CN105779956B - 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 - Google Patents
一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 Download PDFInfo
- Publication number
- CN105779956B CN105779956B CN201610160754.2A CN201610160754A CN105779956B CN 105779956 B CN105779956 B CN 105779956B CN 201610160754 A CN201610160754 A CN 201610160754A CN 105779956 B CN105779956 B CN 105779956B
- Authority
- CN
- China
- Prior art keywords
- lead iodide
- films
- organic perovskite
- methylamino
- iodide films
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0694—Halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明阐述了一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法。具体步骤为:利用薄膜制备技术(脉冲激光沉积、磁控溅射等),以碘化铅为靶材,在基底上沉积制备碘化铅薄膜,通过激光脉冲数或者溅射功率和时间控制薄膜厚度,再将长好的碘化铅薄膜与甲基碘化胺粉末放入控温炉中,150~280摄氏度恒温加热5分钟到5小时,让甲基碘化胺气氛与衬底上的碘化铅薄膜进行反应生成甲基胺基碘化铅薄膜。本发明制备工艺简单,可以实现大面积薄膜的制备,并且利用该方法生长的薄膜晶粒基本贯穿薄膜生长方向,有利于有机钙钛矿太阳能电池效率的提高和工业化生产与应用。
Description
技术领域
本发明是一种有机钙钛矿甲基胺基碘化铅薄膜的方法,尤其是一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法,属于技术领域。
背景技术
甲基胺基碘化铅有机钙钛矿晶型(ABX3)的有机碘化物吸光材料,ABX3结构中,A为甲基胺基(CH3NH3),B为金属铅原子,X为碘。一般的制备方法有甲基胺基碘化铅一步旋涂法,气相蒸发法,两步旋涂法,两步气相蒸发法和一步PLD法等,但制备尺寸均一的大颗粒有机钙钛矿薄膜往往比较难以控制,并且大多都不适合大面积薄膜的制备以应用于工业生产和实际应用。
发明内容
技术问题:本发明的目的是提供一种简单可控的制备大晶粒有机钙钛矿甲基胺基碘化铅薄膜的方法。该方法有利于大面积有机钙钛矿甲基胺基碘化铅薄膜的制备。工艺简单,可应用于大面积有机钙钛矿太阳能电池的工业化生产和实际应用。
技术方案:本发明的一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法包括以下步骤:
1.)制备碘化铅靶材:通过薄膜制备工艺,在真空条件下,衬底上制备碘化铅薄膜;
2.)碘化铅薄膜与甲基碘化胺粉末放置在耐高温容器中,一起放入控温炉中加热到150摄氏度到280摄氏度,保温5分钟到5小时,碘化铅与甲基碘化胺气氛反应生成有机钙钛矿甲基胺基碘化铅薄膜样品;
3.)自然降温后将薄膜样品取出,得到有机钙钛矿甲基胺基碘化铅薄膜。
其中:
所述的步骤1.)薄膜制备工艺为脉冲激光沉积或磁控溅射。
步骤1)所述真空条件是腔体内压强<10-1帕。
步骤2)所述耐高温容器为陶瓷或玻璃。
步骤2)所述控温炉为管式炉、干燥箱或箱式炉。
有益效果:
(1)利用薄膜制备工艺生长碘化铅薄膜,有利于大面积有机钙钛矿甲基胺基碘化铅薄膜的制备。
(2)在碘化钾铵气氛下反应,可以提高制备温度,促进晶粒的长大,从而得到单个晶粒贯穿薄膜整个厚度的薄膜样品。
(3)本工艺简单,可应用于大面积有机钙钛矿太阳能电池的工业化生产和实际应用。
附图说明
图1制备的碘化铅薄膜截面的SEM照片。
图2制备的有机钙钛矿甲基胺基碘化铅薄膜的XRD图。
图3制备的有机钙钛矿甲基胺基碘化铅薄膜截面的SEM照片。
具体实施方式
实施案例一:
用脉冲激光沉积技术,腔体真空度10-3帕,激光能量400毫焦,脉冲数1000脉冲,利用碘化铅为靶材在掺氟二氧化锡薄膜上生长碘化铅薄膜,薄膜厚度约为1.6微米(图1),将长好的碘化铅与甲基碘化胺粉末放入管式炉中180摄氏度恒温加热20分钟,让甲基碘化胺气氛与衬底上的碘化铅薄膜进行反应生成甲胺基碘化铅薄膜,利用X射线衍射确定该方法生长的薄膜为纯相的有机钙钛矿甲基胺基碘化铅薄膜(图2),利用扫描电子显微镜观测截面确定薄膜厚度约为3微米,晶粒很大,基本贯穿整个薄膜的厚度(图3)。
实施案例二:
用磁控溅射技术,腔体真空度10-3帕,溅射功率150瓦,生长时间20分钟,利用碘化铅为靶材在掺氟二氧化锡薄膜上生长碘化铅薄膜,薄膜厚度500纳米,将长好的碘化铅与甲基碘化胺粉末放入管式炉中180摄氏度恒温加热15分钟,让甲基碘化胺气氛与衬底上的碘化铅薄膜进行反应生成有机钙钛矿甲基胺基碘化铅薄膜。
本发明提供了一种简单的有机钙钛矿甲基胺基碘化铅薄膜制备方法的思路及实施方法,具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,例如通过不同的薄膜制备工艺生长碘化铅薄膜,在不同的衬底上生长薄膜等,这些改进也应视为本发明的保护范围。
Claims (4)
1.一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法,其特征在于该方法包括以下步骤:
1.)制备碘化铅靶材:通过薄膜制备工艺,在真空条件下,衬底上制备碘化铅薄膜;
2.)碘化铅薄膜与甲基碘化胺粉末放置在耐高温容器中,一起放入控温炉中加热到150摄氏度到280摄氏度,保温5分钟到5小时,碘化铅与甲基碘化胺气氛反应生成有机钙钛矿甲基胺基碘化铅薄膜样品;
3.)自然降温后将薄膜样品取出,得到有机钙钛矿甲基胺基碘化铅薄膜;
所述的步骤1.)薄膜制备工艺为脉冲激光沉积或磁控溅射。
2.据权利要求1所述的两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法,其特征在于步骤1)所述真空条件是腔体内压强<10-1帕。
3.据权利要求1所述的两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法,其特征在于步骤2)所述耐高温容器为陶瓷或玻璃。
4.据权利要求1所述的两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法,其特征在于步骤2)所述控温炉为管式炉、干燥箱或箱式炉。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610160754.2A CN105779956B (zh) | 2016-03-21 | 2016-03-21 | 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610160754.2A CN105779956B (zh) | 2016-03-21 | 2016-03-21 | 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105779956A CN105779956A (zh) | 2016-07-20 |
CN105779956B true CN105779956B (zh) | 2018-02-02 |
Family
ID=56393091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610160754.2A Active CN105779956B (zh) | 2016-03-21 | 2016-03-21 | 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105779956B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3956493A4 (en) * | 2019-04-19 | 2023-04-19 | Hunt Perovskite Technologies, L.L.C. | SOLVENTLESS PEROVSKITE DEPOSIT PROCESS |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106854749B (zh) * | 2016-12-02 | 2018-12-11 | 广州光鼎科技集团有限公司 | 一种钙钛矿材料及其相关薄膜的制备方法 |
CN110767808B (zh) * | 2018-07-27 | 2021-05-25 | 中国科学院化学研究所 | 钙钛矿薄膜及其制备方法和应用 |
CN110565054B (zh) * | 2019-09-12 | 2021-04-27 | 东南大学 | 一种激光两步溅射制备CsPbBrxI3-x荧光薄膜的方法 |
CN112002812B (zh) * | 2020-09-15 | 2023-06-30 | 常州大学 | 基于分步热蒸发制备钙钛矿太阳电池吸收层的方法及钙钛矿太阳电池的制备 |
CN112687804A (zh) * | 2020-12-25 | 2021-04-20 | 昆山协鑫光电材料有限公司 | 基于两步法制备大面积钙钛矿薄膜的方法及其应用 |
TWI836830B (zh) * | 2022-12-30 | 2024-03-21 | 國立清華大學 | 鈣鈦礦薄膜的製作方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02173222A (ja) * | 1988-12-27 | 1990-07-04 | Toshiba Corp | 高純度多元合金製造装置 |
US5871579A (en) * | 1997-09-25 | 1999-02-16 | International Business Machines Corporation | Two-step dipping technique for the preparation of organic-inorganic perovskite thin films |
-
2016
- 2016-03-21 CN CN201610160754.2A patent/CN105779956B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02173222A (ja) * | 1988-12-27 | 1990-07-04 | Toshiba Corp | 高純度多元合金製造装置 |
US5871579A (en) * | 1997-09-25 | 1999-02-16 | International Business Machines Corporation | Two-step dipping technique for the preparation of organic-inorganic perovskite thin films |
