CN105765319A - 具有扩展范围和容量控制特征的两级离心式压缩机 - Google Patents

具有扩展范围和容量控制特征的两级离心式压缩机 Download PDF

Info

Publication number
CN105765319A
CN105765319A CN201480062120.2A CN201480062120A CN105765319A CN 105765319 A CN105765319 A CN 105765319A CN 201480062120 A CN201480062120 A CN 201480062120A CN 105765319 A CN105765319 A CN 105765319A
Authority
CN
China
Prior art keywords
port
compressor
impeller
downstream
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480062120.2A
Other languages
English (en)
Other versions
CN105765319B (zh
Inventor
L·孙
S·基塔莱格
J·布拉茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of CN105765319A publication Critical patent/CN105765319A/zh
Application granted granted Critical
Publication of CN105765319B publication Critical patent/CN105765319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

本公开的一个示例性实施例涉及一种离心式制冷剂压缩机系统。所述系统包括冷凝器、蒸发器和冷凝器与蒸发器之间的节热器。所述系统还包括具有第一叶轮和第一叶轮下游的第二叶轮的离心式压缩机。压缩机包括至少一个端口。流体经由至少一个端口被从再循环流动路径和节热器流动路径引入压缩机的主流动路径中。

Description

具有扩展范围和容量控制特征的两级离心式压缩机
有关申请
本申请要求2013年11月14日提交的美国临时申请号No.61/904,160的优选权,其全部内容通过参引结合到本文中。
背景技术
制冷剂压缩机(refrigerantcompressor)被用于使冷却器中的制冷剂经由制冷剂回路循环。一种已知的制冷剂压缩机以固定速度运转,并且具有设置在叶轮上游、压缩机进口处的一组可变进口导流叶片。可变进口导流叶片在制冷剂压缩机运转期间被致动,以在各种运转条件下调节容量。
其他已知的制冷剂压缩机另外地已经在叶轮的下游应用几何形状可变的扩压器(diffuser),以在部分负载的运转条件期间改善容量控制。几何形状可变的扩压器在部分负载条件下将扩压器的流动截面积调整至低流量,从而类似于满载设计条件的流动角度和速度来维持流动角度和速度。
一种先前的制冷剂压缩机构思建议再循环制冷剂来改善容量控制。例如,在Brasz的美国专利No.5,669,756中,制冷剂被从扩压器出口处再循环并且回注入叶轮处的主流动路径中。
发明内容
本公开的一个示例性实施例涉及一种离心式制冷剂压缩机系统。所述系统包括冷凝器、蒸发器和位于冷凝器与蒸发器之间的节热器。所述系统还包括离心式压缩机,该离心式压缩机具有第一叶轮和位于第一叶轮下游处的第二叶轮。压缩机包括至少一个端口。流体经由所述至少一个端口从再循环流动路径和节热器流动路径被引入压缩机的主流动路径中。
本公开的另一示例性实施例涉及一种离心式制冷剂压缩机。该压缩机包括第一叶轮和位于第一叶轮下游处的第二叶轮。压缩机还包括与再循环流动路径处于流体连通的端口,所述端口或者(1)邻近位于第一叶轮与第二叶轮之间的返回通道设置,或者(2)设置在第二叶轮的下游。
可以独立地或者按任何组合地采用前段的实施例、实例及备选方案、权利要求书或者以下说明及附图,包括其各个方面或者相应各个特征中的任何一个。结合一个实施例所描述的特征适用于全部实施例,除非那些特征是不相容的。
附图说明
附图可以简要地描述如下:
图1示意性地图解了根据本公开的第一实例的制冷剂系统。
图2示意性地图解了第二实例的制冷剂系统。
图3示意性地图解了第三实例的制冷剂系统。
图4示意性地图解了第一实例的压缩机。
图5示意性地图解了第二实例的压缩机。
图6示意性地图解了第三实例的压缩机。
图7示意性地图解了第四实例的压缩机。
图8示意性地图解了第五实例的压缩机。
图9示意性地图解了第六实例的压缩机。
具体实施方式
图1示意性地图解了第一实例的制冷剂系统10。制冷剂系统10包括压缩机12。在该实例中,压缩机12是包括第一叶轮14和第二叶轮16的离心式压缩机,意味着压缩机12是两级压缩机。第一叶轮14和第二叶轮16沿着轴18安装,该轴18由马达20可旋转地驱动。马达20的速度是可调节的,以(至少部分地)调节压缩机12的容量。压缩机12被构造成给制冷剂回路L内的流体流加压,所述流体在本实例中为制冷剂。
在压缩机12的下游,系统10包括冷凝器22,冷凝器22在第一膨胀阀24和第二膨胀阀26的上游。第一膨胀阀24在节热器28的上游,并且可由控制器(未示出)控制,以引导第一流体流通过节热器28。第一流体流冷却通过节热器28流向第二膨胀阀26的第二流体流,该第二膨胀阀在节热器28的下游。蒸发器30被定位在第二膨胀阀26的下游并且在压缩机12的上游。
压缩机12与节热器流动路径E处于流体连通,该流动路径在节热器28处起源于制冷剂回路L。此外,压缩机12与再循环流动路径R处于流体连通。在该实例中,再循环流动路径R在第二叶轮16的下游的一位置(诸如,压缩机12的输出口(或者出口))处起源于制冷剂回路L。以下将详细描述节热器流动路径E和再循环流动路径R。
图2图解了根据本公开的另一制冷剂系统110。像系统10那样,系统110包括构造成给制冷剂回路L内的流体流加压的压缩机12。在压缩机12的下游,系统110包括冷凝器22,冷凝器22在第一膨胀阀124和第二膨胀阀126的上游。在第一膨胀阀124与第二膨胀阀126之间,系统110包括节热器128,节热器128在本实例中为节热器储罐(也被称为“闪蒸”罐)。
第一膨胀阀124在节热器128的上游,并且第二膨胀阀126被设置在节热器128与蒸发器30之间,该蒸发器30在压缩机12的上游。
在系统110中,压缩机12与节热器流动路径E处于流体连通,该节热器流动路径在节热器128处起源于制冷剂回路L。此外,压缩机12与再循环流动路径R处于流体连通。像系统10那样,再循环流动路径R在第二叶轮16的下游的一位置处起源于制冷剂回路L。
图3图解了不包括节热器的系统210。在系统210中,设有压缩机12和位于压缩机12的下游的冷凝器22。因为没有节热器,所以系统210仅包括单个膨胀阀224(诸如,阀26、126),该膨胀阀在冷凝器22的下游并且在蒸发器30的上游。系统210包括再循环流动路径R,该再循环流动路径R像前述实例那样起源于第二叶轮16的下游的一位置。
图4-9示意性地图解了六个实例的压缩机112、212、312、412、512和612。所述压缩机112、212、312、412、512和612中的每一个可被用作图1-3之间所示的系统10、110、210的任何一个中的压缩机12。
图4示意性地图解了第一实例的压缩机112。压缩机12包括以34示出的进口,其包括可控的进口导流叶片36。进口导流叶片36被构造成通过调节(throttle)来自制冷剂回路L的流体流F1,来控制压缩机112的容量。流体F1的流动路径在本文中被称作压缩机112的主流动路径。在本公开的另一实例中,压缩机112未包括进口导流叶片36。
在本实例中,流体F1经由进口34进入压缩机112,并且在进口导流叶片36上轴向地(沿轴向方向A)流动并且流向第一叶轮14。第一叶轮14给流体F1加压,并且使流体F1朝下游径向地(沿径向方向Z)排向第一无叶片式扩压器38。然后,横跨弯管40使流体F1径向内向地转向返回通道42,其可以包括反旋(deswirl)叶片。
压缩机112包括邻近返回通道42设置的端口44(其自身可设有多个气体注入孔)。在本实例中,端口44与节热器流动路径E和再循环流动路径R流体连通。来自节热器流动路径E的流体以F2示出,并且来自再循环流动路径R的流体以F3示出。
再循环流体F3可经由流量调节器32来控制,以选择性地将流体流F3引入端口44中。流量调节器32经由控制器(未描绘)控制,以按选定时间将流体F3引入流体F1中。在一个实例中,当压缩机112按正常容量运转时流量调节器32关闭。正常容量的范围为设计容量的大约40-100%。然而,处于相对低的、部分负载的运转容量(例如,设计容量的大约30%)时,控制器指示进口导流叶片36关闭并且流量调节器32打开,以使得流体F3经由再循环流动路径R流向端口44。另外或者备选是,在某些实例中,控制器可以在压缩机启动期间指示流量调节器32打开。
继续参见图4,流体F1-F3的混合流从返回通道42流至返回通道的出口46。然后,混合流F1-F3被第二叶轮16加压,并且被径向地排向第二无叶片式扩压器48。最后,混合流F1-F3流向出口蜗壳50。出口蜗壳50不必处于涡旋形的形式,然而其他种类的出口归入本公开的范围之内。
在图4的实例中,再循环流动路径R被设置在出口蜗壳50与端口44之间,并且如所提到的,流量调节器32选择性地引流(tap)主流动路径内的一部分流体以用于再循环。再循环流动路径R可以起源于另外的位置,包括在第二叶轮14的下游并且在冷凝器22的上游的任何位置。
流体从节热器流动路径E和/或再循环流动路径R的注入通过允许下游元件(例如,第二叶轮16)经历更接近其最佳范围的流而在部分负载的条件中增强了压缩机112运转的稳定性。
图5图解了第二实例的压缩机212。与压缩机112不同(其中节热器流动路径E和再循环流动路径R两者都与端口44连通),压缩机212包括位于第二叶轮16下游的第二端口52。在该实例中,第二端口52与再循环流动路径R处于流体连通,并且被设置成将流体F3注入第二无叶片式扩压器48附近。像压缩机112那样,节热器流动路径E与端口44处于流体连通。
