CN105792138A - 基于线段密度的室内wlan用户定位与行为分析方法 - Google Patents

基于线段密度的室内wlan用户定位与行为分析方法 Download PDF

Info

Publication number
CN105792138A
CN105792138A CN201610107451.4A CN201610107451A CN105792138A CN 105792138 A CN105792138 A CN 105792138A CN 201610107451 A CN201610107451 A CN 201610107451A CN 105792138 A CN105792138 A CN 105792138A
Authority
CN
China
Prior art keywords
rss
cluster
line segment
signal
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610107451.4A
Other languages
English (en)
Other versions
CN105792138B (zh
Inventor
周牧
王羽
王烟濛
田增山
何维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing China Post Information Technology Group Co ltd
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201610107451.4A priority Critical patent/CN105792138B/zh
Publication of CN105792138A publication Critical patent/CN105792138A/zh
Application granted granted Critical
Publication of CN105792138B publication Critical patent/CN105792138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H04W4/04

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于线段密度的室内WLAN用户定位与行为分析方法,首先将目标区域划分为多个子区域,并对区域内用户的运动路径模式进行观测,同时采集区域内用户的RSS序列;然后,利用多维尺度MDS方法对采集的RSS序列进行降维处理,得到每条RSS序列在二维信号空间中所对应的路径坐标,将路径坐标按时间戳顺序依次连接成线段;其次,对线段进行聚类以得到信号逻辑图并且根据子区域连接关系得到物理逻辑图;最后,根据信号逻辑图中线段聚类间的转移概率和物理逻辑图中子区域间的转移概率,建立信号逻辑图与物理逻辑图的热点映射,以实现对运动用户的定位与行为分析。本发明降低了人力消耗与时间开销,并能够完成对运动用户的定位与行为分析。

Description

基于线段密度的室内WLAN用户定位与行为分析方法
技术领域
本发明属于室内定位技术,具体涉及一种基于线段密度的室内WLAN用户定位与行为分析方法。
背景技术
随着移动通信的飞速发展,基于位置的服务LBS(LocationBasedService)受到越来越多的关注,而在室内场所(如商场、机场及地下停车场等),现有的室外定位系统,如全球定位系统GPS(GlobalPositioningSystem),由于受到建筑物等设施的遮蔽,难以在室内实现精确定位。与此同时,由于无线局域网WLAN(WirelessLocalAreaNetwork)的大规模部署及WLAN高速无线接入的广泛普及,利用现有的WLAN基础设施对室内用户进行定位越来越受到人们的重视,其中,基于接收信号强度RSS(ReceivedSignalStrength)的室内WLAN定位技术更是受到广泛而深入的研究。
作为基于RSS的室内WLAN定位技术中的典型算法,位置指纹定位算法主要包含两个阶段:离线阶段和在线阶段。在离线阶段,首先在定位目标区域内标定若干参考点RP(ReferencePoint),同时在每个参考点处采集一段时间内来自不同WLAN接入点AP(AccessPoint)的RSS值,以构造位置指纹数据库;而在在线阶段,则利用用户新采集的RSS值,结合位置指纹数据库及相应的搜索匹配算法,实现对用户的定位。
位置指纹定位算法存在的主要问题是位置指纹数据库的构造需要大量的人力与时间开销,特别是当目标区域较大时,所需的开销将会显著增大,从而限制了该算法的实际应用。为了解决上述问题且为了对目标场景中的用户进行行为分析,本发明提出了一种新的基于线段密度的室内WLAN用户定位与行为分析方法。
发明内容
本发明的目的是提供一种基于线段密度的室内WLAN用户定位与行为分析方法,它能有效解决传统位置指纹数据库构建所需大量人力与时间开销的问题,且能实现对目标场景中的用户进行行为分析。
本发明所述的基于线段密度的室内WLAN用户定位与行为分析方法,包括以下步骤:
步骤一、将目标区域划分为NArea个子区域;
步骤二、采集目标区域内运动用户的Nseq条RSS(ReceivedSignalStrength)序列,记为其中,第i条RSS序列具体表示为:
其中,rssij=(rssij1,rssij2,...,rssijk)(1≤j≤Mi)为中第j个信号矢量,Mi为第i条RSS序列的序列长度,即第i条RSS序列包含的信号矢量个数,k1为AP(AccessPoint)数目,为第i条RSS序列内第j个信号矢量中来自第l1个接入点AP的信号强度值;
步骤三、对采集的每条RSS序列进行小波去噪处理,得到新的Nseq条RSS序列,记为 RSS 1 W T , RSS 2 W T , ... , RSS N s e q W T ;
步骤四、利用多维尺度MDS(Multi-dimensionalScaling)方法对所述步骤三得到的RSS序列中的信号矢量进行降维处理,以得到所有信号矢量在二维信号空间中对应的坐标;
步骤五、构建每条RSS序列在二维信号空间中对应的路径轨迹及其所包含的线段;
步骤六、对所有路径轨迹所包含的线段进行基于线段密度的聚类,以得到每条线段所属的聚类号及每个聚类所包含的线段集合;
步骤七、根据线段聚类间的转移关系构建信号逻辑图,并得到各聚类间的转移次数;
步骤八、对区域内用户的运动路径模式进行观测,得到NPathPattern种不同的运动路径模式,并统计用户从每个子区域到其他子区域的转移次数;
步骤九、根据各子区域间的连接关系,将目标区域表示为一幅由不同子区域节点相互连通的物理逻辑图;
步骤十、根据步骤七所得到的各聚类间的转移次数(如聚类c3到c4的转移次数为)与步骤八所得到的用户从每个子区域到其他子区域的转移次数(如子区域k到l的转移次数为Tkl),分别构建信号与物理空间的概率转移矩阵PS和PA,同时,将信号与物理逻辑图中各个节点的热度进行排序,并把信号逻辑图中各个节点映射到物理逻辑图中热度排序相同的节点,进而得到信号逻辑图到物理逻辑图的映射准则;
步骤十一、在定位阶段,令新采集的信号序列为
步骤十二、根据所述步骤六所得到的聚类,将每个聚类所包含的RSS信号拟合为正态分布,并通过计算新采集信号序列RSSnew相对于每个聚类的联合概率来判断其所属聚类;
步骤十三、根据所述步骤十得到的信号逻辑图到物理逻辑图的映射准则,得到新采集信号序列RSSnew所属的子区域;
步骤十四、通过对大量新采集信号序列的定位结果进行统计分析,构建用户行为分布图;
步骤十五、基于步骤十四所得到的用户行为分布图,对目标区域内用户的行为进行分析,得到用户行为分析结果。
所述步骤六包括以下步骤:
6a、定义任意两条线段Li与Lj之间的三个广义距离:垂直距离平行距离和角度距离
d ⊥ t = ( d ⊥ 1 + d ⊥ 2 ) / 2 d | | t = ( d | | 1 + d | | 2 ) / 2 d θ t = ( d θ 1 + d θ 2 ) / 2
其中,为线段Li到Lj的三个广义距离,为线段Lj到Li的三个广义距离,基于此,Li与Lj之间的距离公式为
6b、令idij表示路径轨迹中第j条线段所属的聚类号,将所有线段所属聚类号idij的初始值设置为0,其中,idij=0表示线段未被聚类且设置聚类号CN=1;
6c、任意选择一个未被遍历的线段Li(1≤i≤Mi-1),利用所述步骤6a中的距离公式计算其它线段Lj(1≤j≤Mj-1)与线段Li的距离dij
6d、比较dij与e的大小,若dij≤e,则令线段Lj在Li的e邻域内,记Li的e邻域为N(Li);
6e、记线段Li的e邻域内的线段数目为并比较与最小线段数阈值Min的大小;若则令线段Li为核心线段且Li的e邻域内的所有线段都属于第CN类,即idij=CN,同时,令候选集Q=N(Li)-Li并转至步骤6f;反之,转至步骤6c;
6f、遍历候选集Q中线段Li,重复步骤6c至步骤6e,并将满足条件的新候选集归并到Q中;
6g、令CN=CN+1;
6h、重复步骤6c至步骤6g,直至完成对所有线段的遍历,其中,idij=0所对应的线段表示噪声;
6i、将步骤三得到的中idij相同的信号矢量存储为一类,记为其中,clusterCN(1≤CN≤m)为第CN个RSS信号聚类,表示idij=CN的RSS矢量集合,m表示聚类个数;
6j、将路径轨迹中线段的所属聚类号集合用表示,即:
ID i 2 D = id i 1 r s s id i 2 r s s . . . id i ( M i - 1 ) r s s
其中,为第i条路径轨迹中第j条线段的所属聚类号。
所述步骤七包括以下步骤:
7a、根据步骤六的结果,在集合中,将每条线段所属的聚类号作为一个元素,且每个不同的元素用一个圆圈表示,圆圈中的值用对应的元素值进行表示;
7b、顺序遍历集合中的元素;若当前时刻与上一时刻遍历元素不同,则连接两时刻遍历元素所对应的圆圈,其中,当两元素所对应的圆圈存在多次连接时,仅保留一条连接线段;
7c、重复步骤7b,直至遍历完中的所有元素,从而完成路径轨迹所对应的信号逻辑图的构建;
7d、重复步骤7a至步骤7c,得到所有路径轨迹所对应的信号逻辑图;
7e、用圆圈表示所述步骤六得到的所有聚类,每个圆圈表示一个聚类,圆圈中的值用对应的聚类号进行表示;
7f、根据路径轨迹所对应的信号逻辑图中圆圈之间连接关系,连接所述步骤7e中的圆圈;
7g、重复步骤7e至步骤7f,将所有路径轨迹所对应的信号逻辑图进行合并,进而形成最终的信号逻辑图,当两圆圈存在多次连接时,仅保留一条连接线段;
7h、统计集合clusterCN中各聚类间的转移次数,令表示聚类 Cluster c 3 ( 1 ≤ c 3 ≤ m ) Cluster c 4 ( 1 ≤ c 4 ≤ m ) 的转移次数。
所述步骤十二包括以下步骤:
12a、根据步骤六的结果,得到每个聚类中来自每个AP的RSS信号统计分布,并将其拟合为正态分布,记第j个聚类中来自第i个AP的RSS信号拟合为正态分布其中,分别表示第j个聚类中来自第i个AP的RSS信号的均值和方差;
12b、计算新采集信号序列RSSnew相对于每个聚类的联合概率,令表示新采集信号序列相对于第u个聚类的联合概率,其中,表示新采集信号序列中来自第x个AP的RSS信号在正态分布条件下的概率值;
12c、选择具有最大联合概率的聚类为新采集信号序列RSSnew的所属聚类,即当pv=max{p1,p2...pm}(1≤v≤m)时,则RSSnew属于第v类。
本发明具有以下优点:本发明首先将目标区域划分为多个子区域,并对区域内用户的运动路径模式进行观测,同时采集区域内用户的RSS序列;然后,利用MDS方法对采集的RSS序列进行降维处理,得到每条RSS序列在二维信号空间中所对应的路径坐标,将路径坐标按时间戳顺序依次连接成线段;其次,对线段进行基于线段密度的聚类以得到信号逻辑图,并且根据子区域物理连接关系得到物理逻辑图;最后,根据信号逻辑图中线段聚类间的转移概率和物理逻辑图中子区域间的转移概率,建立信号逻辑图与物理逻辑图的热点映射,以实现对运动用户的定位与行为分析。相比于传统位置指纹定位算法,本发明方法无需构建位置指纹数据库,且能实现对运动用户的定位与行为分析。本发明能够运用于无线电通信网络环境,主要面向室内WLAN定位方法,解决了传统位置指纹定位算法在离线阶段需要大量人力与时间开销的问题。
附图说明
图1a为本发明中步骤一至步骤六的流程图;
图1b为本发明中步骤六至步骤十五的流程图;
图2为二维信号空间中线段间广义距离的定义;
图3为将目标区域进行子区域划分;
图4为时间戳标记的第i条RSS序列示意图;
图5a为所有来自AP1的RSS原始数据与小波去噪后RSS数据的对比图;
图5b为所有来自AP2的RSS原始数据与小波去噪后RSS数据的对比图;
图5c为所有来自AP3的RSS原始数据与小波去噪后RSS数据的对比图;
图5d为所有来自AP4的RSS原始数据与小波去噪后RSS数据的对比图;
图5e为所有来自AP5的RSS原始数据与小波去噪后RSS数据的对比图;
图6为小波去噪后RSS数据降维到二维信号空间的结果;
图7为对图6中线段进行聚类后结果;
图8为在目标区域内观测得到的各子区域间的转移概率图;
图9为各聚类所包含的RSS信号统计分布图;
图10为目标区域内关于用户的行为分析结果。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1a和图1b所示的基于线段密度的室内WLAN用户定位与行为分析方法,包括以下步骤:
步骤一、将目标区域划分为NArea个子区域。
步骤二、采集目标区域内运动用户的Nseq条RSS(ReceivedSignalStrength)序列,记为其中,第i条RSS序列具体表示为:
其中,rssij=(rssij1,rssij2,...,rssijk)(1≤j≤Mi)为中第j个信号矢量,Mi为第i条RSS序列的序列长度,即第i条RSS序列包含的信号矢量个数,k1为AP(AccessPoint)数目,rssijl1(1≤l1≤k1)为第i条RSS序列内第j个信号矢量中来自第l1个接入点AP的信号强度值。
步骤三、对采集的每条RSS序列进行小波去噪处理,得到新的Nseq条RSS序列,记为具体包括以下步骤:
3a、令中的第l1列即第l1条数据流为
rss il 1 c o l = rss i 1 l 1 ... rss ijl 1 ... rss iM i l 1 T
其中,1≤i≤Nseq,1≤j≤Mi,1≤l1≤k1
3b、令a=1,2,…,Na,b=1,2,…,Nb,计算的小波系数
W T ( a , b ) = 1 a Σ j = 1 M i rss ijl 1 ψ ( j - b a )
其中,a为尺度因子,b为移位因子,ψ(j)为基本Haar小波函数,具体形式为:
本实验中Na=32,Nb=400。
3c、构造小波系数矩阵
3d、将WT中第1行至第LWT行的元素置为0,即令WT(la,lb)=0,其中,1≤lb≤Nb,1≤la≤LWT<Na,本实验中LWT=3。
3e、利用公式
rss ijl 1 W T = 1 C &psi; &Sigma; a = 1 N a 1 a 2 &Sigma; b = 1 N b W T ( a , b ) 1 a &psi; ( j - b a )
得到
rss il 1 c o l _ W T = rss i 1 l 1 W T ... rss ijl 1 W T ... rss iM i l 1 W T T ,
即为经过小波去噪后得到的数据流,其中,1≤j≤Mi &Psi; ( w ) = &Integral; - &infin; + &infin; &psi; ( t ) e - j w t d t .
3f、重复步骤3a至步骤3e,对所有RSS序列中的数据流进行小波去噪,得到去噪后的RSS序列其中,
信号矢量 rss i j W T = ( rss i j 1 , rss i j 2 , ... , rss ijk 1 ) ( 1 &le; j &le; M i ) , 1≤i≤Nseq,1≤l1≤k1
步骤四、利用多维尺度MDS(Multi-dimensionalScaling)方法对所述步骤三得到的RSS序列中的信号矢量进行降维处理,以得到所有信号矢量在二维信号空间中对应的坐标;具体包括以下步骤:
4a、所述步骤三得到的RSS序列连接成一条总序列
RSS T W T = RSS 1 W T RSS 2 W T . . . RSS N s e q W T .
4b、计算中每两个信号矢量rssp与rssq的距离平方
d v e c _ p q 2 = ( rss p - rss q ) 2
其中,1≤p,q≤MT的序列长度,即包含的信号矢量个数,rssp(1≤p≤MT)为中第p个信号矢量。
4c、构造距离平方矩阵Dvec
4d、计算矩阵其中,1为单位矩阵,e=[1,1,…,1]T
4e、对距离平方矩阵进行双中心化,得到矩阵
4f、对所述步骤4e所得到的矩阵进行特征值分解,得到T=VΛVT,其中,T的特征值构成对角矩阵Λ=diag(l1,l2,…,ln)T的特征向量构成正交矩阵V=[v1,v2,…,vn],λ1≥λ2≥…≥λn
4g、计算坐标矩阵 X N = V N &Lambda; N 1 2 :
因为所以取所述步骤4f中Λ的前N个特征值构成ΛN=diag(l1,l2,…,lN),V的前N个特征向量构成VN=[v1,v2,…,vN],从而得到N维空间的坐标不失一般性,令N=2,可得RSS序列中信号矢量(1≤j≤Mi)的二维坐标
步骤五、构建每条RSS序列在二维信号空间中对应的路径轨迹及其所包含的线段;具体包括以下步骤:
5a、连接RSS序列中相邻信号矢量对应的二维坐标 x i j = ( x i j 1 , x i j 2 ) x i ( j + 1 ) = ( x i ( j + 1 ) 1 , x i ( j + 1 ) 2 ) , 得到线段 L i j r s s = &lsqb; x i j , x i ( j + 1 ) &rsqb; .
5b、构建的二维路径轨迹
RSS i 2 D = L i 1 r s s L i 2 r s s . . . L i ( M i - 1 ) r s s .
5c、重复步骤5a至步骤5b,得到所有小波去噪后RSS序列对应的二维路径轨迹
步骤六、对所有路径轨迹所包含的线段进行基于线段密度的聚类,以得到每条线段所属的聚类号及每个聚类所包含的线段集合;具体包括以下步骤:
6a、定义任意两条线段Li与Lj之间的三个广义距离:垂直距离平行距离和角度距离
d &perp; t = ( d &perp; 1 + d &perp; 2 ) / 2 d | | t = ( d | | 1 + d | | 2 ) / 2 d &theta; t = ( d &theta; 1 + d &theta; 2 ) / 2
其中,为线段Li到Lj的三个广义距离,具体形式如图2所示。同理,定义 为线段Lj到Li的三个广义距离。基于此,Li与Lj之间的距离公式定义为 d i j = d &perp; t + d | | t + d &theta; t .
6b、令idij表示路径轨迹中第j条线段所属的聚类号,将所有线段所属聚类号idij的初始值设置为0,其中,idij=0表示线段未被聚类且设置聚类号CN=1。
6c、任意选择一个未被遍历的线段Li(1≤i≤Mi-1),利用所述步骤6a中的距离公式计算其它线段Lj(1≤j≤Mj-1)与线段Li的距离dij
6d、比较dij与e的大小,若dij≤e,则令线段Lj在Li的e邻域内,记Li的e邻域为N(Li)。
6e、记线段Li的e邻域内的线段数目为并比较与最小线段数阈值Min的大小。若则令线段Li为核心线段且Li的e邻域内的所有线段都属于第CN类,即idij=CN,同时,令候选集Q=N(Li)-Li并转至步骤6f;反之,转至步骤6c。
6f、遍历候选集Q中线段Li,重复步骤6c至步骤6e,并将满足条件的新候选集归并到Q中。
6g、令CN=CN+1。
6h、重复步骤6c至步骤6g,直至完成对所有线段的遍历,其中,idij=0所对应的线段表示噪声。
6i、将步骤三得到的中idij相同的信号矢量存储为一类,记为其中,为第CN个RSS信号聚类,表示idij=CN的RSS矢量集合,m表示聚类个数。
6j、将路径轨迹中线段的所属聚类号集合用表示,即:
ID i 2 D = id i 1 r s s id i 2 r s s id i ( M i - 1 ) r s s
其中,为第i条路径轨迹中第j条线段的所属聚类号。
步骤七、根据线段聚类间的转移关系构建信号逻辑图,并得到各聚类间的转移次数;具体包括以下步骤:
7a、根据步骤六的结果,在集合中,将每条线段所属的聚类号作为一个元素,且每个不同的元素用一个圆圈表示,圆圈中的值用对应的元素值进行表示。
7b、顺序遍历集合中的元素。若当前时刻与上一时刻遍历元素不同,则连接两时刻遍历元素所对应的圆圈,其中,当两元素所对应的圆圈存在多次连接时,仅保留一条连接线段。
7c、重复步骤7b,直至遍历完中的所有元素,从而完成路径轨迹所对应的信号逻辑图的构建。
7d、重复步骤7a至步骤7c,得到所有路径轨迹所对应的信号逻辑图。
7e、用圆圈表示所述步骤六得到的所有聚类,每个圆圈表示一个聚类,圆圈中的值用对应的聚类号进行表示。
7f、根据路径轨迹所对应的信号逻辑图中圆圈之间连接关系,连接所述步骤7e中的圆圈。
7g、重复步骤7e至步骤7f,将所有路径轨迹所对应的信号逻辑图进行合并,进而形成最终的信号逻辑图,当两圆圈存在多次连接时,仅保留一条连接线段。
7h、统计集合clusterCN中各聚类间的转移次数,令表示聚类 Cluster c 3 ( 1 &le; c 3 &le; m ) Cluster c 4 ( 1 &le; c 4 &le; m ) 的转移次数。
步骤八、对区域内用户的运动路径模式进行观测,得到NPathPattern种不同的运动路径模式,并统计用户从每个子区域到其他子区域的转移次数;具体包括以下步骤:
8a、将目标定位区域划分成NArea个子区域,记子区域标号为1,…,NArea
8b、对目标定位区域内的用户运动路径进行观测,得到NPathPattern种运动路径模式,每种运动路径模式表示为若干目标子区域的连接关系。
8c、基于观测得到的用户运动路径,统计得到用户在各个物理子区域间的运动分布Tkl(1≤k,l≤NArea),其中,Tkl表示用户从第k个物理子区域运动到第l个物理子区域的统计次数。
步骤九、根据各子区域间的连接关系,将目标区域表示为一幅由不同子区域节点相互连通的物理逻辑图;具体包括以下步骤:
9a、将每个不同的子区域用一个圆圈表示,圈内的数字是相应的区域号。
9b、根据各子区域的物理连接特性,用直线将两个在目标区域中相连的子区域连接起来,确定所有的连接关系后,就可得到各子区域连通的物理逻辑图。
步骤十、根据步骤七所得各聚类间的转移次数(如聚类c3到c4的转移次数为)与步骤八所得用户从每个子区域到其他子区域的转移次数(如子区域k到l的转移次数为Tkl),分别构建信号与物理空间的概率转移矩阵PS和PA,同时,将信号与物理逻辑图中各个节点的热度进行排序,并把信号逻辑图中各个节点映射到物理逻辑图中热度排序相同的节点,进而得到信号逻辑图到物理逻辑图的映射准则;具体包括以下步骤:
10a、令用户在tz≥0时刻位于物理子区域An的概率为Ptz(An),定义如下递推式:
P t z + 1 ( A n ) = &Sigma; &eta; = 1 N A r e a P t z ( A &eta; ) ( P A &eta; &RightArrow; A n / M A &eta; )
其中,Tηl为用户从第η个物理子区域运动到第l个物理子区域的统计次数,区域指示函数表示如下:
10b、构建概率转移关系:
Ptz+1=PAPtz
其中,Ptz=[Ptz(1),Ptz(2),...,Ptz(NArea)]T
PA=θ(M+ecT/NArea)+(1-θ)eeT/NArea
其中,0≤θ≤1,在本实验中取θ=0.8,M为NArea×NArea的矩阵且对于M中第k行第l列的元素 M k l = P A l &RightArrow; A k / M A l , c = &lsqb; in 1 , in 2 , ... , in N A r e a &rsqb; T
10c、由于Ptz=PA tzP0,所以P=limtz→∞Ptz=[P(1),P(2),...,P(NArea)]T,于是得到各个物理子区域的热度P(n),其中,当P(n)值越大,物理子区域An的热度也就越大。
10d、同理,令tz≥0时刻,RSS信号属于的概率为定义如下递推式:
P &prime; t z + 1 ( Cluster c 3 ) = &Sigma; c 4 = 1 m P &prime; t z ( Cluster c 4 ) ( P &prime; c 4 &RightArrow; c 3 / M &prime; Cluster c 4 )
其中, M &prime; Cluster c 4 = &Sigma; c 5 = 1 m T c 4 c 5 R ( 1 &le; c 4 &le; m ) , 类指示函数表示如下:
10e、构建概率转移关系:
P'tz+1=PsP'tz
其中P'tz=[P'tz(1),P'tz(2),...,P'tz(m)]T
Ps=θ(M'+e'c'T/m)+(1-θ)e'e'T/m
其中,M'为m×m的矩阵且对于M'中第c3行,第c4列的元素 M &prime; c 3 c 4 = P &prime; Cluster c 4 &RightArrow; Cluster c 3 / M &prime; Cluster c 4 , c'=[in'1,in'2,...,in'm]T
10f、由于P'tz=Ps tzP'0,所以P'=limtz→∞P'tz=[P'(1),P'(2),...,P'(m)]T,于是得到信号图中各个类的热度P'(c3),其中,当P'(c3)值越大,类c3的热度也就越大。
10g、分别将P和P'中的元素从大到小排序,记排序后的P和P'分别为PRank和P'Rank,其中,PRank=[PRank(1),PRank(2),...,PRank(NArea)]T,P'Rank=[P'Rank(1),P'Rank(2),...,P'Rank(m)]T,且分别满足PRank(1)≥PRank(2)≥...≥PRank(NArea),P'Rank(1)≥P'Rank(2)≥...≥P'Rank(m),将P'Rank(c3)映射到与其具有相同热度排序的PRank(n),即类c3在信号图中的排序等于子区域n在物理环境图中的排序。
步骤十一、在定位阶段,令新采集的信号序列为RSSnew={rssnew1,rssnew2,...,rssnewk1}。
步骤十二、根据所述步骤六得到的聚类,将每个聚类所包含的RSS信号拟合为正态分布,并通过计算新采集信号序列RSSnew相对于每个聚类的联合概率来判断其所属聚类;具体包括以下步骤:
12a、根据步骤六的结果,得到每个聚类中来自每个AP的RSS信号统计分布,并将其拟合为正态分布,记第j个聚类中来自第i个AP的RSS信号拟合为正态分布其中,分别表示第j个聚类中来自第i个AP的RSS信号的均值和方差。
12b、计算新采集信号序列RSSnew相对于每个聚类的联合概率,令表示新采集信号序列相对于第u个聚类的联合概率,其中,表示新采集信号序列中来自第x个AP的RSS信号在正态分布条件下的概率值。
12c、选择具有最大联合概率的聚类为新采集信号序列RSSnew的所属聚类,即当pv=max{p1,p2...pm}(1≤v≤m)时,则RSSnew属于第v类。
步骤十三、根据步骤十得到的信号逻辑图到物理逻辑图的映射准则,得到新采集信号序列RSSnew所属的子区域;具体包括以下步骤:
13a、由步骤十二的结果可以确定新序列所属的信号聚类。
13b、由步骤十的映射准则,确定该信号序列所属的物理子区域,实现区域定位。
13c、重复步骤13a和步骤13b,实现用户在不同时刻的区域定位,并按时间戳顺序用有向箭头表示,箭头从t时刻定位结果指向t+1时刻定位结果,若用户在t时刻位于区域i,在t+1时刻位于区域j,则用i指向j的箭头表示此刻用户的轨迹,从而判别用户轨迹。
步骤十四、通过对大量新采集信号序列的定位结果进行统计分析,构建用户行为分布图;具体包括以下步骤:
14a、对于大量接收信号序列RSS重复步骤十三,令pareai表示由RSS序列定位到区域i的概率且pareai=NL2Ci/NLOC;其中NLOC表示所有RSS序列定位到物理区域的总次数,NLOCi表示所有RSS序列定位到物理区域i的总次数。
14b、由步骤14a得到的大量RSS序列对应的区域定位概率构建用户行为分布图。在用户行为分布图中,使各子区域分布方式与物理空间相同,在各个子区域用相应的灰度等级表示用户在各个区域中的活动频度。由对应区域的定位概率确定灰度等级,定位概率越大则灰度等级越大,活动频度也越大,以此为原则确定各个区域的灰度等级。
14c、用箭头表示用户在各个子区域转移关系,定义各区域间的转移概率为其中,表示用户从区域i转移到区域j的次数,NT表示用户在各个区域的总的移动次数,用箭头符号表示转移概率,箭头越粗则表示转移概率越大箭头方向则为用户在子区域之间的转移方向。
步骤十五、基于步骤十四得到的用户行为分布图,对目标区域内用户的行为进行分析,得到用户行为分析结果;具体包括以下步骤:
15a、在用户行为分布图中,由相应区域中的灰度等级和灰度等级与活动频度的对应关系可以得到用户在每个子区域的活动频度。
15b、由连接各子区域的箭头和箭头粗细得到用户在子区域间的转移关系和转移概率的相对大小。
15c、结合实际应用环境,对用户行为进行分析,得到用户行为分析结果。例如:将该系统运用于大型商场可以通过对用户的购物路径进行分析得到用户的购物行为,用户的购物习惯,用户购物的常用路径以及热点商家等。
如图2所示,为二维信号空间中线段间广义距离的定义。对于二维信号空间中的任意线段Li和Lj,线段Li到Lj的广义垂直距离、广义平行距离及广义角度距离的计算方式如图所示,其中,θ为线段间夹角。同理可得线段Lj到Li的广义垂直距离、广义平行距离及广义角度距离。
如图3所示,为将目标区域划分成NArea个子区域,即子区域1,…,NArea,在本实验中,NArea=6,其中,区域1和区域5均为大厅区域,涉及目标区域内用户的进出;区域2和区域6为电梯或楼梯口附近区域,涉及目标区域内用户的楼层切换;区域3和区域4为办公区附近区域,涉及目标区域内用户的主要行为。
如图4所示,为时间戳标记的第i条RSS序列示意图,对每条RSS序列RSSi(1≤i≤Nseq)中的RSS矢量进行时间戳标记,其中,Mi为第i条RSS序列RSSi的长度,即RSSi包含的RSS矢量个数,k1为AP数目,在本实验中,k1=5,为RSSi内第j个RSS矢量中来自第l1个AP的信号强度值。
如图5a所示为所有来自AP1的RSS原始数据与小波去噪后RSS数据的对比图,在本实验中,原始RSS数据经过小波去噪后滤除了信号中部分高频成分,从而降低了噪声对信号波动的影响。
如图5b所示为所有来自AP2的RSS原始数据与小波去噪后RSS数据的对比图,在本实验中,原始RSS数据经过小波去噪后滤除了信号中部分高频成分,从而降低了噪声对信号波动的影响。
如图5c所示为所有来自AP3的RSS原始数据与小波去噪后RSS数据的对比图,在本实验中,原始RSS数据经过小波去噪后滤除了信号中部分高频成分,从而降低了噪声对信号波动的影响。
如图5d所示为所有来自AP4的RSS原始数据与小波去噪后RSS数据的对比图,在本实验中,原始RSS数据经过小波去噪后滤除了信号中部分高频成分,从而降低了噪声对信号波动的影响。
如图5e所示为所有来自AP5的RSS原始数据与小波去噪后RSS数据的对比图,在本实验中,原始RSS数据经过小波去噪后滤除了信号中部分高频成分,从而降低了噪声对信号波动的影响。
如图6所示,为小波去噪后RSS数据降维到二维信号空间的结果,图中每条线段即为步骤五所得中的线段,其中,部分线段由于首尾端点坐标相同,因此以点的形式存在。
如图7所示,为对图6中线段进行聚类后结果。在本实验中,聚类参数设置为:最小线段数阈值Mn=4,e邻域e=e4。从图中可以看出,最后得到的聚类个数为3,属于聚类一的RSS数据最多,聚类二次之,聚类三最少;同时,经过聚类后,未被分类的RSS数据作为噪声被滤除。
如图8所示,为在目标区域内观测得到的各子区域间的转移概率图,由图可知,子区域L1、L2和C4所对应的转移概率较大,即用户在子区域L1、L2和C4的活动频率较大;而子区域C3、L5和C6所对应的转移概率较小,即用户在子区域C3、L5和C6活动频率较小。基于此,子区域C3、L5和C6对应的RSS数据经过聚类后不容易被分类,从而子区域C3、L5和C6不出现在用户的主要行为当中。
如图9所示,为各聚类所包含的RSS信号统计分布图,每一幅子图表示某一聚类中来自某一AP的RSS信号统计分布图。每一行子图对应给定聚类中来自不同AP的RSS信号统计分布图,而每一列子图对应给定AP条件下不同聚类的RSS信号统计分布图。例如,第1行第1列的子图表示聚类1中来自AP1的RSS信号统计分布图。
如图10所示,为目标区域内关于用户的行为分布结果。在本实验中,6个子区域分别记为L1、L2、C3、C4、L5和C6,依次表示大厅1、大厅2、大厅5、走廊3、走廊4和走廊6。根据用户的行为分布结果可知,当用户位于L1时,其更倾向于前往C4;当用户位于C4时,其更倾向于前往L1;而当用户位于L2时,其更倾向于前往L1。
表1为目标区域内用户七种运动路径模式下的子区域转移关系及对应的RSS信号序列采集条数。在本实验中,总共采集了用户七种运动路径模式下的260条不同的RSS信号序列。
表1。

Claims (4)

1.基于线段密度的室内WLAN用户定位与行为分析方法,其特征在于,包括以下步骤:
步骤一、将目标区域划分为NArea个子区域;
步骤二、采集目标区域内运动用户的Nseq条RSS序列,记为其中,第i条RSS序列具体表示为:
其中,rssij=(rssij1,rssij2,...,rssijk)(1≤j≤Mi)为中第j个信号矢量,Mi为第i条RSS序列的序列长度,即第i条RSS序列包含的信号矢量个数,k1为AP数目,rssijl1(1≤l1≤k1)为第i条RSS序列内第j个信号矢量中来自第l1个接入点AP的信号强度值;
步骤三、对采集的每条RSS序列进行小波去噪处理,得到新的Nseq条RSS序列,记为
步骤四、利用多维尺度MDS方法对所述步骤三得到的RSS序列中的信号矢量进行降维处理,以得到所有信号矢量在二维信号空间中对应的坐标;
步骤五、构建每条RSS序列在二维信号空间中对应的路径轨迹及其所包含的线段;
步骤六、对所有路径轨迹所包含的线段进行基于线段密度的聚类,以得到每条线段所属的聚类号及每个聚类所包含的线段集合;
步骤七、根据线段聚类间的转移关系构建信号逻辑图,并得到各聚类间的转移次数;
步骤八、对区域内用户的运动路径模式进行观测,得到NPathPattern种不同的运动路径模式,并统计用户从每个子区域到其他子区域的转移次数;
步骤九、根据各子区域间的连接关系,将目标区域表示为一幅由不同子区域节点相互连通的物理逻辑图;
步骤十、根据所述步骤七所得到的各聚类间的转移次数与所述步骤八所得到的用户从每个子区域到其他子区域的转移次数,分别构建信号与物理空间的概率转移矩阵PS和PA,同时,将信号与物理逻辑图中各个节点的热度进行排序,并把信号逻辑图中各个节点映射到物理逻辑图中热度排序相同的节点,进而得到信号逻辑图到物理逻辑图的映射准则;
步骤十一、在定位阶段,令新采集的信号序列为
步骤十二、根据所述步骤六所得到的聚类,将每个聚类所包含的RSS信号拟合为正态分布,并通过计算新采集信号序列RSSnew相对于每个聚类的联合概率来判断其所属聚类;
步骤十三、根据所述步骤十所得到的信号逻辑图到物理逻辑图的映射准则,得到新采集信号序列RSSnew所属的子区域;
步骤十四、通过对大量新采集信号序列的定位结果进行统计分析,构建用户行为分布图;
步骤十五、基于所述步骤十四所得到的用户行为分布图,对目标区域内用户的行为进行分析,得到用户行为分析结果。
2.根据权利要求1所述的基于线段密度的室内WLAN用户定位与行为分析方法,其特征在于,所述步骤六包括以下步骤:
6a、定义任意两条线段Li与Lj之间的三个广义距离:垂直距离平行距离和角度距离
d &perp; t = ( d &perp; 1 + d &perp; 2 ) / 2 d | | t = ( d | | 1 + d | | 2 ) / 2 d &theta; t = ( d &theta; 1 + d &theta; 2 ) / 2
其中,为线段Li到Lj的三个广义距离,为线段Lj到Li的三个广义距离,基于此,Li与Lj之间的距离公式为
6b、令idij表示路径轨迹中第j条线段所属的聚类号,将所有线段所属聚类号idij的初始值设置为0,其中,idij=0表示线段未被聚类且设置聚类号CN=1;
6c、任意选择一个未被遍历的线段Li(1≤i≤Mi-1),利用所述步骤6a中的距离公式计算其它线段Lj(1≤j≤Mj-1)与线段Li的距离dij
6d、比较dij与e的大小,若dij≤e,则令线段Lj在Li的e邻域内,记Li的e邻域为N(Li);
6e、记线段Li的e邻域内的线段数目为并比较与最小线段数阈值Min的大小;若则令线段Li为核心线段且Li的e邻域内的所有线段都属于第CN类,即idij=CN,同时,令候选集Q=N(Li)-Li并转至步骤6f;反之,转至步骤6c;
6f、遍历候选集Q中线段Li,重复步骤6c至步骤6e,并将满足条件的新候选集归并到Q中;
6g、令CN=CN+1;
6h、重复步骤6c至步骤6g,直至完成对所有线段的遍历,其中,idij=0所对应的线段表示噪声;
6i、将步骤三得到的中idij相同的信号矢量存储为一类,记为其中,clusterCN(1≤CN≤m)为第CN个RSS信号聚类,表示idij=CN的RSS矢量集合,m表示聚类个数;
6j、将路径轨迹中线段的所属聚类号集合用表示,即:
ID i 2 D = id i 1 r s s id i 2 r s s &CenterDot; &CenterDot; &CenterDot; id i ( M i - 1 ) r s s
其中,为第i条路径轨迹中第j条线段的所属聚类号。
3.根据权利要求1或2所述的基于线段密度的室内WLAN用户定位与行为分析方法,其特征在于,所述步骤七包括以下步骤:
7a、根据步骤六的结果,在集合中,将每条线段所属的聚类号作为一个元素,且每个不同的元素用一个圆圈表示,圆圈中的值用对应的元素值进行表示;
7b、顺序遍历集合中的元素,若当前时刻与上一时刻遍历元素不同,则连接两时刻遍历元素所对应的圆圈,其中,当两元素所对应的圆圈存在多次连接时,仅保留一条连接线段;
7c、重复步骤7b,直至遍历完中的所有元素,从而完成路径轨迹所对应的信号逻辑图的构建;
7d、重复步骤7a至步骤7c,得到所有路径轨迹所对应的信号逻辑图;
7e、用圆圈表示所述步骤六得到的所有聚类,每个圆圈表示一个聚类,圆圈中的值用对应的聚类号进行表示;
7f、根据路径轨迹所对应的信号逻辑图中圆圈之间连接关系,连接所述步骤7e中的圆圈;
7g、重复步骤7e至步骤7f,将所有路径轨迹所对应的信号逻辑图进行合并,进而形成最终的信号逻辑图,当两圆圈存在多次连接时,仅保留一条连接线段;
7h、统计集合clusterCN中各聚类间的转移次数,令表示聚类 Cluster c 3 ( 1 &le; c 3 &le; m ) Cluster c 4 ( 1 &le; c 4 &le; m ) 的转移次数。
4.根据权利要求1或2或3所述的基于线段密度的室内WLAN用户定位与行为分析方法,其特征在于,所述步骤十二包括以下步骤:
12a、根据步骤六的结果,得到每个聚类中来自每个AP的RSS信号统计分布,并将其拟合为正态分布,记第j个聚类中来自第i个AP的RSS信号拟合为正态分布其中,分别表示第j个聚类中来自第i个AP的RSS信号的均值和方差;
12b、计算新采集信号序列RSSnew相对于每个聚类的联合概率,令表示新采集信号序列相对于第u个聚类的联合概率,其中,表示新采集信号序列中来自第x个AP的RSS信号在正态分布条件下的概率值;
12c、选择具有最大联合概率的聚类为新采集信号序列RSSnew的所属聚类,即当pv=max{p1,p2...pm}(1≤v≤m)时,则RSSnew属于第v类。
CN201610107451.4A 2016-02-26 2016-02-26 基于线段密度的室内wlan用户定位与行为分析方法 Active CN105792138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610107451.4A CN105792138B (zh) 2016-02-26 2016-02-26 基于线段密度的室内wlan用户定位与行为分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610107451.4A CN105792138B (zh) 2016-02-26 2016-02-26 基于线段密度的室内wlan用户定位与行为分析方法

Publications (2)

Publication Number Publication Date
CN105792138A true CN105792138A (zh) 2016-07-20
CN105792138B CN105792138B (zh) 2019-03-05

Family

ID=56402807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610107451.4A Active CN105792138B (zh) 2016-02-26 2016-02-26 基于线段密度的室内wlan用户定位与行为分析方法

Country Status (1)

Country Link
CN (1) CN105792138B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106358155A (zh) * 2016-09-13 2017-01-25 京信通信技术(广州)有限公司 一种射频指纹数据库的建立方法及装置
CN106779218A (zh) * 2016-12-16 2017-05-31 深圳达实智能股份有限公司 一种人员活动轨迹的预测方法
CN107333285A (zh) * 2017-07-06 2017-11-07 南开大学 一种根据手机上网日志预测手机信号强度的方法
CN108521631A (zh) * 2018-04-13 2018-09-11 重庆邮电大学 一种面向室内定位的移动ap识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313383A (zh) * 2013-05-15 2013-09-18 华中科技大学 一种基于区域分割和曲面拟合的室内定位方法
CN104463929A (zh) * 2014-12-16 2015-03-25 重庆邮电大学 基于图像边缘检测信号相关性的室内wlan信号地图绘制与映射方法
CN104602341A (zh) * 2015-01-08 2015-05-06 重庆邮电大学 基于随机用户信号逻辑图映射的室内wlan定位方法
CN105120517A (zh) * 2015-07-29 2015-12-02 重庆邮电大学 基于多维尺度分析的室内wlan信号平面图构建与定位方法
CN105188035A (zh) * 2015-08-11 2015-12-23 重庆邮电大学 基于转移概率热点映射的室内wlan增广流形对齐定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313383A (zh) * 2013-05-15 2013-09-18 华中科技大学 一种基于区域分割和曲面拟合的室内定位方法
CN104463929A (zh) * 2014-12-16 2015-03-25 重庆邮电大学 基于图像边缘检测信号相关性的室内wlan信号地图绘制与映射方法
CN104602341A (zh) * 2015-01-08 2015-05-06 重庆邮电大学 基于随机用户信号逻辑图映射的室内wlan定位方法
CN105120517A (zh) * 2015-07-29 2015-12-02 重庆邮电大学 基于多维尺度分析的室内wlan信号平面图构建与定位方法
CN105188035A (zh) * 2015-08-11 2015-12-23 重庆邮电大学 基于转移概率热点映射的室内wlan增广流形对齐定位方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MU ZHOU, QIAO ZHANG, KUNJIE XU, ZENGSHAN TIAN, WEI HE: "EDGES: Improving WLAN SLAM with Logic Graph Construction and Mapping", 《IEEE》 *
吴笛等: "基于密度的轨迹时空聚类分析", 《地球信息科学》 *
宫蕊,舒红平,郭远远: "基于DBSCAN的密度聚类算法的研究", 《计算机科学》 *
康大伟, 陈天滋: "一种基于密度的面向线段的聚类算法", 《计算机应用》 *
柳有权,苏仙鹤: "线段的三步快速聚类算法", 《电子测试》 *
魏海涛等: "基于密度的线数据分组算法研究", 《地球信息科学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106358155A (zh) * 2016-09-13 2017-01-25 京信通信技术(广州)有限公司 一种射频指纹数据库的建立方法及装置
CN106358155B (zh) * 2016-09-13 2019-07-02 京信通信系统(中国)有限公司 一种射频指纹数据库的建立方法及装置
CN106779218A (zh) * 2016-12-16 2017-05-31 深圳达实智能股份有限公司 一种人员活动轨迹的预测方法
CN107333285A (zh) * 2017-07-06 2017-11-07 南开大学 一种根据手机上网日志预测手机信号强度的方法
CN107333285B (zh) * 2017-07-06 2020-09-18 南开大学 一种根据手机上网日志预测手机信号强度的方法
CN108521631A (zh) * 2018-04-13 2018-09-11 重庆邮电大学 一种面向室内定位的移动ap识别方法

Also Published As

Publication number Publication date
CN105792138B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN104298239B (zh) 一种室内移动机器人增强地图学习路径规划方法
CN103152823B (zh) 一种无线室内定位方法
CN105792138A (zh) 基于线段密度的室内wlan用户定位与行为分析方法
CN103476118B (zh) 一种用于实时监控的wlan室内位置指纹定位方法
CN105636201B (zh) 基于稀疏信号指纹数据库的室内定位方法
CN103428275B (zh) 基于wsn的室内移动目标行动路线追踪方法
CN103905992B (zh) 一种基于指纹数据的无线传感器网络的室内定位方法
EP1769261B1 (de) Vorrichtung und verfahren zum ermitteln einer aktuellen position eines mobilen gerätes
CN106125087A (zh) 基于激光雷达的舞蹈机器人室内行人跟踪方法
CN106529815A (zh) 城市轨道交通网络乘客出行时空轨迹估计方法及其应用
CN105301558A (zh) 一种基于蓝牙位置指纹的室内定位方法
CN106054125B (zh) 一种基于线性链条件随机场的融合室内定位方法
CN103209478A (zh) 基于分类阈值及信号强度权重的室内定位方法
CN104602342A (zh) 一种基于iBeacon设备的高效室内定位方法
CN107333276A (zh) 基于加权卡方距离的WiFi位置指纹定位方法
CN106814345A (zh) 易于数据采集和高精度的室内定位方法
CN104076327B (zh) 基于搜索空间缩减的连续定位方法
CN105682224A (zh) 一种免离线训练的分布式无线指纹定位方法
CN110213710A (zh) 一种基于随机森林的高性能室内定位方法、室内定位系统
CN109470250A (zh) 一种室内导航方法及系统
CN109508585A (zh) 一种基于poi和高分辨率遥感影像提取城市功能区的方法
CN105120517B (zh) 基于多维尺度mds分析的室内wlan信号平面图构建与定位方法
CN106851571A (zh) 一种基于决策树的快速KNN室内WiFi定位方法
CN105654764B (zh) 一种室内停车场定位方法
CN108762251A (zh) 一种图书馆机器人定位导航方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220607

Address after: 401121 No. 53, middle section of Huangshan Avenue, Yubei District, Chongqing

Patentee after: Chongqing China Post Information Technology Group Co.,Ltd.

Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2

Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS