CN105782728B - 一种流体漏失监控装置和监控方法 - Google Patents

一种流体漏失监控装置和监控方法 Download PDF

Info

Publication number
CN105782728B
CN105782728B CN201610285055.0A CN201610285055A CN105782728B CN 105782728 B CN105782728 B CN 105782728B CN 201610285055 A CN201610285055 A CN 201610285055A CN 105782728 B CN105782728 B CN 105782728B
Authority
CN
China
Prior art keywords
fluid
inner valve
flow
less
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610285055.0A
Other languages
English (en)
Other versions
CN105782728A (zh
Inventor
刘金玉
王殿生
王冬旭
王玉斗
孙卓辉
刘太亮
邱晓倩
尹莹莹
胡洪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610285055.0A priority Critical patent/CN105782728B/zh
Publication of CN105782728A publication Critical patent/CN105782728A/zh
Priority to PCT/CN2016/092178 priority patent/WO2017185547A1/zh
Application granted granted Critical
Publication of CN105782728B publication Critical patent/CN105782728B/zh
Priority to US16/172,552 priority patent/US20190063689A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/071Arrangement of safety devices in domestic pipe systems, e.g. devices for automatic shut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/005Protection or supervision of installations of gas pipelines, e.g. alarm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2201/00Special arrangements for pipe couplings
    • F16L2201/30Detecting leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/15Leakage reduction or detection in water storage or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

本发明提供了一种流体漏失监控装置和监控方法,该监控装置包括内阀门、流量测量器、控制器、通信模块和压强检测模块;内阀门、流量测量器、通信模块和压强检测模块分别与控制器连接;内阀门安装在管道上,且内阀门位于终端阀门与流体源之间,以控制管道的连通或断开;流量测量器用于检测终端阀门与内阀门之间的流体流量;压强检测模块用于检测终端阀门与内阀门之间的流体压强,以及内阀门与流体源之间的流体压强;通信模块用于与外围设备通信,接收外围设备发来的信息和向外围设备发送信息。本发明能够在保持成本较低的情况下,更加及时准确地判断管道是否存在流体漏失情况,降低了因为流体漏失给家庭、企业及其社会造成的经济损失。

Description

一种流体漏失监控装置和监控方法
技术领域
本发明涉及流体监控技术领域,尤其是涉及一种流体漏失监控装置和监控方法。
背景技术
供水管网漏失造成大量水资源的浪费,给世界各国造成重大经济损失,并易引发各种危害。截至到目前,国内外已先后研究出多种管网检漏方法,并研制了一系列管网检漏仪器。其中,在德国、英国、日本等经济发达的国家主要采用的检漏方法有:音听检漏法、相关检漏法、漏水声自动监测法和分区检漏法等。前三种方法是依靠漏口产生的声音探测漏点的声波方法,其中相关检漏法是最先进最有效的一种检漏方法,它具备一定的抗噪声能力,适合管道埋设较深或不宜用地面听漏法的区域,但当环境噪音较大,漏水声波信号很弱时,很难检测到漏水声波信号,进而无法确定漏点的位置。而供水终端管网漏失一般都是小流量缓慢泄漏,甚至是渗漏,漏水声波信号非常微弱,因此依靠漏口产生的声音探测漏点的声波方法不适合终端管网检漏,另外上述声波方法都不是在线检漏方法,需要消耗大量的人力物力,且需在夜间作业。而分区检漏法是通过计量管道流量及压力来判别有无漏失的存在,由于终端管网主要是指水表之后的家庭内部管网,该方法从检漏原理上已不适用于终端管网检漏。其它检漏方法还包括:负压波法、大地湿度检验法、水质检验法、管内调查法、示踪气体探测法、电缆传感法、地质雷达系统检漏法、核磁共振检测法、激光光导纤维法、红外热成像法、激光扫描法等等。其中,负压波法的响应速度快,定位精度高,但它要求泄漏是突发性的大泄漏,对于小泄漏,则很难检测,目前该方法主要应用于干线管道检漏,不适用于终端管网检漏。另外核磁共振检测法、激光光导纤维法、红外热成像法、激光扫描法等是技术水平较高的新型检漏方法,这些方法检漏灵敏度非常高,定位精确,但所需费用昂贵,难以推广,属于典型的“技术可行,经济不可行”类技术。目前我国管网检漏技术相对落后,绝大部分城市使用音听检漏法或相关检漏法,有些城市已开始采用漏水声自动监测法或分区检漏法。
在漏失检测设备方面,上世纪80年代初,美、英、法、德、日相继研制成功了检漏仪、管线定位仪、探地雷达等设备,随着科技的发展,相继推出数字式检漏仪、多探头相关仪、区域漏水监测仪等,大大提高了检漏的可靠性和准确性。但上述设备都不是针对终端管网研制的。
综上所述,目前虽已存在多种管网检漏方法及检测设备,但都不适用于终端管网。
以上背景技术是以供水终端管网为代表进行的分析,但本发明技术不仅仅适用于供水终端管网,特此说明。
发明内容
本发明的目的在于提供一种流体漏失监控装置和监控方法,其根据管道内流体的运动情况可以更加及时准确地判断管道是否存在流体漏失情况,可有效减少流体漏失,避免各种次生灾害的发生,进而降低了因为流体漏失给家庭、企业及其社会造成的经济损失。
本发明提供了一种流体漏失监控装置,包括内阀门、流量测量器、控制器、通信模块和压强检测模块;所述内阀门、所述流量测量器、所述通信模块和所述压强检测模块分别与所述控制器连接;所述内阀门用于安装在管道上,且所述内阀门位于终端阀门与流体源之间,以控制所述管道的连通或断开;所述流量测量器用于检测所述终端阀门与所述内阀门之间的流体流量;所述压强检测模块用于检测所述终端阀门与所述内阀门之间的流体压强,以及所述内阀门与所述流体源之间的流体压强;所述通信模块用于与外围设备通信;所述控制器用于根据所述流量测量器检测到的流体流量、所述压强检测模块检测到的流体压强、所述通信模块接收到的信息控制所述内阀门的开启或关闭;
当所述流量测量器检测到的流体流量小于第一预定值时,关闭所述内阀门;然后根据所述压强检测模块检测到的流体压强确定所述终端阀门与所述内阀门之间的流体压强是否降低,当判断压强降低时,打开内阀门,判断所述流量测量器检测到的流体流量是否小于第五预定值,当所述流量测量器检测到的流体流量小于所述第五预定值时,判断存在漏失,关闭内阀门;或,当所述流量测量器检测到的流体流量小于第一预定值时,关闭所述内阀门;然后根据所述压强检测模块检测到的流体压强确定所述终端阀门与所述内阀门之间的流体压强与所述内阀门与所述流体源之间的流体压强之差的绝对值是否大于预定压强差,当所述绝对值大于预定压强差时,打开内阀门,判断所述流量测量器检测到的流体流量是否小于第五预定值,当流量测量器检测到的流量小于所述第五预定值时,判断存在漏失,关闭内阀门;
当流量测量器检测到的流体流量不小于所述第一预定值时,根据所述通信模块接收到的信息判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭所述内阀门;当流体的流动是有需流动时,判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过所述管道的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门。
进一步地,还包括报警模块;所述报警模块与所述控制器连接;所述报警模块用于当流体的流动是有需流动时,且持续流过所述管道的流体的量不小于第二预定值,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门,然后发出报警信息;
当报警模块的报警信息被解除时,打开所述内阀门,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当报警模块的报警信息未被解除时,打开所述内阀门,判断所述流量测量器检测到的流体流量是否小于第四预定值:当检测到的流体流量不小于第四预定值时,判断存在漏失,关闭内阀门;当检测到的流体流量小于所述第四预定值时,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
所述报警模块还用于当判断存在漏失后,发出报警信息。
进一步地,所述压强检测模块为压差传感器。
进一步地,所述压强检测模块包括第一子压强传感器和第二子压强传感器。
进一步地,所述报警模块包括声音报警器和/或灯光报警器。
进一步地,所述通信模块为WIFI发射接收模块和/或蓝牙发射接收模块。
进一步地,所述流量测量器为脉冲流量计。
进一步地,还包括发电蓄电供电装置和遥控器,所述发电蓄电供电装置与所述控制器连接;所述遥控器与所述控制器连接。
本发明还提供了一种流体漏失监控方法,管道连接流体源,管道上安装有终端阀门和内阀门,且所述内阀门位于所述终端阀门与所述流体源之间,该方法包括:
当所述管道内流体的流量小于第一预定值时,关闭所述内阀门;然后确定所述终端阀门与所述内阀门之间的流体压强是否降低,当判断压强降低时,打开内阀门,判断所述流体流量是否小于第五预定值,当所述流体流量小于第五预定值时,判断存在漏失,关闭内阀门;或,当所述管道内流体的流量小于第一预定值时,关闭所述内阀门;然后确定所述终端阀门与所述内阀门之间的流体压强与所述内阀门与所述流体源之间的流体压强之差的绝对值是否大于预定压强差,当所述绝对值大于预定压强差时,打开内阀门,判断所述流体流量是否小于第五预定值,当所述流体流量小于第五预定值时,判断存在漏失,关闭内阀门;