经由端口44和52注入流体F2和F3在卸载条件期间使第二级叶轮16稳定。此外,与其中经由端口44注入流体F3的图4相比,在第二叶轮16的下游注入流体F3可具有提高整个压缩机效率的优点,因为在该位置处不存在已经对流体F3所做过的工作(例如,流体F3在被引入主流动路径之前未被第二叶轮16加压)。
图4-5的压缩机112、212提供了更高的峰值效率,即使在相对狭窄的运转范围。与图4-5的压缩机112、212不同,图6-9的压缩机312、412、512和612不包括进口导流叶片36。反而,如下所述,通过从位于第一叶轮14的下游的再循环流动路径R注入流体来控制容量。
参见图6的压缩机312,流体流F1被从制冷剂回路L引入进口34。流体流F1被第一叶轮14加压并且被径向地排向第一无叶片式扩压器38。在该实例中,邻近第一无叶片式扩压器38,再循环端口54被设置成从再循环流动路径R引入流体流F3。如在上述实例中,再循环流动路径R起源于出口蜗壳50处。
图6中的再循环流动路径R的配置与共同待审美国专利申请号No.14/096,395中所描述的再循环流动路径R的配置是相同的,该共同待审美国专利整体通过参引包括于此。如‘395申请中所阐述的,再循环流动路径R可以连通于再循环蜗壳和多个注入喷嘴,然而,本公开扩充至其他种类的配置。
继续参见图6,压缩机312包括位于第一无叶片式扩压器38下游的第一叶片式扩压器56,该叶片式扩压器包括多个固定的(或不动的)叶片。流体F1和F3的混合流径向地通过第一叶片式扩压器56流至横跨弯管40,该横跨弯管使混合流F1、F3朝向返回通道42径向地转向。
如在图4和图5的实例中,压缩机312包括邻近返回通道42的端口44。端口44被设置成将流体F2从节热器流动路径E注入压缩机312中。然后,混合流F1-F3向下游流至第二叶轮16,在该第二叶轮处被加压并径向地排出。在第二叶轮16的下游,压缩机312包括第二无叶片式扩压器48和第二叶片式扩压器58。第二叶片式扩压器58在第二无叶片式扩压器48的下游并且在出口蜗壳50的上游。像第一叶片式扩压器56那样,第二叶片式扩压器58包括固定叶片。
流体F3从再循环流动路径R的注入通过允许下游元件(例如,第一叶片式扩压器56、第二叶轮16和第二叶片式扩压器58)经历更接近其最佳范围的流而在部分负载条件中增强压缩机312运转的稳定性。流体F2的注入进一步稳定了端口44下游的元件,即,第二叶轮16和第二叶片式扩压器58。进而,注入流体F2、F3使压缩机312的有效运转范围延伸至更低的部分负载运转条件,其减小了浪涌状态的可能性。此外,压缩机312不需要进口导流叶片或者几何形状可变的扩压器,这减少了压缩机312内的机械构件并且引起增高的可靠性。
图7图解了类似于图6的压缩机312的压缩机412,然而压缩机412不包括邻近返回通道42的端口(诸如,端口44)。反而,在压缩机412中,来自节热器流动路径E的流体F2和来自再循环流动路径R的流体F3均经由端口54引入压缩机412中。这通过除去端口而简化了压缩机412的结构。
虽然图6和图7包括具有固定叶片的第一叶片式扩压器56,但是其他压缩机(诸如,图8和图9的压缩机512、612)可以包括位于第一叶轮14下游的几何形状可变的扩压器60。几何形状可变的扩压器60的叶片是可调节的,以控制压缩机512、612的容量。压缩机512、612可以在无需进口导流叶片的情况下有效控制容量。
图8图解了包括位于第一叶轮14下游的几何形状可变的扩压器60的第一实例的压缩机512。压缩机512还包括位于第二叶轮16下游的叶片式扩压器58。如图8中所示,流体流F2、F3被按与图4的压缩机112基本上相同的方式经由邻近返回通道42的端口44而注入压缩机12中。因此,压缩机512的容量有效地由第一叶轮14的几何形状可变的扩压器控制,同时流体F2、F3经由端口44的注入如上所述相对于压缩机112稳定了第二叶轮16。
图9图解了包括位于第一叶轮14下游的几何形状可变的扩压器60的第二实例的压缩机612。压缩机612包括位于第二叶轮16下游的叶片式扩压器58。类似于图5,节热器流动路径E经由端口44与压缩机12处于流体连通,并且再循环流动路径R与位于第二叶轮16下游的第二端口52处于流体连通。
在压缩机112、212、312、412、512和612中的每一个中,来自节热器流动路径E的流体流F2可以是一致的、稳定流、与压缩机的容量成正比的。
如上所述,在某些实例中,没有节热器流动路径E(因为没有节热器,诸如在图3的实例中)。在这些情况中,压缩机212、312和612可以不包括端口44(请注意,压缩机112和512经由端口44注入流体F3,并且因此仍然存在对于端口44的需要,甚至当消除节热器流动路径E时也是如此)。
很清楚,术语诸如“前部”、“后部”、“轴向”、“径向”和“周向”用于说明目的,并且不应该认为是另外的限制。术语诸如“通常”、“基本上”和“大约”不是意指无边界的术语,并且应该按照本领域技术人员解释所述术语的方式地来解释。
虽然不同实例具有附图中所示的特定构件,但是本公开的实施例不限于所述特定组合。可以使用来自实例中的一个实例的一些构件或者特征与来自实例中的另一个实例的特征或构件的结合。
本领域的普通技术人员应当理解,上述实施例是示例性的且不是限制性的。也就是说,本公开的改型将归入权利要求的范围之内。因此,以下的权利要求应该力图确定其真实的范围和内容。

Claims (18)

1.一种离心式制冷剂压缩机系统,包括:
冷凝器;
蒸发器;
位于所述冷凝器与所述蒸发器之间的节热器;以及
离心式压缩机,所述离心式压缩机包括第一叶轮和位于第一叶轮下游的第二叶轮,所述压缩机包括至少一个端口,其中流体经由所述至少一个端口从再循环流动路径和节热器流动路径被引入所述压缩机的主流动路径。
2.如权利要求1所述的制冷剂系统,其中所述再循环流动路径起源于所述压缩机的出口,并且其中所述节热器流动路径起源于所述节热器。
3.如权利要求1所述的制冷剂系统,其中所述至少一个端口是设置在第一叶轮的下游且在第二叶轮的上游的单个端口。
4.如权利要求3所述的制冷剂系统,其中所述端口邻近返回通道设置。
5.如权利要求4所述的制冷剂系统,其中所述压缩机包括(1)几何形状可变的扩压器和(2)进口导流叶片中的一者。
6.如权利要求5所述的制冷剂系统,其中所述压缩机包括位于第一叶轮下游的几何形状可变的扩压器,并且其中所述压缩机还包括位于第二叶轮下游的固定叶片扩压器。
7.如权利要求5所述的制冷剂系统,其中所述压缩机包括进口导流叶片,并且其中所述压缩机还分别包括位于第一叶轮下游的第一无叶片式扩压器和位于第二叶轮下游的第二无叶片式扩压器。
8.如权利要求1所述的制冷剂系统,其中所述至少一个端口包括第一端口和第二端口,第一端口位于第一叶轮的下游并且在第二叶轮的上游,第二端口位于第二叶轮的下游并且在压缩机的出口的上游,其中所述节热器流动路径与第一端口处于流体连通,并且其中所述再循环流动路径与第二端口处于流体连通。
9.如权利要求8所述的制冷剂系统,其中所述压缩机包括(1)几何形状可变的扩压器和(2)进口导流叶片中的一者。
10.如权利要求9所述的制冷剂系统,其中所述压缩机包括位于第一叶轮下游的几何形状可变的扩压器,并且其中所述压缩机还包括位于第二叶轮下游的固定叶片扩压器,第二端口邻近所述固定叶片扩压器。
11.如权利要求9所述的制冷剂系统,其中所述压缩机包括进口导流叶片,并且其中所述压缩机还分别包括位于第一叶轮下游的第一无叶片式扩压器和位于第二叶轮下游的第二无叶片式扩压器。
12.如权利要求1所述的制冷剂系统,其中所述压缩机还包括位于第一叶轮下游的固定叶片扩压器,并且其中所述至少一个端口包括第一端口和第二端口,第一端口邻近所述固定叶片扩压器,并且第二端口位于第一叶轮的下游并且在第二叶轮的上游,其中所述再循环流动路径与第一端口处于流体连通,并且其中所述节热器流动路径与第二端口处于流体连通。
13.如权利要求1所述的制冷剂系统,其中所述压缩机还包括位于第一叶轮下游的固定叶片扩压器,并且其中所述至少一个端口是邻近所述固定叶片扩压器的单个端口。
14.一种离心式制冷剂压缩机,包括:
第一叶轮;
位于第一叶轮下游的第二叶轮;
与再循环流动路径流体连通的端口,所述端口设置成(1)邻近第一叶轮与第二叶轮之间的返回通道;或者(2)位于第二叶轮的下游。
15.如权利要求14所述的制冷剂系统,其中所述端口邻近所述返回通道设置。
16.如权利要求15所述的制冷剂系统,其中所述端口与节热器流动路径处于流体连通。
17.如权利要求14所述的制冷剂系统,其中所述端口被设置在第二叶轮的下游。
18.如权利要求17所述的制冷剂系统,其中所述压缩机包括邻近所述返回通道的第一端口和位于第二叶轮下游的第二端口,其中第一端口与节热器流动路径处于流体连通,并且其中第二端口与再循环流动路径处于连通。
CN201480062120.2A 2013-11-14 2014-11-14 具有扩展范围和容量控制特征的两级离心式压缩机 Active CN105765319B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361904160P 2013-11-14 2013-11-14
US61/904,160 2013-11-14
PCT/US2014/065722 WO2015073835A1 (en) 2013-11-14 2014-11-14 Two-stage centrifugal compressor with extended range and capacity control features

Publications (2)

Publication Number Publication Date
CN105765319A true CN105765319A (zh) 2016-07-13
CN105765319B CN105765319B (zh) 2018-06-05

Family

ID=53042483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480062120.2A Active CN105765319B (zh) 2013-11-14 2014-11-14 具有扩展范围和容量控制特征的两级离心式压缩机

Country Status (6)

Country Link
US (1) US9382911B2 (zh)
EP (1) EP3069089B1 (zh)
JP (1) JP2016539311A (zh)
KR (1) KR102254251B1 (zh)
CN (1) CN105765319B (zh)
WO (1) WO2015073835A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952440A (zh) * 2016-08-25 2019-06-28 丹佛斯公司 制冷剂压缩机
CN110360130A (zh) * 2018-04-09 2019-10-22 开利公司 可变扩压器驱动系统
CN110986403A (zh) * 2018-10-03 2020-04-10 丹佛斯公司 制冷压缩机和制冷系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240320B (zh) * 2015-10-15 2019-01-22 珠海格力电器股份有限公司 一种离心式压缩机补气结构及压缩机
US10563673B2 (en) 2016-01-12 2020-02-18 Daikin Applied Americas Inc. Centrifugal compressor with liquid injection
EP3411596B1 (en) * 2016-02-04 2023-11-01 Danfoss A/S Active surge control in centrifugal compressors using microjet injection
CN107013497B (zh) * 2017-05-11 2024-03-19 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
US11156231B2 (en) * 2018-03-23 2021-10-26 Honeywell International Inc. Multistage compressor having interstage refrigerant path split between first portion flowing to end of shaft and second portion following around thrust bearing disc
US11143193B2 (en) * 2019-01-02 2021-10-12 Danfoss A/S Unloading device for HVAC compressor with mixed and radial compression stages
US11085684B2 (en) 2019-06-27 2021-08-10 Trane International Inc. System and method for unloading a multi-stage compressor
WO2021003080A1 (en) * 2019-07-01 2021-01-07 Carrier Corporation Surge protection for a multistage compressor
EP4013966A1 (en) * 2019-08-12 2022-06-22 Johnson Controls Tyco IP Holdings LLP Compressor with optimized interstage flow inlet
US11255338B2 (en) * 2019-10-07 2022-02-22 Elliott Company Methods and mechanisms for surge avoidance in multi-stage centrifugal compressors
US11391289B2 (en) * 2020-04-30 2022-07-19 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11536277B2 (en) 2020-04-30 2022-12-27 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
JP2023536265A (ja) * 2020-07-30 2023-08-24 ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー 圧縮器内の流体流れを誘導するためのシステム及び方法
JP2022186266A (ja) * 2021-06-04 2022-12-15 三菱重工コンプレッサ株式会社 遠心圧縮機
CA3221677A1 (en) * 2021-06-16 2022-12-22 Todd M. Bandhauer Air source heat pump system and method of use for industrial steam generation
EP4177476A1 (en) * 2021-11-03 2023-05-10 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11841026B2 (en) 2021-11-03 2023-12-12 Trane International Inc. Compressor interstage throttle, and method of operating therof
US11946678B2 (en) 2022-01-27 2024-04-02 Copeland Lp System and method for extending the operating range of a dynamic compressor
WO2024172048A1 (ja) * 2023-02-16 2024-08-22 株式会社Ihi 圧縮機

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656096A (en) * 1946-01-04 1953-10-20 Rateau Soc Centrifugal pump and compressor
WO2000055506A1 (en) * 1999-03-15 2000-09-21 Samjin Co., Ltd. Two-stage centrifugal compressor
US6129511A (en) * 1998-10-27 2000-10-10 Carrier Corporation Method and apparatus for controlling interaction between variable guide vanes and variable diffuser of a centrifugal compressor
US20040179947A1 (en) * 2002-12-19 2004-09-16 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
WO2005121559A1 (en) * 2004-06-07 2005-12-22 Honeywell International Inc. Compressor with controllable recirculation and method therefor
CN101076695A (zh) * 2004-09-13 2007-11-21 开利公司 带有卸载的多温度冷却系统
CN101504011A (zh) * 2008-02-06 2009-08-12 株式会社Ihi 进气引导叶片以及压缩机及制冷机
CN101526090A (zh) * 2008-02-06 2009-09-09 株式会社Ihi 涡轮压缩机以及制冷机
CN101994711A (zh) * 2009-08-24 2011-03-30 日立空调·家用电器株式会社 离心压缩机及制冷装置
CN102460036A (zh) * 2009-06-12 2012-05-16 开利公司 具有多负载模式的制冷剂系统
WO2013112122A2 (en) * 2012-01-23 2013-08-01 Danfoss Turbocor Compressors B.V. Variable-speed multi-stage refrigerant centrifugal compressor with diffusers
CN103759482A (zh) * 2007-10-31 2014-04-30 江森自控科技公司 控制气体压缩系统容量的方法以及气体压缩系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE842893C (de) 1950-09-13 1952-07-03 Siemens Ag Selbstansaugende Kreiselpumpe
US3901620A (en) 1973-10-23 1975-08-26 Howell Instruments Method and apparatus for compressor surge control
US4094613A (en) 1976-05-07 1978-06-13 Sundstrand Corporation Variable output centrifugal pump
US4695224A (en) 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
JP2637144B2 (ja) * 1988-03-08 1997-08-06 株式会社日立製作所 遠心圧縮機のサージング防止方法及び同装置
IL109967A (en) 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
JPH08284892A (ja) * 1995-04-10 1996-10-29 Mitsubishi Heavy Ind Ltd 遠心圧縮機のディフューザ
US5669756A (en) 1996-06-07 1997-09-23 Carrier Corporation Recirculating diffuser
US6036432A (en) 1998-07-09 2000-03-14 Carrier Corporation Method and apparatus for protecting centrifugal compressors from rotating stall vibrations
CA2373905A1 (en) 2002-02-28 2003-08-28 Ronald David Conry Twin centrifugal compressor
US6672826B2 (en) 2002-04-05 2004-01-06 Mafi-Trench Corporation Compressor surge control apparatus
US7326027B1 (en) 2004-05-25 2008-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Devices and methods of operation thereof for providing stable flow for centrifugal compressors
CN101027491B (zh) 2004-06-07 2010-12-08 霍尼韦尔国际公司 带再循环的压缩机装置及其方法
US8122724B2 (en) 2004-08-31 2012-02-28 Honeywell International, Inc. Compressor including an aerodynamically variable diffuser
FI20050119A (fi) 2005-02-02 2006-08-03 Sulzer Pumpen Ag Menetelmä ja laite kaasumaisen tai nestemäisen aineen syöttämiseksi väliaineen joukkoon
JP2006284034A (ja) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd 空気調和装置およびその膨張弁制御方法
US7871239B2 (en) 2006-02-03 2011-01-18 Dresser-Rand Company Multi-segment compressor casing assembly
DE102007017825A1 (de) 2007-04-16 2008-10-23 Continental Automotive Gmbh Verdichtergehäuse und Turbolader
JP2009024582A (ja) * 2007-07-19 2009-02-05 Ihi Corp ガス圧縮装置及びガス圧縮装置の制御方法
DE102007035966A1 (de) 2007-07-30 2009-02-05 Bosch Mahle Turbosystems Gmbh & Co. Kg Radialverdichter für einen Turbolader
JP2009085027A (ja) 2007-09-27 2009-04-23 Fujitsu General Ltd 2段圧縮ロータリ圧縮機
GB2465136B (en) 2007-10-17 2012-05-02 Shell Int Research Method and apparatus for controlling a refrigerant compressor, and use thereof in a method of cooling a hydrocarbon stream
IT1396001B1 (it) 2009-04-28 2012-11-09 Nuovo Pignone Spa Sistema di recupero dell'energia in un impianto per la compressione di gas
IT1401663B1 (it) 2010-08-31 2013-08-02 Nuovo Pignone Spa Dispositivo e metodo per rilevare una sovracorrente in un compressore e spostare un margine di sovracorrente.
WO2012060825A1 (en) 2010-11-03 2012-05-10 Danfoss Turbocor Compressors B.V. Centrifugal compressor with fluid injector diffuser
GB201122142D0 (en) * 2011-12-21 2012-02-01 Venus Systems Ltd Centrifugal compressors
GB2499217A (en) 2012-02-08 2013-08-14 Edwards Ltd Vacuum pump with recirculation valve
US9145858B2 (en) 2012-02-29 2015-09-29 Ford Global Technologies, Llc Intake system with an integrated charge air cooler
FR2987602B1 (fr) 2012-03-02 2014-02-28 Aircelle Sa Nacelle de turbomoteur equipe d'un echangeur de chaleur
EP2639411B1 (de) 2012-03-12 2014-12-10 MTU Aero Engines GmbH Gehäuse einer Stömungsmaschine mit einem Fluidleitsystem
DE102012204403A1 (de) 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656096A (en) * 1946-01-04 1953-10-20 Rateau Soc Centrifugal pump and compressor
US6129511A (en) * 1998-10-27 2000-10-10 Carrier Corporation Method and apparatus for controlling interaction between variable guide vanes and variable diffuser of a centrifugal compressor
WO2000055506A1 (en) * 1999-03-15 2000-09-21 Samjin Co., Ltd. Two-stage centrifugal compressor
CN1296551A (zh) * 1999-03-15 2001-05-23 株式会社三进 两级离心压缩机
US6997686B2 (en) * 2002-12-19 2006-02-14 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
US20040179947A1 (en) * 2002-12-19 2004-09-16 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
WO2005121559A1 (en) * 2004-06-07 2005-12-22 Honeywell International Inc. Compressor with controllable recirculation and method therefor
US20080232952A1 (en) * 2004-06-07 2008-09-25 Ronglei Gu Compressor with Controllable Recirculation and Method Therefor
CN101076695A (zh) * 2004-09-13 2007-11-21 开利公司 带有卸载的多温度冷却系统
CN103759482A (zh) * 2007-10-31 2014-04-30 江森自控科技公司 控制气体压缩系统容量的方法以及气体压缩系统
CN101504011A (zh) * 2008-02-06 2009-08-12 株式会社Ihi 进气引导叶片以及压缩机及制冷机
CN101526090A (zh) * 2008-02-06 2009-09-09 株式会社Ihi 涡轮压缩机以及制冷机
CN102460036A (zh) * 2009-06-12 2012-05-16 开利公司 具有多负载模式的制冷剂系统
CN101994711A (zh) * 2009-08-24 2011-03-30 日立空调·家用电器株式会社 离心压缩机及制冷装置
WO2013112122A2 (en) * 2012-01-23 2013-08-01 Danfoss Turbocor Compressors B.V. Variable-speed multi-stage refrigerant centrifugal compressor with diffusers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952440A (zh) * 2016-08-25 2019-06-28 丹佛斯公司 制冷剂压缩机
CN110360130A (zh) * 2018-04-09 2019-10-22 开利公司 可变扩压器驱动系统
CN110986403A (zh) * 2018-10-03 2020-04-10 丹佛斯公司 制冷压缩机和制冷系统
CN110986403B (zh) * 2018-10-03 2023-10-31 丹佛斯公司 制冷压缩机和制冷系统

Also Published As

Publication number Publication date
US9382911B2 (en) 2016-07-05
EP3069089B1 (en) 2020-08-05
KR102254251B1 (ko) 2021-05-21
CN105765319B (zh) 2018-06-05
EP3069089A1 (en) 2016-09-21
WO2015073835A1 (en) 2015-05-21
EP3069089A4 (en) 2017-11-01
US20150128640A1 (en) 2015-05-14
KR20160084837A (ko) 2016-07-14
JP2016539311A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
CN105765319A (zh) 具有扩展范围和容量控制特征的两级离心式压缩机
US10184481B2 (en) Centrifugal compressor with extended operating range
EP2635772B1 (en) Centrifugal compressor with diffuser with fluid injector
US9816733B2 (en) Economizer injection assembly and method
JP6552851B2 (ja) 圧縮機駆動用モータおよびその冷却方法
JP6453682B2 (ja) 圧縮機駆動用モータおよびその冷却方法
US20070140889A1 (en) Flow passage structure for refrigerant compressor
US9574571B2 (en) Pump device and pump system
CN107002683A (zh) 用于控制喷油压缩机设备的方法
US20180363976A1 (en) Booster system
US10962016B2 (en) Active surge control in centrifugal compressors using microjet injection
WO2019111650A1 (ja) 液冷式圧縮機
JPH11153097A (ja) 一軸多段遠心圧縮機及びターボ冷凍機
US20220290692A1 (en) Centrifugal compressor with liquid injection
CN117062985A (zh) 向压缩机的压缩机叶轮供应空气和排气的混合物
RU2020139155A (ru) Центробежный насос для переработки расплавленной мочевины и соответствующая установка
CN117981129A (zh) 用于在燃料电池系统的阳极回路中再循环阳极气体的装置和方法、燃料电池系统
JP2011047301A (ja) モータポンプ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant