满足|i|=i1+i2+...+i4。上述正交多项式中展开项的个数为
步骤四:给定每个随机变量所对应的配点数量,利用张量积法则构造整个不确定空间的配点集合。首先,对于高斯随机变量ξi而言,根据概率理论中的3σ法则确定其分布区间其中ξi =Ei-3σi和表示此分布区间的下界和上界。其次,给定配点数量mi=9,则在区间中各个配点的具体位置为:
其中和称作区间的中点和半径。
然后,用点集表示随机变量ξi在分布区间内所有配点组成的集合,那么对于四个随机变量组成的不确定空间而言,直接利用张量积法则可得配点集合Θ:
而配点集合Θ中的配点总数M=94=6561。进而将配点集合Θ改写为的形式,用来表示整个不确定空间中所有的配点其中上标node为配点符号。
步骤五:利用现有软件或程序计算步骤四配点集合中所有配点处的温度响应,建立关于步骤三随机温度响应正交展开式中各项系数的线性方程组,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数的一组值。首先,步骤二中的随机微分控制方程在配点处可表示为:
其次,利用软件Nastran对上述方程进行求解,得到所有配点处的温度响应
基于步骤三中随机温度响应的正交展开式,建立关于各项系数Ti(x,y)的线性方程组:
利用矩阵的广义逆对此线性方程组进行求解,得到各项系数Ti(x,y)的一组值。
步骤六:将步骤五中得到的各项系数Ti(x,y)的一组值代回到步骤三随机温度响应的正交展开式中,根据基底函数的正交关系,最终可以得到随机温度响应T(x,y;ξ)的均值E[T(x,y;ξ)]和标准差σ[T(x,y;ξ)]:
E[T(x,y;ξ)]≈E[TN(x,y;ξ)]=T0(x,y)
其中γi为表征基底函数正交关系的归一化因子。
七个观测点处随机温度响应的均值和标准差分别如表2和表3所示。与样本数为106的传统蒙特卡洛抽样方法对比可以看出,本发明方法的计算误差小于10-3,计算结果真实可信,计算精度完全满足工程需求。另外,从样本数量上看,本发明方法的样本数仅为6561,计算耗费远远小于蒙特卡洛方法。用本发明方法可以解决含有随机不确定参数的热传导问题,计算精度高,计算耗费少,此功能是一般商用软件所不能实现的。
表2观测点处随机温度响应的均值
表3观测点处随机温度响应的标准差
总之,本发明可系统化解决含有随机不确定参数的热传导问题,进一步提高了随机不确定分析方法的计算精度,这是一般商用软件所不能实现的。
以上所述的仅为本发明的较佳实施例而已,本发明不仅仅局限于上述实施例,凡在本发明的精神和原则之内所作的局部改动、等同替换、改进等均应包含在本发明的保护范围之内。
Claims (4)
1.一种求解不确定热传导问题的随机正交展开方法,其特征在于包括以下步骤:
步骤一:引入n个随机变量ξ1,ξ2,...,ξn对热传导问题中的不确定参数进行定量化表示,并将其统一记为向量的形式ξ=(ξ1,ξ2,...,ξn),
步骤二:结合步骤一中引入的随机变量,建立热传导问题的随机微分控制方程:
其中x为物理坐标,T为温度响应,k为材料热传导系数,f表示系统的热源强度;
步骤三:根据步骤一中随机变量的分布类型选用合适的正交多项式基底函数,将步骤二随机微分控制方程中涉及的温度响应T(x;ξ)进行正交展开,得到随机温度响应的正交展开式:
其中Φi(ξ)为事先选定的正交多项式基底函数,Ti(x)为对应的各项系数,i=(i1,i2,...,in)且满足|i|=i1+i2+...+in,N为正交多项式的截断阶数;上述正交多项式中展开项的个数可用随机变量个数n和截断阶数N计算n为随机变量的个数;
步骤四:给定每个随机变量所对应的配点数量,利用张量积法则构造整个不确定空间的配点集合,首先,对于随机变量ξi而言,确定其分布区间其中ξ i和表示此分布区间的下界和上界;其次,给定配点数量mi,则在区间中各个配点的具体位置为:
其中和称作区间的中点和半径;
然后,用点集表示随机变量ξi在分布区间内所有配点组成的集合,那么对于n个随机变量组成的整个不确定空间而言,直接利用张量积法则可得配点集合Θ:
而配点集合Θ中的配点总数M为:
在此基础上,将配点集合Θ改写为的形式,用来表示整个不确定空间中所有的配点其中上标node为配点符号;
步骤五:计算步骤四配点集合中所有配点处的温度响应,建立关于步骤三随机温度响应正交展开式中各项系数的线性方程组,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数的一组值,首先,步骤二中的随机微分控制方程在配点处表示为:
其次,对上述方程进行求解,得到所有配点处的温度响应
然后,基于步骤三中随机温度响应的正交展开式,建立关于各项系数Ti(x)的线性方程组:
紧接着,利用矩阵的广义逆对此线性方程组进行求解,得到各项系数Ti(x)的一组值;
步骤六:将步骤五中得到的各项系数Ti(x)的一组值代回到步骤三随机温度响应的正交展开式中,根据基底函数的正交关系,最终得到随机温度响应T(x;ξ)的均值E[T(x;ξ)]和标准差σ[T(x;ξ)]:
E[T(x;ξ)]≈E[TN(x;ξ)]=T0(x)
其中γi为表征基底函数正交关系的归一化因子。
2.根据权利要求1所述的一种求解不确定热传导问题的随机正交展开方法,其特征在于:所述步骤三中利用正交多项式对随机微分控制方程中涉及的温度响应进行正交展开时,正交多项式的类型和截断阶数并不是固定不变的,根据随机变量分布类型和逼近精度要求进行选取,高斯分布的随机变量对应埃尔米特正交多项式,均匀分布的随机变量对应勒让德正交多项式,另外正交多项式截断阶数越高,逼近精度就越高。
3.根据权利要求1所述的一种求解不确定热传导问题的随机正交展开方法,其特征在于:所述步骤四中配点集合的建立并不是固定不变的,根据计算耗费和计算精度的要求来选取每个随机变量所对应的配点数量,配点数量越多,计算精度就越高,而计算耗费就越大。
4.根据权利要求1所述的一种求解不确定热传导问题的随机正交展开方法,其特征在于:所述步骤五中利用现有软件或程序计算步骤四配点集合中所有配点处的温度响应。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610146069.4A CN105808508B (zh) | 2016-03-15 | 2016-03-15 | 一种求解不确定热传导问题的随机正交展开方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610146069.4A CN105808508B (zh) | 2016-03-15 | 2016-03-15 | 一种求解不确定热传导问题的随机正交展开方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105808508A CN105808508A (zh) | 2016-07-27 |
CN105808508B true CN105808508B (zh) | 2018-10-02 |
Family
ID=56467418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610146069.4A Expired - Fee Related CN105808508B (zh) | 2016-03-15 | 2016-03-15 | 一种求解不确定热传导问题的随机正交展开方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105808508B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534774B (zh) * | 2018-03-21 | 2020-02-21 | 上海交通大学 | 基于函数迭代积分的刚体姿态解算方法及系统 |
CN110632848B (zh) * | 2019-09-24 | 2022-11-15 | 宁波大学 | 一种带有扰动的热传递过程控制器及优化控制方法 |
CN112434447B (zh) * | 2020-12-17 | 2022-04-26 | 湖南大学 | 一种丝杠加工的时变可靠性分析系统及方法 |
-
2016
- 2016-03-15 CN CN201610146069.4A patent/CN105808508B/zh not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
A new stochastic approach to transient heat conduction modeling with uncertainty;Dongbin Xiu et al;《International Journal of Heat and Mass Transfer》;20031130;第46卷(第24期);4681-4693页 * |
Solving stochastic heat transfer problems;A.F.Emery;《Engineering Analysis with Boundary Elements》;20040331;第28卷(第3期);179-291页 * |
三维地下水流随机分析的配点法;史良胜等;《水力学报》;20100131;第41卷(第1期);47-54页 * |
配点型区间有限元法;邱志平等;《力学学报》;20110531;第43卷(第3期);496-504页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105808508A (zh) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Washabaugh et al. | Nonlinear model reduction for CFD problems using local reduced-order bases | |
Song et al. | A dynamic compact thermal model for data center analysis and control using the zonal method and artificial neural networks | |
Kwon et al. | Morphology and topology in coarsening of domains via non-conserved and conserved dynamics | |
CN105808508B (zh) | 一种求解不确定热传导问题的随机正交展开方法 | |
Wang et al. | 3-D steady heat conduction solver via deep learning | |
Song et al. | A compact thermal model for data center analysis using the zonal method | |
CN107563038A (zh) | 一种新型的接触热阻有限元求解方法 | |
Berger et al. | Intelligent co-simulation: neural network vs. proper orthogonal decomposition applied to a 2D diffusive problem | |
Jin et al. | Accelerating fast fluid dynamics with a coarse-grid projection scheme | |
CN105760586A (zh) | 一种基于配点理论的模糊温度响应隶属度函数求解方法 | |
Wang et al. | Multi-domain physics-informed neural network for solving heat conduction and conjugate natural convection with discontinuity of temperature gradient on interface | |
CN116205153A (zh) | 一种基于流场物理信息的网格密度优化方法 | |
Waibel et al. | Physics meets machine learning: Coupling FFD with regression models for wind pressure prediction on high-rise facades | |
Cao et al. | Reducio: Model reduction for data center predictive digital twins via physics-guided machine learning | |
CN105677995A (zh) | 一种基于全网格配点理论的模糊稳态热传导问题数值求解方法 | |
Li et al. | Design and key techniques of a collaborative virtual flood experiment that integrates cellular automata and dynamic observations | |
CN115062551B (zh) | 一种基于时序神经网络的湿物理过程参数化方法 | |
Jiang et al. | Applications of finite difference‐based physics‐informed neural networks to steady incompressible isothermal and thermal flows | |
Hillary et al. | Guidelines for developing efficient thermal conduction and storage models within building energy simulations | |
Kamali Nejad et al. | Tolerance analysis in machining using the model of manufactured part (MMP)–comparison and evaluation of three different approaches | |
CN110196983A (zh) | 一种基于配点理论的高维随机热传导问题谱分析方法 | |
Zhengxiang et al. | Application and comparison of several intelligent algorithms on Muskingum routing model | |
Gao et al. | Machine learning-based reduced-order reconstruction method for flow fields | |
Doukkali et al. | Large Eddy Simulation of turbulent natural convection in an inclined tall cavity | |
Nair | A high-order multiscale global atmospheric model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181002 |
|
CF01 | Termination of patent right due to non-payment of annual fee |