当所述管道内流体的流量不小于所述第一预定值时,判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭所述内阀门;当流体的流动是有需流动时,判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过所述管道的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门。
可选地,当流体的流动是有需流动时,且持续流过所述管道的流体的量不小于第二预定值,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门,然后发出报警信息;
当报警信息被解除时,打开所述内阀门,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当报警信息未被解除时,打开所述内阀门,判断所述流体流量是否小于第四预定值:当流体流量不小于第四预定值时,判断存在漏失,关闭内阀门;当流体流量小于所述第四预定值时,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当判断存在漏失后,也发出报警信息。
与现有技术相比,本发明的有益效果为:
本发明提供的流体漏失监控装置及其采用的流体漏失监控方法,可以在保持成本较低的情况下,更加及时准确的对管道漏失进行在线自动监控。该流体漏失监控装置包括内阀门、流量测量器、控制器、通信模块和压强检测模块;所述内阀门、所述流量测量器、所述通信模块和所述压强检测模块分别与所述控制器连接;所述内阀门用于安装在管道上,且所述内阀门位于终端阀门与流体源之间,用于控制所述管道的连通或断开;所述流量测量器用于检测所述终端阀门与所述内阀门之间的流体流量;所述压强检测模块用于检测所述终端阀门与所述内阀门之间的流体压强,以及所述内阀门与所述流体源之间的流体压强;所述通信模块用于与外围设备通信;所述控制器用于根据所述流量测量器检测到的流体流量、所述压强检测模块检测到的流体压强、所述通信模块接收到的信息控制所述内阀门的开启或关闭。通过流量测量器、通信模块和压强检测模块能够更好的判断流体的流动是否为有需流动,进而更加及时并准确地判断管道是否存在漏失,并且采用的流量测量器和压强检测模块均不需要具有很高的精度,进而保证了成本较低。
附图说明
为了更清楚地说明本发明的具体实施方式或该技术中的技术方案,下面将对具体实施方式或该技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的流体漏失监控装置的工作原理示意图。
图2是本发明实施例提供的流体漏失监控方法的流程图。
附图标记:
101-内阀门;102-流量测量器;103-控制器;
104-通信模块;105-第一子压强传感器;106-第二子压强传感器;
107-管道;108-终端阀门;109-流体源;
110-遥控器;111-报警器;112-计数单元;
113-比较单元;114-中央处理单元。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例
参见图1和图2所示,本发明实施例提供了一种流体漏失监控装置,包括内阀门101、流量测量器102、控制器103、通信模块104和压强检测模块;内阀门101、流量测量器102、通信模块104和压强检测模块分别与控制器103连接;内阀门101用于安装在管道107上,且内阀门101位于终端阀门108与流体源109之间,以控制管道107的连通或断开,也就是说,通过内阀门101来控制管道的连通或断开,需要说明的是,终端阀门108也安装在管道107上,流体源109与管道107相连,内阀门101靠近流体源109,而终端阀门108远离流体源109,管道107形成流体的流动通道,终端阀门108的开闭也能够控制管道107内的流体的通断;流量测量器102用于检测终端阀门108与内阀门101之间的流体流量;压强检测模块用于检测终端阀门108与内阀门101之间的流体压强,以及内阀门101与流体源109之间的流体压强,本实施例中,压强检测模块包括第一子压强传感器105和第二子压强传感器106,第一子压强传感器105用于检测终端阀门108与内阀门101之间的流体压强,第二子压强传感器106用于检测内阀门101与流体源109之间的流体压强;通信模块104用于与外围设备通信,接收用户发送的信息,控制器103根据接收到的信息可以判断流体的流动是否为有需流动,可以调节“第一预定值”、“第二预定值”、“第三预定值”、“第四预定值”和“第五预定值”的大小,也可以解除报警,等等。其中有需流动主要指的是用户正常用水时,造成的流体的流动;控制器103用于根据流量测量器102检测到的流体流量、压强检测模块检测到的流体压强、通信模块104接收到的信息控制内阀门101的开启或关闭;
当流量测量器102检测到的流体流量小于第一预定值时,关闭内阀门101;然后根据压强检测模块检测到的流体压强确定终端阀门108与内阀门101之间的流体压强是否降低,当判断压强降低时,打开内阀门101,判断流量测量器102检测到的流体流量是否小于第五预定值,当流量测量器102检测到的流体流量小于第五预定值时,判断存在漏失,关闭内阀门101;当判断压强未降低时,降低内阀门101的关闭频率,重新判断流量测量器102检测到的流体流量是否小于第一预定值;或,当流量测量器102检测到的流体流量小于第一预定值时,关闭内阀门101;然后根据压强检测模块检测到的流体压强确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值是否大于预定压强差,当该绝对值大于预定压强差时,打开内阀门101,判断流量测量器102检测到的流体流量是否小于第五预定值,当流量测量器102检测流量小于第五预定值时,判断存在漏失,关闭内阀门101;当绝对值不大于预定压强差时,降低内阀门101的关闭频率,重新判断流量测量器102检测到的流体流量是否小于第一预定值。
当流量测量器102检测到的流体流量不小于第一预定值时,根据通信模块104接收到的信息判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭内阀门101;当流体的流动是有需流动时,判断持续流过管道107的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过管道107的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭内阀门101。当持续流过管道107的流体的量小于第二预定值时,和/或流体的持续通流时间小于第三预定值时,重新进行判断流量测量器102检测到的流体流量是否小于第一预定值。需要指出的是,流过管道107的流体的量指的是流体的总量,该总量可以是体积总量,也可以是质量总量。外围通信设备可以是手机。
另外,在上述控制中,当流量测量器102检测到的流体流量不小于第五预定值时,再次根据通信模块104接收到的信息判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭内阀门101;当流体的流动是有需流动时,判断持续流过管道107的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过管道107的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭内阀门101。当持续流过管道107的流体的量小于第二预定值时,和/或流体的持续通流时间小于第三预定值时,重新进行判断流量测量器102检测到的流体流量是否小于第一预定值。
需要说明的是,当流量测量器102检测到的流体流量小于第一预定值时,会出现两种情况:第一种情况是,流体未流出,第二种情况是,流体正在或已经慢速流出。对于属于哪一种情况需再进一步判断。
关闭内阀门101,可以避免内阀门101与流体源109之间的管道107中的流体流到内阀门101与终端阀门108之间的管道107中。此时,第一子压强传感器105和第二子压强传感器106检测到的流体压强确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之间是否大于预定压强差。
当是第一种情况时,内阀门101与终端阀门108之间的管道107中的流体保持不动,未产生漏失,终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强相等,或不大于预定压强差,也就是说,终端阀门108与内阀门101之间的流体压强没有降低。当是第二种情况时,内阀门101与终端阀门108之间的管道107中的流体正在或已经流出,此时内阀门101与终端阀门108之间的管道107中的流体量会减少,导致终端阀门108与内阀门101之间的流体压强减小,而内阀门101与流体源109之间的流体压强保持不变,进而使得终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值大于预定压强差,也就是说,终端阀门108与内阀门101之间的流体压强降低了;这样根据是否大于预定压强差或流体压强是否降低就可以判断是属于第一种情况,还是属于第二种情况。
当终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值大于预定压强差时,或终端阀门108与内阀门101之间的流体压强下降时,又包括两种情形:第一种情形是,内阀门101与终端阀门108之间的管道107中的流体存在非正常漏失,第二种情形是,终端阀门108正常打开,流体正常流出,对于属于哪一种情形还需要进一步判断。
打开内阀门101,使内阀门101与终端阀门108之间的管道107与内阀门101与流体源109之间的管道107连通。再判断流量测量器102检测到的流体流量是否小于第五预定值,该第五预定值可以设定为小于正常使用时的流体流量。流量测量器102检测到的流体流量小于第五预定值时,由于该第五预定值小于正常使用时流体的流量值,则可以确定属于第一种情形,此时关闭内阀门101,防止流体继续漏失。如果流量测量器102检测到的流体流量不小于第五预定值,则可以确定属于第二种情形,使内阀门101保持打开状态,由于第二种情形中,流量测量器102检测到的流体流量不小于第五预定值,因此当出现第二种情形时,可以根据通信模块104接收到的信息判断流体的流动是否为有需流动;从而实现利用上述流体漏失监控装置就可以更及时更准确地根据实际流体运动情况控制管道107的通断,进一步减少流体的漏失。
还需要说明的是,本实施例中,第一子压强传感器105和第二子压强传感器106还可以由一个压差传感器代替,也就是说,压强检测模块为压差传感器。这样可以直接测量流体的压强差,而不用分别测量后再进行对比。本实施例中,“第一预定值”、“第二预定值”、“第三预定值”、“第四预定值”和“第五预定值”可以根据实际需要设定。
当流体的流动为有需流动时,根据流量和时间可以获得流过管道107的流体的量,在每次持续流过管道107的流体的量不小于第二预定值时,通过控制器103使内阀门101关闭;或设定一次持续的使用流体的时间长度为第三预定值,在每次持续使用流体的时间不小于第三预定值时,通过控制器103使内阀门101关闭。
本实施例中,流体漏失监控装置还包括报警模块;报警模块与控制器103连接,具体而言,报警模块可以通过无线或有线与控制器103连接;报警模块用于当流体的流动是有需流动时,且持续流过管道107的流体的量不小于第二预定值,和/或流体的持续通流时间不小于第三预定值时,关闭内阀门101,然后发出报警信息,当报警模块的报警信息被解除时,打开内阀门101,并重新判断持续流过管道107的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;需要说明的是,报警信息的解除,可以是手机通过通信模块104与控制器103连接,然后从手机端进行解除;也可以通过人为关阀解除,该报警解除方式在实际中的一个具体应用为:当用户在淋浴时,如果一直开着淋浴,当持续流过管道107的流体的量不小于第二预定值,和/或流体的持续通流时间不小于第三预定值时,流体漏失监控装置就会判断为忘记关闭淋浴而断水;用户在淋浴时,手机也不在身边,出浴室拿手机解除报警或按动流体漏失监控装置的重启按钮,这都不方便;当发生断水时,用户只需及时把淋浴关闭,几秒后再打开淋浴,水就会又来了。这样既可以及时判断漏失的存在,又可以有效迎合客户超大用水量的需求;这种可有效迎合客户超大用水量需求的功能为重试功能;当报警模块的报警信息未被解除时,打开内阀门101,判断流量测量器102检测到的流体流量是否小于第四预定值:当检测到的流体流量不小于第四预定值时,判断存在漏失,关闭内阀门101;当检测到的流体流量小于第四预定值时,重新判断持续流过管道107的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值。需要说明的是,也可以在判断流体的流动不是有需流动时,同时关闭内阀门101和发出报警信息,但此时为漏失报警。
本实施例中,报警模块还用于当判断存在漏失后,发出报警信息。
本实施例中,报警模块包括声音报警器111和/或灯光报警器111。需要说明的是,本实施例中,报警模块不仅局限于声音报警器111、灯光报警器111,也可以根据实际情况选择其它形式的报警器111进行报警。
本实施例中,通信模块104为WIFI发射接收模块和/或蓝牙发射接收模块;流量测量器102为脉冲流量计,具体而言,控制器103包括中央处理单元114和计数单元112,计数单元112能够获取脉冲流量计产生的脉冲;中央处理单元114能够根据计数单元112获取的脉冲信号确定通过管道107中流体的流量;比如:根据计数单元112单位时间获取的脉冲数确定脉冲流量计产生的脉冲的频率,进而再根据该频率确定通过管道107中的流体流量。在使用计数单元112的情况下,在每一工作周期,需要对单个工作周期的累加流量进行清零,如可以在脉冲流量计检测到的流体流量小于第一预定值时,使单个工作周期的累加流量清零。当然,流量测量器102不限于上述脉冲流量计,也可以是其他检测流体流量的装置。需要说明的是,通信模块104还可以为GSM模块、GPRS模块、WCDMA模块或LTE模块。
通过适当的设置,也可以使流体漏失监控装置具有累积计量功能。比如:在流量测量器102选用脉冲流量计的情况下,中央处理单元114在对单个工作周期的累加流量进行清零之前,保存每个单个工作周期的累加流量,所有单个工作周期的累加流量之和即为累积流量;在流量测量器102选用其他流量计的情况下,也可以通过中央处理单元114根据流量测量器102传送的信号对通过管道107的流体的量进行累积计量等。
本实施例中,控制器103还包括比较单元113。第一子压强传感器105和第二子压强传感器106分别与比较单元113相连接;这样,比较单元113能够对终端阀门108与内阀门101之间的流体压强和内阀门101与流体源109之间的流体压强进行比较,确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值是否大于预定压强差,并将比较结果传送给中央处理单元114。确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值是否大于预定压强差不仅局限于通过该方式获得,也可以采用其他方式确定,比如:可以将压强差转化为压力差,并利用该压力差驱动预定物体移动,进而根据该预定物体的位置确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差是否大于预定压强差。
本实施例中,还包括发电蓄电供电装置和遥控器110,发电蓄电供电装置与控制器103连接,为整个监控装置提供电能;遥控器110与控制器103连接,遥控器110通过无线方式与控制器103连接,进而可以远程控制流体漏失监控装置。该遥控器可以是红外遥控器。
本实施例中,如果经过自我检测证明不存在漏失,还可以通过设置内阀门101下一次进入关闭状态的时间间隔来降低内阀门101的关闭频率,以降低装置的功耗及延长内阀门101的使用寿命。例如,在检测到终端阀门108与内阀门101之间部分的流体的压强不下降后,启动倒计时功能,倒计时为零之前,出现终端阀门108与内阀门101之间部分的流体流量小于第一预定值时,内阀门101不关闭;当倒计时为零后,出现终端阀门108与内阀门101之间部分的流体流量小于第一预定值时,内阀门101方可关闭。
本发明实施例还提供了一种流体漏失监控方法,该方法可以利用本实施例提供的流体漏失监控装置实施,但不限于利用上述流体漏失监控装置实施,也可以通过其他部件及部件组合实施。
本实施例提供的流体漏失监控方法中,将管道107连接流体源109,管道107上安装有终端阀门108和内阀门101,且内阀门101位于终端阀门108与流体源109之间。
参见图2所示,该方法包括以下步骤:
步骤S201:判断终端阀门108与内阀门101之间的流体流量是否小于第一预定值:当终端阀门108与内阀门101之间的流体流量小于第一预定值时,进入步骤S202,当终端阀门108与内阀门101之间的流体流量不小于第一预定值时,进入步骤S207。
步骤S202:关闭内阀门101。
步骤S203:然后确定终端阀门108与内阀门101之间的流体压强是否降低:当判断压强降低时,进入步骤S204,当判断压强未降低时,进入步骤S214,再进入步骤S201。需要说明的是,该步骤203中还可以通过确定终端阀门108与内阀门101之间的流体压强与内阀门101与流体源109之间的流体压强之差的绝对值是否大于预定压强差来进行:当该绝对值大于预定压强差时,进入步骤204,当该绝对值不大于预定压强差时,进行步骤S214,再进入步骤S201。
步骤S204:打开内阀门101。
步骤S205:判断流体流量是否小于第五预定值:当流体流量小于第五预定值时,进入步骤S206;当流体流量不小于第五预定值时,进入步骤S207。
步骤S206:判定为存在漏失,关闭内阀门101,报警器111发出报警信息。需要说明的是,该步骤S206中,当判定为存在漏失时,内阀门101的开启或关闭,还可以根据实际情况来确定。
步骤S207:判断流体的流动是否为有需流动,当流体的流动不是有需流动时,进入步骤S206;当流体的流动是有需流动时,进入步骤S208。
步骤S208:判断持续流过所述管道107的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值。当持续流过管道107的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,进入步骤S209;当持续流过管道107的流体的量小于第二预定值时,和/或流体的持续通流时间小于第三预定值时,进入步骤S201。
步骤S209:关闭内阀门101。
步骤S210:发出报警信息。
步骤S211:判断报警是否被解除,当报警信息被解除时,进入步骤S212;当报警信息未被解除时,进入步骤S213。
步骤S212:打开内阀门101后,重新进入步骤S208。
步骤S213:打开内阀门101,判断流体流量是否小于第四预定值,当检测到的流体流量不小于第四预定值时,进入步骤S206;当检测到的流体流量小于第四预定值时,重新进入步骤S208。
步骤S214:降低内阀门101的关闭频率。
综上所述,本发明提供的流体漏失监控装置和监控方法能够在保持成本较低的情况下,根据管道内流体的实际运动情况,更加及时准确地判断管道是否存在流体漏失情况,判断管道存在流体漏失后,可选择性关闭阀门,及时阻止流体的继续漏失,避免各种次生灾害的发生,进而降低了因为流体漏失给家庭、企业及其社会造成的经济损失。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种流体漏失监控装置,其特征在于,包括报警模块、内阀门、流量测量器、控制器、通信模块和压强检测模块;所述报警模块、所述内阀门、所述流量测量器、所述通信模块和所述压强检测模块分别与所述控制器连接;所述内阀门用于安装在管道上,且所述内阀门位于终端阀门与流体源之间,以控制所述管道的连通或断开;所述流量测量器用于检测所述终端阀门与所述内阀门之间的流体流量;所述压强检测模块用于检测所述终端阀门与所述内阀门之间的流体压强,以及所述内阀门与所述流体源之间的流体压强;所述通信模块用于与外围设备通信;所述控制器用于根据所述流量测量器检测到的流体流量、所述压强检测模块检测到的流体压强、所述通信模块接收到的信息控制所述内阀门的开启或关闭;
当所述流量测量器检测到的流体流量小于第一预定值时,关闭所述内阀门;然后根据所述压强检测模块检测到的流体压强确定所述终端阀门与所述内阀门之间的流体压强是否降低,当判断压强降低时,打开内阀门,判断所述流量测量器检测到的流体流量是否小于第五预定值,当所述流量测量器检测到的流体流量小于所述第五预定值时,判断存在漏失,关闭内阀门;或,当所述流量测量器检测到的流体流量小于第一预定值时,关闭所述内阀门;然后根据所述压强检测模块检测到的流体压强确定所述终端阀门与所述内阀门之间的流体压强与所述内阀门与所述流体源之间的流体压强之差的绝对值是否大于预定压强差,当所述绝对值大于预定压强差时,打开内阀门,判断所述流量测量器检测到的流体流量是否小于第五预定值,当流量测量器检测到的流量小于所述第五预定值时,判断存在漏失,关闭内阀门;
当流量测量器检测到的流体流量不小于所述第一预定值时,根据所述通信模块接收到的信息判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭所述内阀门;当流体的流动是有需流动时,判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过所述管道的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门;
所述报警模块用于当流体的流动是有需流动时,且持续流过所述管道的流体的量不小于第二预定值,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门,然后发出报警信息;
当报警模块的报警信息被解除时,打开所述内阀门,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当报警模块的报警信息未被解除时,打开所述内阀门,判断所述流量测量器检测到的流体流量是否小于第四预定值:当检测到的流体流量不小于第四预定值时,判断存在漏失,关闭内阀门;当检测到的流体流量小于所述第四预定值时,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值。
2.根据权利要求1所述的流体漏失监控装置,其特征在于,所述压强检测模块为压差传感器。
3.根据权利要求1所述的流体漏失监控装置,其特征在于,所述压强检测模块包括第一子压强传感器和第二子压强传感器。
4.根据权利要求1所述的流体漏失监控装置,其特征在于,所述报警模块包括声音报警器和/或灯光报警器。
5.根据权利要求1所述的流体漏失监控装置,其特征在于,所述通信模块为WIFI发射接收模块和/或蓝牙发射接收模块。
6.根据权利要求1所述的流体漏失监控装置,其特征在于,所述流量测量器为脉冲流量计。
7.根据权利要求1所述的流体漏失监控装置,其特征在于,还包括发电蓄电供电装置和遥控器,所述发电蓄电供电装置与所述控制器连接;所述遥控器与所述控制器连接。
8.一种流体漏失监控方法,其特征在于,管道连接流体源,管道上安装有终端阀门和内阀门,且所述内阀门位于所述终端阀门与所述流体源之间,该方法包括:
当所述管道内流体的流量小于第一预定值时,关闭所述内阀门;然后确定所述终端阀门与所述内阀门之间的流体压强是否降低,当判断压强降低时,打开内阀门,判断流体流量是否小于第五预定值,当所述流体流量小于第五预定值时,判断存在漏失,关闭内阀门;或,当所述管道内流体的流量小于第一预定值时,关闭所述内阀门;然后确定所述终端阀门与所述内阀门之间的流体压强与所述内阀门与所述流体源之间的流体压强之差的绝对值是否大于预定压强差,当所述绝对值大于预定压强差时,打开内阀门,判断所述流体流量是否小于第五预定值,当所述流体流量小于第五预定值时,判断存在漏失,关闭内阀门;
当所述管道内流体的流量不小于所述第一预定值时,判断流体的流动是否为有需流动,当流体的流动不是有需流动时,判断存在漏失,关闭所述内阀门;当流体的流动是有需流动时,判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值,当持续流过所述管道的流体的量不小于第二预定值时,和/或流体的持续通流时间不小于第三预定值时,关闭所述内阀门,然后发出报警信息;
当报警信息被解除时,打开所述内阀门,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当报警信息未被解除时,打开所述内阀门,判断所述流体流量是否小于第四预定值:当所述流体流量不小于第四预定值时,判断存在漏失,关闭内阀门;当所述流体流量小于所述第四预定值时,重新判断持续流过所述管道的流体的量是否不小于第二预定值,和/或流体的持续通流时间是否不小于第三预定值;
当判断存在漏失后,也发出报警信息。
CN201610285055.0A 2016-04-29 2016-04-29 一种流体漏失监控装置和监控方法 Active CN105782728B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610285055.0A CN105782728B (zh) 2016-04-29 2016-04-29 一种流体漏失监控装置和监控方法
PCT/CN2016/092178 WO2017185547A1 (zh) 2016-04-29 2016-07-29 一种流体漏失监控装置和监控方法
US16/172,552 US20190063689A1 (en) 2016-04-29 2018-10-26 Leak detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610285055.0A CN105782728B (zh) 2016-04-29 2016-04-29 一种流体漏失监控装置和监控方法

Publications (2)

Publication Number Publication Date
CN105782728A CN105782728A (zh) 2016-07-20
CN105782728B true CN105782728B (zh) 2018-07-13

Family

ID=56400328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610285055.0A Active CN105782728B (zh) 2016-04-29 2016-04-29 一种流体漏失监控装置和监控方法

Country Status (3)

Country Link
US (1) US20190063689A1 (zh)
CN (1) CN105782728B (zh)
WO (1) WO2017185547A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782728B (zh) * 2016-04-29 2018-07-13 刘金玉 一种流体漏失监控装置和监控方法
CN106931311A (zh) * 2017-03-17 2017-07-07 广西科技大学 水管漏水监控方法
CN107289333A (zh) * 2017-05-22 2017-10-24 南通中远船务工程有限公司 挠性立管破损监测系统以及控制方法
US11047115B2 (en) * 2017-06-02 2021-06-29 H2Optimize, LLC Water meter system and method
JP6879081B2 (ja) * 2017-06-29 2021-06-02 株式会社デンソーウェーブ 漏水検出装置
CN107623807A (zh) * 2017-09-07 2018-01-23 金清炎 翻转密封的摄像头水下防护装置及摄像头装配方法
CN107631742A (zh) * 2017-09-07 2018-01-26 浙江省海洋开发研究院 传感器水下安装固定机构
CN107727131A (zh) * 2017-09-07 2018-02-23 浙江省海洋开发研究院 水下线缆状态检测传感器保护装置
CN107483789A (zh) * 2017-09-07 2017-12-15 金清炎 设防护壳翻转式密封的水下摄像头及摄像头装配方法
CN107483788A (zh) * 2017-09-07 2017-12-15 金清炎 设报警防护结构的水下摄像头
CN108007515A (zh) * 2017-11-29 2018-05-08 鄂州市泽瑞高科分质供水工程有限公司 流量检测装置、方法及系统
JP7064979B2 (ja) * 2018-06-25 2022-05-11 株式会社荏原製作所 流体の漏洩を確認する方法、および研磨装置
CN108870092B (zh) * 2018-08-01 2020-12-01 北京中彤节能技术有限公司 一种布线式管道监测系统
CN109827080A (zh) * 2019-04-10 2019-05-31 中国石油大学(华东) 一种终端管网漏点分段式粗定位装置和定位方法
US11649616B2 (en) * 2019-11-12 2023-05-16 Banyan Water, Inc. Fluid delivery system
CN111043533A (zh) * 2019-12-12 2020-04-21 上海邦芯物联网科技有限公司 一种供水管网爆管监测系统及方法
US11053668B1 (en) * 2020-02-11 2021-07-06 Hydrodynamic Technologies LLC Intelligent water monitoring system
CN111550676B (zh) * 2020-06-19 2022-02-25 陈方斌 一种水管漏水检测装置及其方法
CN112013917B (zh) * 2020-08-14 2022-05-17 泉州七洋机电有限公司 一种设有管道二次加固结构的漏水自动报警式超声水表
JP2022041529A (ja) * 2020-09-01 2022-03-11 愛三工業株式会社 蒸発燃料処理装置
NO20210393A1 (no) * 2021-03-25 2022-09-26 Morten Olsen Metode for å beregne avstanden til en blokkering i et tett rør
CN115183155B (zh) * 2021-04-02 2023-08-15 汉宇集团股份有限公司 一种测量水压监控漏水的用水电器、物联网系统及工作方法
US11905689B2 (en) 2021-10-15 2024-02-20 Rk Industries, Llc Device, system and method for leak detection and control
US11988295B1 (en) 2023-02-12 2024-05-21 Namara Water Technologies, Inc. Controllable variable flow valve having pivoting foot with abutting heel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923483A (ja) * 1995-07-06 1997-01-21 Hitachi Ltd 管路破断検知システム
CN102635148A (zh) * 2012-03-23 2012-08-15 刘金玉 流动时间或(和)流量式流体流失监控方法及其装置
CN102748587A (zh) * 2012-07-23 2012-10-24 刘金玉 一种管道流体监控装置和方法
CN103807607A (zh) * 2013-03-12 2014-05-21 任金恒 新型管道流体检漏装置及其方法
CN103939749A (zh) * 2014-04-28 2014-07-23 东北大学 基于大数据的输油管网泄漏智能自适应监控系统及方法
US9335233B2 (en) * 2011-04-27 2016-05-10 Massachusetts Institute Of Technology In-pipe leak detection based on pressure gradient

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072621A (en) * 1990-06-25 1991-12-17 Hasselmann Detlev E M Pipeline leak detector apparatus and method
CN1322914A (zh) * 2001-05-25 2001-11-21 中国石化胜利油田有限公司胜利采油厂 输油管线泄漏报警及漏点定位系统
DE102004016378A1 (de) * 2004-04-02 2005-11-03 Stefan Windisch Verfahren und Anordnung zur aktiven Überwachung von Rohrleitungen
US20060260691A1 (en) * 2005-05-20 2006-11-23 Davidoff John A Systems and methods for detecting and preventing fluid leaks
DE502006006614D1 (de) * 2006-01-23 2010-05-12 Stefan Windisch Verfahren zur permanenten überwachung von fluide medien führenden, unter druck stehenden rohrleitungen und leitungssystemen
JP4684135B2 (ja) * 2006-03-03 2011-05-18 株式会社フジキン 配管路の漏洩検査方法及び漏洩検査装置
US20080188991A1 (en) * 2007-02-05 2008-08-07 Timothy David Mulligan Fluid supply monitoring system
US8174398B2 (en) * 2009-07-31 2012-05-08 Abraham Wien Leak sensor monitor
EP2477020A1 (fr) * 2011-01-17 2012-07-18 Clevergas Holding S.A. Système de détection de fuite de fluide.
CN202074237U (zh) * 2011-05-30 2011-12-14 韩飞 管道泄漏监测与负压保护装置
US9175810B2 (en) * 2012-05-04 2015-11-03 General Electric Company Custody transfer system and method for gas fuel
ES2540125B2 (es) * 2014-11-18 2016-04-27 Sitexco Girona, S.L. Detector de fugas y microfugas de fluidos y procedimiento para la detección de fugas y microfugas
US9939346B2 (en) * 2015-07-21 2018-04-10 Watersource Technologies, LLC Multi-function liquid leak detector and analyzer
CN105782728B (zh) * 2016-04-29 2018-07-13 刘金玉 一种流体漏失监控装置和监控方法
CN205640249U (zh) * 2016-04-29 2016-10-12 刘金玉 一种流体漏失监控装置
JP6879081B2 (ja) * 2017-06-29 2021-06-02 株式会社デンソーウェーブ 漏水検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923483A (ja) * 1995-07-06 1997-01-21 Hitachi Ltd 管路破断検知システム
US9335233B2 (en) * 2011-04-27 2016-05-10 Massachusetts Institute Of Technology In-pipe leak detection based on pressure gradient
CN102635148A (zh) * 2012-03-23 2012-08-15 刘金玉 流动时间或(和)流量式流体流失监控方法及其装置
CN102748587A (zh) * 2012-07-23 2012-10-24 刘金玉 一种管道流体监控装置和方法
CN102913758A (zh) * 2012-07-23 2013-02-06 刘金玉 一种流体流失监控装置和方法
CN103807607A (zh) * 2013-03-12 2014-05-21 任金恒 新型管道流体检漏装置及其方法
CN103939749A (zh) * 2014-04-28 2014-07-23 东北大学 基于大数据的输油管网泄漏智能自适应监控系统及方法

Also Published As

Publication number Publication date
WO2017185547A1 (zh) 2017-11-02
CN105782728A (zh) 2016-07-20
US20190063689A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
CN105782728B (zh) 一种流体漏失监控装置和监控方法
CN205405824U (zh) 基于无线网络的漏水检测报警系统
CN201043685Y (zh) 管道安全运行实时监控系统
CN201373243Y (zh) 油气管道泄漏智能巡检机
CN101871834A (zh) 一种无线远程漏水探测设备与系统
CN108414164A (zh) 通过流量差进行判断的漏水监控系统及控制方法
CN102182934B (zh) 一种管网渗漏在线自动检测装置
CN103874920B (zh) 外壁附着型超声波浓度测量系统及其方法
CN202676400U (zh) 一种无线远程漏水探测系统
CN105758904A (zh) 一种多参数水质监测系统、方法以及应用
KR20140063380A (ko) 소음 수준 및 분포를 이용한 상시 누수진단 시스템
CN106224781A (zh) 一种流体管网泄漏监测系统
CN106090629A (zh) 城市地下管廊供水管道泄漏检测系统及方法
CN106015949A (zh) 一种音波管道泄漏监测系统
CN110332467A (zh) 一种供水管网漏损监测及预警系统
WO2011107101A1 (en) Method and apparatus for leak detection
CN111578149A (zh) 燃气管道泄漏监测方法、设备、系统及存储介质
KR101382232B1 (ko) 소음 수준 및 분포를 이용한 상시 누수진단 시스템
CN203348923U (zh) 管道漏水检测仪及具有该检测仪的管道网络漏水监测系统
CN110185940A (zh) 一种燃气管道泄漏监测与定位系统
CN111486345B (zh) 一种粮库地下管网液体泄漏在线监测预警方法及装置
CN104482415B (zh) 一种家庭天然气自动报警系统
CN205640249U (zh) 一种流体漏失监控装置
CN205175954U (zh) 一种水质多参数在线监测装置
KR101382231B1 (ko) 음의 연속성을 이용한 누수진단 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant