CN105783732A - 一种基于计算机视觉的水下激光基准线测量系统 - Google Patents
一种基于计算机视觉的水下激光基准线测量系统 Download PDFInfo
- Publication number
- CN105783732A CN105783732A CN201610145848.2A CN201610145848A CN105783732A CN 105783732 A CN105783732 A CN 105783732A CN 201610145848 A CN201610145848 A CN 201610145848A CN 105783732 A CN105783732 A CN 105783732A
- Authority
- CN
- China
- Prior art keywords
- underwater
- laser
- datum line
- computer vision
- software
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/022—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种基于计算机视觉的水下激光基准线测量系统,属于水下特种测量领域,用于测量水下结构物安装的相对位置参数,辅助水下工程建设。该测量系统运用大功率激光器产生的激光光线作为预设基准线及比例尺,为计算机视觉软件的测量提供图像特征。系统搭载的水下摄像机获取水下实况画面,并通过计算机视觉软件提取图像特征,经由内置算法得出水下结构物与预设位置间的相对距离,也可通过提取画面其他特征测量两个相邻规则结构物之间的高程差或错牙参数,反映结构物的平面姿态或相对位置,达到辅助水下作业精确安装的目的。
Description
技术领域
本发明属于计算机视觉和水下工程技术领域,具体涉及水下结构物的计算机视觉识别测量。
背景技术
重力式码头是我国分布较广,使用较多的一种码头结构形式,主要形式有方块结构与沉箱结构。其中,方块结构式码头一般采用预制的大型混泥土方块作为基本构件,块体在预制场预制,然后运到现场进行安装。方块的安装精度和效率直接影响整个方块码头建设的质量和进度。
目前,在重力式方块码头建设中,有几种传统的方块安装测量定位方法:水下基准线法、前沿参照物控制法、水上基准线法、延伸线定位法和测量架(杆)定位法。前四种方法均为物理接触法,需配合的人员及船机较多,投入较大,效率低下,且水面吊装指挥员只能通过水下对讲机与潜水员语音沟通来获取水下方块的位置信息,施工质量无法得到有效监督。在此需求上,进一步发展出第五种方法——测量架定位法,即在方块的角点上各设置一个高出水面的沿伸架(杆),架顶端安装信号发射器,水面接收器通过接收不同杆头发出的位置信号来确定水下方块的平面位置,但该方法有很强局限性——仅适用于深度5米以下的浅水区作业,对于水深较深的基底方块的安装,则仍需采用前述定位方法。
发明内容
鉴于目前水下方块安装情况,在传统方块安装定位方法的基础上,本文提出了一种基于计算机视觉的水下激光基准线测量系统,用激光光线替代传统方法中的物理实体准线,并且通过水下摄像头所采集的实时画面,利用计算机视觉软件识别画面中的图像特征,计算出方块的实际位置,为水面吊装指挥员提供精确的修正数据,从而指导方块调位。
本发明由水面控制主机、搭载计算机视觉软件的工程计算机、水下摄像机、水下补光灯、水下双联激光器(作比例尺用)、水下基准线激光器、激光靶尺、测量台架和水密电缆等部分组成。
优选地,所述水下摄像机采用广角镜头,外壳采用钛合金材料,具有较强的抗海水腐蚀能力,并且所述水下摄像机可承受最大水深300米的水压;
优选地,所述水下补光灯外壳采用钛合金材料,防止海水腐蚀,光照强度及光照角度可调节,以适应水下不同的补光需求;
优选地,所述激光靶尺采用特制不锈钢材料,其表面经化学处理为黑色,减弱激光反射效果,防止眩光出现,干扰计算机视觉软件的图像特征提取与识别;
优选地,所述水下双联激光器采用红色激光激发器,投射红色激光柱到激光靶尺上,光斑中心距固定,为计算机视觉软件算法处理提供比例尺。其外壳采用钛合金材料,具备较强的抗海水腐蚀能力,并且耐压设计使其可承受最大水深1500米的水压。
优选地,所述水下基准线激光器采用大功率绿色激光激发器,保证远距离的衰减后,激光在靶尺上的投射光斑仍能为计算机视觉软件所识别。其外壳采用钛合金材料,具备较强的抗海水腐蚀能力,并且耐压设计使其可承受最大水深1500米的水压。
优选地,所述水面控制主机可同时控制两套水下激光器及水下摄像机的启闭,控制水下补光灯的亮度强弱,同时,将水下摄像头采集的图像信号数据打包处理后传输给搭载计算机视觉软件的工程计算机做进一步处理。
优选地,所述搭载计算机视觉软件的工程计算机,接收从水面控制主机发来的视频信号,经计算机视觉软件进行图像预处理、特征提取等算法处理后,给出方块当前实时位置参数,并且将画面输出至显示屏,供水面调控人员参考。
优选地,所述测量台架采用不锈钢材料,其作用在于集成安装水下摄像机、水下双联激光器、水下补光灯、激光靶尺等附件,并且根据测量位置的实际情况,快速调整水下补光灯的角度及水下摄像机的视野大小,更好地获取被测方块特征。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得以下有益效果:
本发明采用的激光准线简化了传统实体基准线布置时的繁琐程序,同时克服了传统实体基准线由于长度过大而产生的绕度,以及水流影响下左右摆动的问题。另外,本系统通过水密电缆将水下画面实时传输至水面控制主机,不仅可利用精确的计算机视觉软件识别并计算得出待测物体的位置参数,而且水面指挥员能够通过实时画面方便高效地监督水下施工质量,实现水下吊装过程的可视化、数据化操作。
附图说明
图1是本发明实施例中水下方块安装测量时,测量台架部分及激光基准线发射器布置示意图。
图2是本发明实施例中的计算机视觉水下激光准线测量系统连接示意图。
图3是计算机视觉软件中的画面特征参数测量示意图。
图4是基于计算机视觉的水下激光准线测量系统原理图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
101-待测方块102-水密电缆103-绿色基准线激光器104-基准线激光器固定底座105-侧向补光灯106-便携式手持支架107-红色激光光柱108-黑色激光靶尺109-红色双联激光器(比例尺用)110-水下摄像机111-绿色激光基准线
另外,102、105、106、108、109、110为便携式手持测量组件;102、103、104为基准线组件。
具体实施方式
为了使发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是水下方块安装测量时,测量组件部分及激光基准线发射器的布置示意图。该种基于计算机视觉的水下激光基准线测量系统的测量部分包括便携式手持测量组件(102、105、106、108、109、110)、预设激光基准线组件(102、103、104)。
手持测量组件包括水下摄像机、水下补光灯、双联比例尺激光器和激光靶尺。由于本测量系统主要用于整个吊装过程中的精调测量阶段,故以下实施例均假定吊装粗调过程已完成,进入精调阶段。在此阶段,水下操作人员沿着激光基准线将手持测量组件布置在待测方块(101)的测量面,并使绿色激光基准线(111)投射到黑色激光靶尺(108)上,水下摄像机(110)获取此位置实时画面并通过水密电缆(102)传输至水面控制主机,视频数据打包处理后通过以太网发送给搭载计算机视觉软件的工程计算机,由一系列软件算法处理后输出方块目标测量点的相对位置参数。
便携式手持测量组件沿着激光基准线的光路移动,可测量方块不同位置的相对位置参数。且因为方块吊装过程中,方块侧面始终保持竖直状态,所以根据不同测量点的相对位置参数即可推测出整个方块的绝对位置。
图2是该种基于计算机视觉的水下激光基准线测量系统的系统连接图。水下摄像头(110)、水下补光灯(105)及红色双联比例激光器(109)集成安装于便携式手持支架上面,通过水密电缆(102)连接至水面控制主机;同样的,预先固定在基准线激光器固定底座(104)上的绿色基准线激光器(103)也通过水密电缆连接至水面控制主机。
水面控制主机可通过水密电缆控制所有与其连接的水下设备,包括激光发射器、摄像头的启闭,以及补光灯的亮度强弱。
图3是计算机视觉软件中的画面特征参数测量示意图,通过放置测量台架,水下摄像机获取如图所示图像区域,最终由计算机视觉软件计算出方块与预设激光基准线之间的距离参数。
图4是该种基于计算机视觉的水下激光准线测量系统原理图,系统首先接收水下摄像机采集的基准线特征图像,然后对采集得图像进行滤波、增强、超分辨率等预处理后,通过特定算法提取激光比例尺投影点、激光基准线投影点,以及方块待测面,最终计算出方块到基准线的距离。
本领域的技术人员容易理解,以上所述仅为本发明的一种实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种基于计算机视觉的水下激光基准线测量系统,由水下摄像机、水下补光灯、红色双联比例尺激光器、绿色基准线激光器、便携式手持测量台架、水面控制主机、搭载计算机视觉软件的工程计算机,以及若干水密电缆等设备组成,用于水下方块码头安装的可视化测量,其特征在于:
水下摄像机(110),所述水下摄像机采用广角镜头,外壳采用钛合金材料,具有较强的抗海水腐蚀能力,并且所述水下摄像机可承受最大水深300米的水压;
水下补光灯(105),所述水下补光灯外壳采用钛合金材料,防止海水腐蚀,光照强度可调节,以适应水下不同的光照需求,照明灯光束为平铺式,减少光照集聚对图像特征提取的影响;
红色双联比例尺激光器(109),所述水下双联激光器采用红色激光激发器,两平行光柱投射到激光靶尺的光斑中心距固定,为后续计算机视觉软件处理算法提供比例尺;
外壳采用钛合金材料,具备较强的抗海水腐蚀能力,并且耐压设计使其可承受最大水深1500米的水压;
绿色基准线激光器(103),所述水下基准线激光器采用大功率绿色激光激发器,保证远距离的光路衰减后的投射光斑仍能为计算机视觉软件所识别;
外壳采用钛合金材料,具备较强的抗海水腐蚀能力,并且耐压设计使其可承受最大水深1500米的水压;
水面控制主机,所述水面控制主机通过水密电缆(102)将水下摄像机(110)和水下照明灯(105)连接成系统,可控制水下摄像机、水下照明灯的开关,并可根据水下环境控制水下照明灯补光强度,通过与相关软硬件集成,实时采集水下特征图像,并将水下摄像头采集的图像信号数据打包处理后传输给搭载计算机视觉软件的工程计算机进一步处理;
搭载计算机视觉软件的工程计算机,所述搭载计算机视觉软件的工程计算机,接收从水面控制主机发来的视频信号,经计算机视觉软件进行图像预处理、特征提取等算法处理后,给出方块当前实时位置参数,并且将画面输出至显示屏,供水面调控人员参考。
2.本发明所述的一种基于计算机视觉的水下激光基准线测量系统,其特征在于,采用激光光线替代传统实体基准线,简化基准线布置程序,克服传统实体基准线达到一定长度后因自身重量产生的绕度,同时也能克服因水流影响而产生的左右摆动问题。
3.本发明所述的一种基于计算机视觉的水下激光基准线测量系统,其特征在于,采用双联平行激光器作为比例尺,为后续计算机视觉软件提供比例换算依据。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610145848.2A CN105783732A (zh) | 2016-03-15 | 2016-03-15 | 一种基于计算机视觉的水下激光基准线测量系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610145848.2A CN105783732A (zh) | 2016-03-15 | 2016-03-15 | 一种基于计算机视觉的水下激光基准线测量系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105783732A true CN105783732A (zh) | 2016-07-20 |
Family
ID=56392660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610145848.2A Pending CN105783732A (zh) | 2016-03-15 | 2016-03-15 | 一种基于计算机视觉的水下激光基准线测量系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105783732A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976148A (zh) * | 2017-12-25 | 2018-05-01 | 国家海洋局第二海洋研究所 | 一种深海生物测量装置及其生物特征的测量方法 |
CN109373897A (zh) * | 2018-11-16 | 2019-02-22 | 广州市九州旗建筑科技有限公司 | 一种基于激光虚拟标尺的测量方法 |
CN110081936A (zh) * | 2019-05-24 | 2019-08-02 | 博纳德(天津)港口工程有限公司 | 一种用于地下连续墙水下多参数自动检测的装置 |
CN113645390A (zh) * | 2021-08-20 | 2021-11-12 | 重庆交通大学 | 一种河流底栖动物调研统计装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2319786Y (zh) * | 1998-01-22 | 1999-05-19 | 美华科技(南京)激光制品有限公司 | 激光水平线、垂直线组合尺 |
CN201141766Y (zh) * | 2007-09-26 | 2008-10-29 | 黄广达 | 快速装修的新型器具 |
CN101600937A (zh) * | 2006-08-22 | 2009-12-09 | 罗伯特·博世有限公司 | 使携式基准激光单元和连接附件 |
CN101659374A (zh) * | 2009-09-21 | 2010-03-03 | 林汉丁 | 起重机垂直吊装激光监视装置 |
CN102156286A (zh) * | 2011-01-06 | 2011-08-17 | 南京理工大学 | 基于光子晶体滤波的布里渊散射水下激光成像探测装置 |
CN102175229A (zh) * | 2011-02-15 | 2011-09-07 | 上海交大海科(集团)有限公司 | 水下激光定位方法 |
CN102445183A (zh) * | 2011-10-09 | 2012-05-09 | 福建汇川数码技术科技有限公司 | 基于激光与摄像机平行实现的远程测距系统测距激光点的装置及定位方法 |
CN102829721A (zh) * | 2012-08-17 | 2012-12-19 | 中国航天空气动力技术研究院 | 一种飞机检测平台及方法 |
CN103217220A (zh) * | 2012-01-19 | 2013-07-24 | 昆山光微电子有限公司 | 红外显微系统及其实现图像融合的方法 |
CN103352598A (zh) * | 2013-06-19 | 2013-10-16 | 中交四航局第三工程有限公司 | 一种用于深水多层方块安装的定位塔 |
CN203310408U (zh) * | 2013-06-21 | 2013-11-27 | 彭凌晰雨 | 用于后期处理远距离测距的装置 |
CN104477779A (zh) * | 2014-12-31 | 2015-04-01 | 曹敏 | 集装箱码头桥吊下集卡的对位及安全控制系统和方法 |
CN105157684A (zh) * | 2015-06-03 | 2015-12-16 | 北京石油化工学院 | 一种水平铅直两用激光定位仪 |
CN205785072U (zh) * | 2016-04-01 | 2016-12-07 | 武汉华海创智科技有限公司 | 一种基于计算机视觉的水下激光基准线测量系统 |
-
2016
- 2016-03-15 CN CN201610145848.2A patent/CN105783732A/zh active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2319786Y (zh) * | 1998-01-22 | 1999-05-19 | 美华科技(南京)激光制品有限公司 | 激光水平线、垂直线组合尺 |
CN101600937A (zh) * | 2006-08-22 | 2009-12-09 | 罗伯特·博世有限公司 | 使携式基准激光单元和连接附件 |
CN201141766Y (zh) * | 2007-09-26 | 2008-10-29 | 黄广达 | 快速装修的新型器具 |
CN101659374A (zh) * | 2009-09-21 | 2010-03-03 | 林汉丁 | 起重机垂直吊装激光监视装置 |
CN102156286A (zh) * | 2011-01-06 | 2011-08-17 | 南京理工大学 | 基于光子晶体滤波的布里渊散射水下激光成像探测装置 |
CN102175229A (zh) * | 2011-02-15 | 2011-09-07 | 上海交大海科(集团)有限公司 | 水下激光定位方法 |
CN102445183A (zh) * | 2011-10-09 | 2012-05-09 | 福建汇川数码技术科技有限公司 | 基于激光与摄像机平行实现的远程测距系统测距激光点的装置及定位方法 |
CN103217220A (zh) * | 2012-01-19 | 2013-07-24 | 昆山光微电子有限公司 | 红外显微系统及其实现图像融合的方法 |
CN102829721A (zh) * | 2012-08-17 | 2012-12-19 | 中国航天空气动力技术研究院 | 一种飞机检测平台及方法 |
CN103352598A (zh) * | 2013-06-19 | 2013-10-16 | 中交四航局第三工程有限公司 | 一种用于深水多层方块安装的定位塔 |
CN203310408U (zh) * | 2013-06-21 | 2013-11-27 | 彭凌晰雨 | 用于后期处理远距离测距的装置 |
CN104477779A (zh) * | 2014-12-31 | 2015-04-01 | 曹敏 | 集装箱码头桥吊下集卡的对位及安全控制系统和方法 |
CN105157684A (zh) * | 2015-06-03 | 2015-12-16 | 北京石油化工学院 | 一种水平铅直两用激光定位仪 |
CN205785072U (zh) * | 2016-04-01 | 2016-12-07 | 武汉华海创智科技有限公司 | 一种基于计算机视觉的水下激光基准线测量系统 |
Non-Patent Citations (1)
Title |
---|
郭宗河: "《工程测量实用教程》", 31 August 2013 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976148A (zh) * | 2017-12-25 | 2018-05-01 | 国家海洋局第二海洋研究所 | 一种深海生物测量装置及其生物特征的测量方法 |
CN107976148B (zh) * | 2017-12-25 | 2024-05-03 | 自然资源部第二海洋研究所 | 一种深海生物测量装置及其生物特征的测量方法 |
CN109373897A (zh) * | 2018-11-16 | 2019-02-22 | 广州市九州旗建筑科技有限公司 | 一种基于激光虚拟标尺的测量方法 |
CN109373897B (zh) * | 2018-11-16 | 2020-07-31 | 广州市九州旗建筑科技有限公司 | 一种基于激光虚拟标尺的测量方法 |
CN110081936A (zh) * | 2019-05-24 | 2019-08-02 | 博纳德(天津)港口工程有限公司 | 一种用于地下连续墙水下多参数自动检测的装置 |
CN110081936B (zh) * | 2019-05-24 | 2024-06-11 | 博纳德(天津)港口工程有限公司 | 一种用于地下连续墙水下多参数自动检测的装置 |
CN113645390A (zh) * | 2021-08-20 | 2021-11-12 | 重庆交通大学 | 一种河流底栖动物调研统计装置 |
CN113645390B (zh) * | 2021-08-20 | 2023-07-21 | 重庆交通大学 | 一种河流底栖动物调研统计装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10267627B2 (en) | Multi-line array laser three-dimensional scanning system, and multi-line array laser three-dimensional scanning method | |
AU2013333801B2 (en) | Improvements in relation to underwater imaging for underwater surveys | |
CN105203046A (zh) | 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法 | |
CN105783732A (zh) | 一种基于计算机视觉的水下激光基准线测量系统 | |
CN100572192C (zh) | 救援用潜水装置 | |
JP2019024151A (ja) | ガイド情報表示装置およびこれを備えたクレーンおよびガイド情報表示方法 | |
CN107241533B (zh) | 一种水下面阵扫描激光成像装置及方法 | |
CN108693535A (zh) | 一种用于水下机器人的障碍物探测系统和探测方法 | |
JP2019024150A (ja) | ガイド情報表示装置およびクレーン | |
CN104635278A (zh) | 非均匀大光场目标图像探测装置及方法 | |
CN108140066A (zh) | 图面制作装置及图面制作方法 | |
WO2014108976A1 (ja) | 物体検出装置 | |
CN106403901A (zh) | 一种浮标姿态测量装置及方法 | |
JP2016020817A (ja) | 海上流出油検知装置 | |
CN205785072U (zh) | 一种基于计算机视觉的水下激光基准线测量系统 | |
JP3796488B2 (ja) | 沈埋函沈設誘導装置および沈設誘導方法 | |
CN204329903U (zh) | 手持激光三维扫描设备 | |
CN110514302B (zh) | 基于小型水下机器设备的海洋光纤光谱仪检测方法 | |
CN110208817A (zh) | 一种适用于对水下目标蓝绿激光距离选通成像的无遗漏扫描方法 | |
CN117008622A (zh) | 视觉机器人水下目标识别追踪方法及其水下视觉机器人 | |
CN115908740A (zh) | 一种轻量级三维点云模型及建模方法 | |
CN113959500A (zh) | 铁路桥梁水下桥墩病害检测装置 | |
KR102499212B1 (ko) | 부유 선박의 지정표식을 통하여 보정된 사진 측량을 이용한 3차원 모델링 방법 | |
CN108759712A (zh) | 激光投影立体视觉的航空行李三维探测装置 | |
CN221224544U (zh) | 一种引水隧洞内表面检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160720 |
|
WD01 | Invention patent application deemed withdrawn after publication |