Non-Patent Citations (1)
Title |
---|
"Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition";Dong Yang et.al;《Journal materials chemistry A》;20150330(第3期);第9401-9405页 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3956493A4 (en) * | 2019-04-19 | 2023-04-19 | Hunt Perovskite Technologies, L.L.C. | SOLVENTLESS PEROVSKITE DEPOSIT PROCESS |
US12116663B2 (en) | 2019-04-19 | 2024-10-15 | Cubicpv Inc. | Method for solvent-free perovskite deposition |
Also Published As
Publication number | Publication date |
---|---|
CN105779956A (zh) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105779956B (zh) | 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 | |
CN105777800B (zh) | 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法 | |
CN104485425B (zh) | 钙钛矿型材料制备方法和设备及其光伏器件的加工方法 | |
Qin et al. | Effect of hydrothermal reaction temperature on growth, photoluminescence and photoelectrochemical properties of ZnO nanorod arrays | |
CN104389016B (zh) | 一种快速制备大尺寸单晶石墨烯的方法 | |
CN107287578B (zh) | 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法 | |
Wang et al. | Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition | |
Pedersen et al. | Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD | |
Kiriya et al. | Morphological and spatial control of InP growth using closed-space sublimation | |
CN103824902A (zh) | 一种FeS2薄膜及其制备方法 | |
La Ferrara et al. | ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air | |
CN114086126A (zh) | 一种单晶太阳能电池薄膜材料及其制备方法 | |
Tao et al. | Effect of deposition potential on the properties of Cu2ZnSnS4 films for solar cell applications | |
Periasamy et al. | Effect of annealing on the characteristics of nanocrystalline ZnO thin films | |
CN103864460A (zh) | 一种有序氧化钨纳米线阵列结构的制备方法 | |
Lee et al. | Synthesis and photoluminescence properties of hydrothermally-grown ZnO nanowires on the aerosol-deposited AZO seed layer | |
Senthilnathan et al. | Novel spray pyrolysis for dye-sensitized solar cell | |
Jang et al. | Effect of ALD surface treatment on structural and optical properties of ZnO nanorods | |
Park et al. | Low-temperature synthesized ZnO nanoneedles: XPS and PL analysis | |
JP6008282B2 (ja) | Geクラスレートの製造方法 | |
Kraus et al. | Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization | |
CN111647848A (zh) | 一种磁控溅射制备大面积CsPbBr3光电薄膜的方法和应用 | |
CN103060758B (zh) | 纳米和微米硅薄膜的脉冲电子束沉积方法 | |
CN109524478B (zh) | 基于二硫化锡薄膜的柔性光电探测器件 | |
CN103981497A (zh) | 一种柔性衬底ZnS薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |