CN105788869A - 一种超薄准固态敏化电池的制备方法 - Google Patents

一种超薄准固态敏化电池的制备方法 Download PDF

Info

Publication number
CN105788869A
CN105788869A CN201610118219.0A CN201610118219A CN105788869A CN 105788869 A CN105788869 A CN 105788869A CN 201610118219 A CN201610118219 A CN 201610118219A CN 105788869 A CN105788869 A CN 105788869A
Authority
CN
China
Prior art keywords
light anode
quasi
znsns
preparation
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610118219.0A
Other languages
English (en)
Other versions
CN105788869B (zh
Inventor
袁宁
袁宁一
李燕
丁建宁
郭华飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610118219.0A priority Critical patent/CN105788869B/zh
Publication of CN105788869A publication Critical patent/CN105788869A/zh
Application granted granted Critical
Publication of CN105788869B publication Critical patent/CN105788869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2054Light-sensitive devices comprising a semiconductor electrode comprising AII-BVI compounds, e.g. CdTe, CdSe, ZnTe, ZnSe, with or without impurities, e.g. doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池技术领域,特指一种结合石墨烯修饰Cu2ZnSnS4对电极和超薄光阳极的准固态敏化电池的制备方法,应用于染料敏化太阳能电池。其利用多孔Cu2ZnSnS4/石墨烯复合材料作为对电极,降低光阳极的厚度至1~2μm,电解质为准固态电解质,光阳极厚度的降低,改善了准固态电解质与光阳极吸附染料的接触,从而提高电池的光电转化效率。

Description

一种超薄准固态敏化电池的制备方法
技术领域
本发明涉及太阳能电池技术领域,特指一种结合石墨烯修饰Cu2ZnSnS4对电极和超薄光阳极的准固态敏化电池的制备方法,应用于染料敏化太阳能电池。
背景技术
能源与环境问题现已成为全世界关注的热点,而太阳能具有清洁、使用安全、取之不尽、利用成本低且不受地理条件限制等诸多优点,是解决能源和环境问题的理想能源;光电化学太阳能电池,特别是染料敏化太阳能电池是基于纳米技术发展起来的一种新型太阳能电池,具有制作成本低、生产工艺简单、无污染、光稳定性好,是一种环保型太阳能电池。
典型的染料敏化太阳能电池(DSSC)是单结太阳能电池,是一个“三明治”结构,通常由10-20um厚的染料敏化的多孔氧化钛半导体薄膜、I-/I3-电解质溶液和Pt对电极组成。
液态电解质由于具有高的电导率,离子扩散速度快,对多孔光阳极渗透性好等优点而被广泛研究,但是此类有机溶剂液体电解质存在易挥发、难封装、稳定性差、具有一定的毒性并且会导致染料的解吸附等缺点;而准固态电解质具有“零”蒸气压、电化学窗口宽、耐热稳定性高、电导率高等优点,能有效的解决有机溶剂的易挥发、稳定性差等缺点。但准固态电解质流动性差,当光阳极厚度较厚时,准固态电解质与光阳极吸附的染料电池的接触相比于液态电解质差,不能给导电离子提供一个完全的自由的空间,并且小分子凝胶电解质不够稳定,高分子聚合物凝胶电解质电导率低,纳米粒子凝胶电解质易团聚等问题,为此基于固态电解质的电池效率明显降低。
Cu2ZnSnS4元素来源丰富,价格便宜,具有高的吸收系数(>104cm-1),为直接带隙材料(Eg=1.4-1.5eV),与太阳能电池所需要的最佳禁带宽度1.50eV相匹配。石墨烯具有较好的电子传输性能,与石墨烯复合不仅可以改善薄膜的导电率还能增加薄膜的比表面积。
本发明利用多孔Cu2ZnSnS4/石墨烯复合材料作为光阴极,配合超薄光阳极,利用准固态电解质,制备获得的太阳电池效率远高于以Pt为对电极的准固态电池效率。
发明内容
本发明的目的在于:针对用P型窄带隙半导体光阴极材料取代Pt对电极,通过P型半导体与石墨烯复合,获得了一种薄的光阳极的染料敏化太阳能电池,不仅可以收集外部电子,催化电解质中的碘离子,还可以吸收透射光,抑制复合,从而提高光电转化效率,同时采用准固态电解质解决液态电解质的不易封装、高温不稳定、易泄露等缺陷。
为了达到上述的目的,本发明采用如下技术方案:
一种超薄准固态敏化电池,包括对电极、光阳极和电解质,其特征在于:利用多孔Cu2ZnSnS4/石墨烯复合材料作为对电极,降低光阳极的厚度至1~2μm,电解质为准固态电解质,光阳极厚度的降低,改善了准固态电解质与光阳极吸附染料的接触,从而提高电池的光电转化效率。
所述超薄准固态敏化电池效率远高于同样结构,以Pt为对电极的太阳电池的效率,并且相对于同样结构,采用液态电解质的电池,准固态电解质电池没有明显下降,但解决液态电解质的不易封装、高温不稳定、易泄露等缺陷。
所述的光阳极为TiO2光阳极材料。
所述的准固态电解质,含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。
所述超薄准固态敏化电池的制备方法,包括以下步骤:
第一步:Cu2ZnSnS4颗粒的制备:将0.4~0.5mol/L的二水氯化铜、0.2~0.3mol/L氯化锌、0.2~0.3mol/L二水氯化锡、1.2~1.4mol/L硫脲、表面活性剂和乙二醇充分搅拌均匀,其中二水氯化铜、氯化锌、二水氯化锡、硫脲、表面活性剂和乙二醇的比例为:2mol:1mol:1mol:4mol:1.8g:160ml,倒入反应釜中,放入烘箱,在一定温度下保温反应,反应结束后,自然冷却至室温,离心后放入真空干燥箱中烘干。
第二步:Cu2ZnSnS4/graphene对电极的制备:取Cu2ZnSnS4颗粒和石墨烯,加入无水乙醇和乙二醇的混合溶液中,Cu2ZnSnS4颗粒和石墨烯的质量比为1:0.02,Cu2ZnSnS4颗粒和石墨烯质量之和与无水乙醇和乙二醇的混合溶液的比为1.02g:5ml,超声搅拌得到分散均匀的混合溶液,通过多次旋涂达到1~2μm厚度的薄膜,烘干后放入管式炉煅烧保温,获得Cu2ZnSnS4/graphene复合对电极。
第三步:FTO的处理及光阳极的制备:FTO玻璃浸泡在TiCl4溶液中,浸泡后取出放入烘箱保温,冲洗烘干;刮涂不同厚度的TiO2光阳极,晾干后马弗炉煅烧保温,冷却室温后然后浸泡在TiCl4溶液中,放入烘箱保温,冲洗烘干,放入马弗炉中煅烧保温,得到不同厚度的TiO2光阳极材料。
第四步:光阳极的敏化、电解质处理及电池的组装。
所述方法第一步,搅拌2~4h,放入烘箱230℃保温24h;反应结束后,自然冷却至室温,分别用无水乙醇和去离子水离心5次,最后放入真空干燥箱60℃烘干12h。
所述方法第二步,无水乙醇和二甲醇的混合溶液中无水乙醇和二甲醇的体积比为1:1,超声搅拌时间为3h,旋涂的转速为2500rpm,时间为60s,旋涂后放加热板50℃加热2min,继续旋涂,重复旋涂3次,加热板50℃烘干,管式炉中煅烧温度为400℃,保温1h,得到Cu2ZnSnS4/graphene对电极材料。
所述方法第三步,称量锐钛相的TiO2纳米颗粒,乙基纤维素,乙酰丙酮,松油醇和无水乙醇,锐钛相的TiO2纳米颗粒,乙基纤维素,乙酰丙酮,松油醇和无水乙醇的比例为1g:0.5g:1.3ml:2.4ml:5ml,超声30min后搅拌3h,得到TiO2浆料溶液;FTO玻璃浸泡在TiCl4溶液中,TiCl4溶液中四氯化钛溶液与去离子水的体积比为1.7:400;浸泡后取出放入烘箱70℃保温30min,再冲洗烘干;采用刮涂法制备TiO2光阳极,晾干后放入马弗炉煅烧500℃保温2h,冷却室温后然后浸泡在同样的TiCl4溶液中,放入烘箱70℃保温30min,冲洗烘干,放入马弗炉中煅烧450℃保温30min,得到厚度分别为1~2μm、10~20μm的TiO2光阳极材料。
所述方法第四步,敏化染料包括但不限于N719,电解质处理方法为注入或浸泡,封装膜为PTFTO或PET,使光阳极和对电极结合好;注入的电解质为液态电解质含0.5MLiI、0.05MI2和0.5MTBP(4-tert-butylpyridine)的乙腈溶液或准固态电解质含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。
本发明的有益效果在于:1)、热溶剂法制备的Cu2ZnSnS4颗粒具有较大的比表面积,石墨烯具有较好的电导率、电子传输性能;2)Cu2ZnSnS4不仅可以催化电解质中的碘离子,还可以吸收透射光,产生光生载流子,从而抑制复合,提高光电流,3)由于对电极可以吸收光,光阳极的厚度可以得到降低,4)光阳极厚度的降低,改善了准固态电解质与光阳极吸附染料的接触,从而提高电池的光电转化效率。5)超薄准固态电解质电池更适合做柔性电池。
附图说明
图1为本发明实例一中热溶剂法制备的Cu2ZnSnS4的扫描电镜图,从图中可看出由片层堆积的花状形貌。
图2为本发明实例一中热溶剂法制备的Cu2ZnSnS4的XRD图,与黄锡矿结构的(112)、(220)、(312)相对应。
图3为本发明实例一中热溶剂法制备的Cu2ZnSnS4与石墨烯复合的扫描电镜图,从图中可以看出有花状和片层结构。
图4a为本发明实例一以厚度为10μmTiO2光阳极,分别采用Pt对电极和Cu2ZnSnS4/graphene复合对电极的液态电解质敏化电池I-V曲线图,图4b为本发明实例二中以厚度为10μmTiO2光阳极,分别采用Pt对电极和Cu2ZnSnS4/graphene复合对电极的准固态电解质敏化电池I-V曲线图,从图中可以看出TiO2光阳极厚度为10μm的准固态电解质敏化电池的电流密度均降低的较多。
图5a为本发明实例三以厚度为2μmTiO2光阳极,分别采用Pt对电极和Cu2ZnSnS4/graphene复合对电极的液态电解质敏化电池I-V曲线图,图5b为本发明实例四中以厚度为2μmTiO2光阳极,分别采用Pt对电极和Cu2ZnSnS4/graphene复合对电极的准固态电解质敏化电池I-V曲线图,从图中以看出TiO2光阳极厚度降低为2μm的准固态电解质的Cu2ZnSnS4/graphene对电极的电流密度下降的较少,其电池效率远高于以Pt为对电极的太阳电池的效率。
具体实施方式
以下结合实例进一步说明本发明的内容:
实例一:厚度为10μmTiO2光阳极的液态电解质敏化电池的制备
1、Cu2ZnSnS4颗粒的制备:
称取0.45mol/L的二水氯化铜,0.25mol/L的氯化锌,0.25mol/L二水氯化锡和1.25mol/L的硫脲,添加0.45g的表面活性剂(PVP:CTAB=3:1),加入40ml的乙二醇,超声搅拌2h,混合均匀后倒入反应釜中,放入烘箱230℃保温24h,反应结束后,自然冷却至室温,分别用无水乙醇和去离子水离心5次,最后放入真空干燥箱60℃烘干12h,得到Cu2ZnSnS4颗粒。
2、Cu2ZnSnS4/graphene对电极的制备:
称取1g的Cu2ZnSnS4颗粒和0.02g的石墨烯,加入无水乙醇和二甲醇5ml(v/v=1:1),超声搅拌3h,得到分散均匀的混合溶液,通过旋涂方法制备薄膜,转速为2500rpm,时间为60s,旋涂后放加热板50℃加热2min,继续旋涂,此步骤重复旋涂3次,加热板50℃烘干后将制备好的薄膜放到管式炉中进行热处理,升温速率为10℃/min,在400℃保温1h,自然将至室温,即得到Cu2ZnSnS4/graphene对电极材料。
3、FTO的处理及光阳极的制备:
称量1g锐钛相的TiO2纳米颗粒,0.5g乙基纤维素,量取1.3ml的乙酰丙酮和2.4ml松油醇,加入5ml的无水乙醇,先超声30min后搅拌3h,得到TiO2浆料溶液,FTO玻璃浸泡在TiCl4(1.7ml四氯化钛,400ml去离子水)溶液中,放入烘箱70℃保温30min,冲洗烘干;采用刮涂法制备厚度为10μm的TiO2光阳极,晾干后放入马弗炉煅烧500℃保温2h,冷却室温后再将样品浸泡在TiCl4(1.7ml四氯化钛,400ml去离子水)溶液中,放入烘箱70℃保温30min,冲洗烘干,放入马弗炉中煅烧450℃保温30min,得到TiO2光阳极材料。
4、光阳极的敏化及电池组装
厚度为10μm的TiO2光阳极材料在N719染料溶液中浸泡24h,制成光阳极,以Pt电极和Cu2ZnSnS4/graphene为对电极,以PET为热封装膜,加热至150℃组装成太阳能电池,注入的液态电解质为含0.5MLiI、0.05MI2和0.5MTBP(4-tert-butylpyridine)的乙腈溶液。
实例二:厚度为10μmTiO2光阳极的准固态电解质敏化电池的制备
1、Cu2ZnSnS4颗粒的制备:
同实例一中Cu2ZnSnS4颗粒的制备。
2、Cu2ZnSnS4/graphene对电极的制备:
同实例一中Cu2ZnSnS4/graphene对电极的制备。
3、FTO的处理及光阳极的制备:
同实例一中FTO的处理及光阳极的制备。采用刮涂法制备厚度为10μm的TiO2光阳极。
4、电极的敏化及电池组装
厚度为10μm的TiO2在N719染料溶液中浸泡24h,制成光阳极,以Pt电极和Cu2ZnSnS4/graphene为对电极,以PET为热封装膜,加热至150℃组装成太阳能电池,注入准固态电解质含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。
实例三:厚度为2μmTiO2光阳极的液态电解质敏化电池的制备
1、Cu2ZnSnS4颗粒的制备:
同实例一中Cu2ZnSnS4颗粒的制备。
2、Cu2ZnSnS4/graphene对电极的制备:
同实例一中Cu2ZnSnS4/graphene对电极的制备。
3、FTO的处理及光阳极的制备:
同实例一中FTO的处理及光阳极的制备。采用刮涂法制备厚度为2μm的TiO2光阳极。
4、光阳极的敏化及电池组装
同实例一中电极的敏化及电池组装
实例四:厚度为2μmTiO2光阳极的准固态电解质敏化电池的制备
1、Cu2ZnSnS4颗粒的制备:
同实例一中Cu2ZnSnS4颗粒的制备。
2、Cu2ZnSnS4/graphene对电极的制备:
同实例一中Cu2ZnSnS4/graphene对电极的制备。
3、FTO的处理及光阳极的制备:
同实例一中FTO的处理及光阳极的制备。采用刮涂法制备厚度为2μm的TiO2光阳极。
4、电极的敏化及电池组装
厚度为2μm的TiO2在N719染料溶液中浸泡24h,制成光阳极,以Pt电极和Cu2ZnSnS4/graphene为对电极,以PET为热封装膜,加热至150℃组装成太阳能电池,注入准固态电解质含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。。
实施效果:最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,实例一中TiO2光阳极的厚度为10μm的液态电解质的Pt对电极的电池的开路电压为0.784V,短路电流为18.02mA,填充因子为0.633,光电转换效率为8.94%;Cu2ZnSnS4/graphene为对电极的电池的开路电压为0.751V,短路电流为17.39mA,填充因子为0.630,光电转换效率为8.22%,测试数据如图4a所示。同时图中给出了实例二电池的测试结果,TiO2光阳极的厚度为10μm的准固态电解质的Pt对电极的电池的开路电压为0.72V,短路电流为13.49mA,填充因子为0.76,光电转换效率为7.38%;Cu2ZnSnS4/graphene为对电极的电池的开路电压为0.71V,短路电流为12.56mA,填充因子为0.75,光电转换效率为6.69%。
实例三中TiO2光阳极的厚度降低为2μm的液态电解质的Pt对电极的电池的开路电压为0.769V,短路电流为12.28mA,填充因子为0.557,光电转换效率为5.25%;Cu2ZnSnS4/graphene为对电极的电池的开路电压为0.721V,短路电流为13.78mA,填充因子为0.577,光电转换效率为5.73%。
实例4中TiO2光阳极的厚度降低为2μm的准固态电解质的Pt对电极的电池的开路电压为0.68V,短路电流为8.56mA,填充因子为0.73,光电转换效率为4.25%;Cu2ZnSnS4/graphene为对电极的电池的开路电压为0.69V,短路电流为9.44mA,填充因子为0.75,光电转换效率为4.48%。
从实验结果可以看出厚度为10μm的TiO2光阳极的液态电解质,Cu2ZnSnS4/graphene光阴极的光电转换效率接近Pt对电极,用准固态电解质时电流密度和光电转换效率均匀大幅度的下降;当TiO2光阳极的厚度降低为2μm时,使用准固态电解质的Cu2ZnSnS4/graphene对电极的电流密度下降的较少,其电池效率远高于以Pt为对电极的太阳电池的效率,并且相对于液态电解质电池,准固态电解质电池没有明显的下降。

Claims (8)

1.一种超薄准固态敏化电池,包括对电极、光阳极和电解质,其特征在于:利用多孔Cu2ZnSnS4/石墨烯复合材料作为对电极,降低光阳极的厚度至1~2μm,电解质为准固态电解质,光阳极厚度的降低,改善了准固态电解质与光阳极吸附染料的接触,从而提高电池的光电转化效率。
2.如权利要求1所述的一种超薄准固态敏化电池,其特征在于:所述的光阳极为TiO2光阳极材料。
3.如权利要求1所述的一种超薄准固态敏化电池,其特征在于:所述的准固态电解质,含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。
4.如权利要求1所述的一种超薄准固态敏化电池的制备方法,其特征在于按照如下步骤进行:
第一步:Cu2ZnSnS4颗粒的制备:将0.4~0.5mol/L的二水氯化铜、0.2~0.3mol/L氯化锌、0.2~0.3mol/L二水氯化锡、1.2~1.4mol/L硫脲、表面活性剂和乙二醇充分搅拌均匀,其中二水氯化铜、氯化锌、二水氯化锡、硫脲、表面活性剂和乙二醇的比例为:2mol:1mol:1mol:4mol:1.8g:160ml,倒入反应釜中,放入烘箱,在一定温度下保温反应,反应结束后,自然冷却至室温,离心后放入真空干燥箱中烘干;
第二步:Cu2ZnSnS4/graphene对电极的制备:取Cu2ZnSnS4颗粒和石墨烯,加入无水乙醇和乙二醇的混合溶液中,Cu2ZnSnS4颗粒和石墨烯的质量比为1:0.02,Cu2ZnSnS4颗粒和石墨烯质量之和与无水乙醇和乙二醇的混合溶液的比为1.02g:5ml,超声搅拌得到分散均匀的混合溶液,通过多次旋涂达到1~2μm厚度的薄膜,烘干后放入管式炉煅烧保温,获得Cu2ZnSnS4/graphene复合对电极;
第三步:FTO的处理及光阳极的制备:FTO玻璃浸泡在TiCl4溶液中,浸泡后取出放入烘箱保温,冲洗烘干;刮涂不同厚度的TiO2光阳极,晾干后马弗炉煅烧保温,冷却室温后然后浸泡在TiCl4溶液中,放入烘箱保温,冲洗烘干,放入马弗炉中煅烧保温,得到不同厚度的TiO2光阳极材料;
第四步:光阳极的敏化、电解质处理及电池的组装。
5.如权利要求4所述的一种超薄准固态敏化电池的制备方法,其特征在于:所述方法第一步,搅拌2~4h,放入烘箱230℃保温24h;反应结束后,自然冷却至室温,分别用无水乙醇和去离子水离心5次,最后放入真空干燥箱60℃烘干12h。
6.如权利要求4所述的一种超薄准固态敏化电池的制备方法,其特征在于:所述方法第二步,无水乙醇和二甲醇的混合溶液中无水乙醇和二甲醇的体积比为1:1,超声搅拌时间为3h,旋涂的转速为2500rpm,时间为60s,旋涂后放加热板50℃加热2min,继续旋涂,重复旋涂3次,加热板50℃烘干,管式炉中煅烧温度为400℃,保温1h,得到Cu2ZnSnS4/graphene对电极材料。
7.如权利要求4所述的一种超薄准固态敏化电池的制备方法,其特征在于:所述方法第三步,称量锐钛相的TiO2纳米颗粒,乙基纤维素,乙酰丙酮,松油醇和无水乙醇,锐钛相的TiO2纳米颗粒,乙基纤维素,乙酰丙酮,松油醇和无水乙醇的比例为1g:0.5g:1.3ml:2.4ml:5ml,超声30min后搅拌3h,得到TiO2浆料溶液;FTO玻璃浸泡在TiCl4溶液中,TiCl4溶液中四氯化钛溶液与去离子水的体积比为1.7:400;浸泡后取出放入烘箱70℃保温30min,再冲洗烘干;采用刮涂法制备TiO2光阳极,晾干后放入马弗炉煅烧500℃保温2h,冷却室温后然后浸泡在同样的TiCl4溶液中,放入烘箱70℃保温30min,冲洗烘干,放入马弗炉中煅烧450℃保温30min,得到厚度为1~2μm的TiO2光阳极材料。
8.如权利要求4所述的一种超薄准固态敏化电池的制备方法,其特征在于:所述方法第四步,敏化染料包括但不限于N719,电解质处理方法为注入或浸泡,封装膜为PTFTO或PET,使光阳极和对电极结合好;注入的电解质为液态电解质含0.5MLiI、0.05MI2和0.5MTBP(4-tert-butylpyridine)的乙腈溶液或准固态电解质含1M1-甲基-3-丙基咪唑碘化盐(PMII),0.1M碘(I2),0.2M双三氟甲磺酰亚胺锂(LITFSI),0.5M4-叔丁基吡啶(TBP),25wt%聚离子液体([PBVIm][TFSI])。
CN201610118219.0A 2016-03-02 2016-03-02 一种超薄准固态敏化电池的制备方法 Active CN105788869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610118219.0A CN105788869B (zh) 2016-03-02 2016-03-02 一种超薄准固态敏化电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610118219.0A CN105788869B (zh) 2016-03-02 2016-03-02 一种超薄准固态敏化电池的制备方法

Publications (2)

Publication Number Publication Date
CN105788869A true CN105788869A (zh) 2016-07-20
CN105788869B CN105788869B (zh) 2019-11-12

Family

ID=56387752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610118219.0A Active CN105788869B (zh) 2016-03-02 2016-03-02 一种超薄准固态敏化电池的制备方法

Country Status (1)

Country Link
CN (1) CN105788869B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601485A (zh) * 2016-12-22 2017-04-26 南京大学昆山创新研究院 基于三元复合凝胶准固态电解质的染料敏化太阳电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324316A (zh) * 2011-07-26 2012-01-18 常州大学 一种复合光阳极及其制备方法
CN103151176A (zh) * 2013-03-08 2013-06-12 厦门大学 一种三维球状锐钛矿型TiO2光阳极的制备方法
CN103613120A (zh) * 2013-11-29 2014-03-05 上海交通大学 铜锌锡硫纳米颗粒的合成及其与石墨烯复合的方法
CN103611549A (zh) * 2013-11-21 2014-03-05 电子科技大学 铜锌锡硫/氧化石墨烯复合半导体光催化剂的制备方法
CN103700509A (zh) * 2013-12-26 2014-04-02 常州大学 一种固态敏化电池的制备方法
CN103794377A (zh) * 2014-02-21 2014-05-14 南京大学昆山创新研究院 一种染料敏化太阳能电池光阳极及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324316A (zh) * 2011-07-26 2012-01-18 常州大学 一种复合光阳极及其制备方法
CN103151176A (zh) * 2013-03-08 2013-06-12 厦门大学 一种三维球状锐钛矿型TiO2光阳极的制备方法
CN103611549A (zh) * 2013-11-21 2014-03-05 电子科技大学 铜锌锡硫/氧化石墨烯复合半导体光催化剂的制备方法
CN103613120A (zh) * 2013-11-29 2014-03-05 上海交通大学 铜锌锡硫纳米颗粒的合成及其与石墨烯复合的方法
CN103700509A (zh) * 2013-12-26 2014-04-02 常州大学 一种固态敏化电池的制备方法
CN103794377A (zh) * 2014-02-21 2014-05-14 南京大学昆山创新研究院 一种染料敏化太阳能电池光阳极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L.BAI ET AL: "Cu2ZnSnS4/graphene composites as low-cost countere lectrode materials for dye-sensitized solar cells", 《MATERIALS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601485A (zh) * 2016-12-22 2017-04-26 南京大学昆山创新研究院 基于三元复合凝胶准固态电解质的染料敏化太阳电池及其制备方法

Also Published As

Publication number Publication date
CN105788869B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN101901693B (zh) 石墨烯复合染料敏化太阳能电池的光阳极及其制备方法
Saikia et al. Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P (VdF-HFP)-based gel polymer electrolyte
Zhang et al. Development of flexible dye-sensitized solar cell based on pre-dyed zinc oxide nanoparticle
Yue et al. A dye-sensitized solar cell based on PEDOT: PSS counter electrode
CN108198691B (zh) 氮化碳衍生物与还原氧化石墨烯复合物的制备方法及染料敏化太阳能电池
Lee et al. Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction
CN108172401A (zh) 染料敏化电池用复合对电极及其制备方法和应用
JP4925605B2 (ja) 光電変換装置およびそれを用いた光発電装置
TWI449236B (zh) 膠態電解液、其製法及其染料敏化太陽能電池
Venkatesan et al. Quasi-solid-state composite electrolytes with Al2O3 and ZnO nanofillers for dye-sensitized solar cells
Xue et al. An alternative ionic liquid based electrolyte for dye-sensitized solar cells
CN103413682B (zh) 一种基于双咪唑型离子晶体的太阳能电池用准固态电解质
Chiang et al. Titania aerogels as a superior mesoporous structure for photoanodes of dye-sensitized solar cells
CN102280256B (zh) 染料敏化太阳能电池准固态电解质及用其制备太阳能电池的方法
Xiao et al. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells
Venkatesan et al. Highly efficient gel-state dye-sensitized solar cells prepared using propionitrile and poly (vinylidene fluoride-co-hexafluoropropylene)
Lin et al. Photovoltage enhancement of dye sensitised solar cells by using ZnO modified TiO2 electrode
CN105788869B (zh) 一种超薄准固态敏化电池的制备方法
CN115064388A (zh) 基于复合结构光阳极的染敏太阳能电池及其制法和应用
WO2011118197A1 (ja) 光電変換素子、光センサ及び太陽電池
TWI685123B (zh) 染料敏化太陽能電池
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
Raj et al. Fabrication of low-cost carbon paste based counter electrodes for dye-sensitized solar cells
Li et al. Suppression of charge recombination by application of Cu2ZnSnS4-graphene counter electrode to thin dye-sensitized solar cells
CN105931849A (zh) 一种ZnO纳米棒/纳米片复合结构光阳极膜的制备方法及其制得的光阳极膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant