CN105761746A - Read-in time sequence matching circuit of single-particle reinforced FPGA distributed RAM - Google Patents
Read-in time sequence matching circuit of single-particle reinforced FPGA distributed RAM Download PDFInfo
- Publication number
- CN105761746A CN105761746A CN201610080515.6A CN201610080515A CN105761746A CN 105761746 A CN105761746 A CN 105761746A CN 201610080515 A CN201610080515 A CN 201610080515A CN 105761746 A CN105761746 A CN 105761746A
- Authority
- CN
- China
- Prior art keywords
- configuration unit
- output
- inverter
- particle reinforced
- fpga
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 57
- 230000001052 transient effect Effects 0.000 claims abstract description 47
- 230000003068 static effect Effects 0.000 claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 230000009467 reduction Effects 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003471 anti-radiation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Logic Circuits (AREA)
Abstract
本发明提出了一种单粒子加固FPGA分布式RAM的写入时序匹配电路,包包括与门、单粒子加固触发器、镜像单粒子加固静态随机访问存储器、n级延时链、n选1多路选择器、n位配置单元、反相器、传输门、单粒子瞬态滤波器、二选一选择器、查找表单粒子加固静态随机访问存储器及其配置单元。FPGA的WR和EN信号依次通过与门、单粒子加固触发器,得到选通信号,选通信号通过镜像单粒子加固静态随机访问存储器、n级延时链和n选1多路选择器组成的反馈回路。该电路可以自动测量分布式随机访问存储器所需的写入时间,并允许用户开启或关闭FPGA中单粒子瞬态滤波器时,通过编程n位配置单元的值调整数据写入分布式RAM的宽度,实现SRAM型FPGA单粒子设计加固后的时序匹配。
The present invention proposes a write timing matching circuit for a single-particle hardened FPGA distributed RAM, which includes an AND gate, a single-particle hardened trigger, a mirrored single-particle hardened static random access memory, an n-level delay chain, and more than one selected from n Way selector, n-bit configuration unit, inverter, transmission gate, single-event transient filter, two-to-one selector, lookup table particle hardened static random access memory and its configuration unit. The WR and EN signals of the FPGA pass through the AND gate and the single-event hardened flip-flop in turn to obtain the gating signal, which is composed of the mirror single-event hardened static random access memory, n-level delay chain and n-to-1 multiplexer feedback loop. This circuit can automatically measure the writing time required by the distributed random access memory, and allows the user to adjust the width of data written to the distributed RAM by programming the value of the n-bit configuration unit when the single event transient filter in the FPGA is turned on or off. , to achieve timing matching after SRAM-type FPGA single-particle design reinforcement.
Description
技术领域technical field
本发明属于FPGA芯片设计领域,涉及一种单粒子加固FPGA分布式RAM的写入时序匹配电路。The invention belongs to the field of FPGA chip design, and relates to a write timing matching circuit of a single particle reinforced FPGA distributed RAM.
背景技术Background technique
FPGA在空间环境应用时,空间高能粒子穿过FPGA器件内部会引起电路节点上的瞬间电流,使配置存储单元发生单粒子翻转,某些区域的电路会产生局部功能错误、互联线短路或断路,使该区域的电路无法正常工作。单粒子加固FPGA可以利用加固技术在不影响FPGA电路正常工作的情况下,对容易发生翻转的寄存器和存储单元进行加固,大大增加存储单元发生单粒子翻转的难度,使得单粒子加固FPGA更加适应恶劣的太空辐射环境,延长其使用寿命。在单粒子打到电路中的某些节点时可能会造成瞬态电流,瞬态电流比正常工作的电流要大的多,但是持续时间比较短,所以可以通过使用单粒子瞬态滤波器过滤掉,单粒子加固FPGA中提供了可选的单粒子瞬态滤波器,可以根据不同的使用环境编程控制该滤波器的开启和关闭,提高了单粒子FPGA的抗单粒子瞬态电流的能力。When FPGA is applied in the space environment, space high-energy particles passing through the interior of the FPGA device will cause instantaneous current on the circuit nodes, causing single-event flipping of the configuration storage unit, and local functional errors, interconnection wire short circuit or open circuit in some areas of the circuit. Circuits in the area will not function properly. Single-event-hardened FPGAs can use reinforcement technology to reinforce registers and storage units that are prone to flipping without affecting the normal operation of the FPGA circuit, greatly increasing the difficulty of single-event flipping in storage cells, making single-event-hardened FPGAs more adaptable to harsh conditions The space radiation environment, prolong its service life. When a single particle hits some nodes in the circuit, it may cause a transient current. The transient current is much larger than the normal working current, but the duration is relatively short, so it can be filtered out by using a single particle transient filter. , The single event hardened FPGA provides an optional single event transient filter, which can be programmed to control the opening and closing of the filter according to different usage environments, which improves the single event FPGA's ability to resist single event transient currents.
单粒子加固FPGA包括输入输出端口(IOB)、可配置逻辑模块(CLB)、块存储器(BRAM)、遍布整个芯片连接各个模块的可编程互联结构、配置存储器阵列(CSRAM)、配置逻辑和配置接口。如图1所示,输入输出端口(IOB)位于芯片的四周,可配置逻辑模块(CLB)在内部按阵列排布,块存储器(BRAM)穿插在可配置逻辑模块(CLB)中,时钟模块分布在3个角。SRAM型FPGA芯片在配置前不具备任何逻辑功能,通过加载用户应用指定的配置数据进入内部的配置存储器阵列(CSRAM)来完成配置。Single-event hardened FPGAs include input-output ports (IOBs), configurable logic blocks (CLBs), block memory (BRAM), programmable interconnects that connect modules throughout the chip, configuration memory arrays (CSRAM), configuration logic, and configuration interfaces . As shown in Figure 1, the input and output ports (IOB) are located around the chip, the configurable logic block (CLB) is arranged in an array internally, the block memory (BRAM) is interspersed in the configurable logic block (CLB), and the clock module is distributed on 3 corners. The SRAM FPGA chip does not have any logic functions before configuration, and the configuration is completed by loading the configuration data specified by the user application into the internal configuration memory array (CSRAM).
除去FPGA中专用的逻辑模块(例如加法器、乘法器等),FPGA中实现的数学运算和组合逻辑功能通过可编程逻辑模块(CLB)来实现。CLB可以通过配置实现常见的组合逻辑和时序逻辑功能,例如4输入组合逻辑、分布式RAM、移位寄存器、累加器等。其中分布式RAM和移位寄存器功能是CLB的常见应用,利用CLB实现分布式RAM比BRAM更加灵活,使得设计更加灵活简便,利用CLB实现移位寄存器功能相比使用寄存器串接起来更加节省资源和布线逻辑,CLB是利用LUT中的单粒子加固静态随机访问存储器DICESRAM和额外的控制逻辑来实现分布式RAM和移位寄存器功能的。Except the dedicated logic modules in FPGA (such as adder, multiplier, etc.), the mathematical operations and combinational logic functions implemented in FPGA are realized through programmable logic modules (CLB). CLB can be configured to implement common combinational logic and sequential logic functions, such as 4-input combinational logic, distributed RAM, shift register, accumulator, etc. Among them, distributed RAM and shift register functions are common applications of CLB. Using CLB to implement distributed RAM is more flexible than BRAM, making the design more flexible and convenient. Using CLB to implement shift register functions saves resources and costs more than using registers in series. Routing logic, CLB is to use single particle reinforced static random access memory DICESRAM in LUT and additional control logic to realize distributed RAM and shift register functions.
相比作为查找表功能的SRAM中的值固定由配置逻辑写入后就不变化的情况而言,分布式RAM和移位寄存器功能的DICESRAM中数据需要实时的写入更新,需要一个匹配电路来保证这个写入过程能够在最少时间内将数据正确的写入DICESRAM。CLB的分布式RAM功能和移位寄存器功能共用写入延时匹配机制,通过延时匹配电路调整待输入数据的宽度。现有FPGA的CLB中采用镜像一个LUT中SRAM来保证数据写入,通过向镜像的SRAM写入标志信号数据,检测镜像的SRAM的输出信号变化来确定LUT中的SRAM写入完成。但在单粒子加固FPGA中LUT的输入路径上加入了可选的单粒子瞬态滤波电路,用户可以根据实际需求开启或关闭单粒子瞬态滤波电路,所以到达单粒子加固LUT的DICESRAM时间就有2种选择,但是由于加工的工艺角和工作条件的不同,实际延时会有多种,传统的镜像SRAM只能提供一种延时,不能满足单粒子加固FPGA的需要,单粒子加固的LUT中的DICESRAM写入延时需要根据是否使用单粒子瞬态滤波电路生产过程中工艺的偏差、实际芯片的工作环境来可变调节。Compared with the case where the value in SRAM as a lookup table function is fixed and does not change after being written by configuration logic, the data in DICESRAM with distributed RAM and shift register function needs to be written and updated in real time, and a matching circuit is needed to Guarantee that this writing process can correctly write data into DICESRAM in the least time. The distributed RAM function of the CLB and the shift register function share the write delay matching mechanism, and the width of the data to be input is adjusted through the delay matching circuit. In the CLB of the existing FPGA, the SRAM in a LUT is mirrored to ensure data writing. By writing the flag signal data to the mirrored SRAM, and detecting the output signal change of the mirrored SRAM, it is determined that the writing of the SRAM in the LUT is completed. However, an optional single-event transient filter circuit is added to the input path of the LUT in the single-event hardened FPGA. Users can turn on or off the single-event transient filter circuit according to actual needs, so the time to reach the DICESRAM of the single-event hardened LUT is shorter. There are 2 options, but due to the different processing angles and working conditions, the actual delay will be various. The traditional mirrored SRAM can only provide one delay, which cannot meet the needs of single-particle hardened FPGA. Single-particle hardened LUT The DICESRAM write delay needs to be variably adjusted according to whether the single event transient filter circuit is used, the deviation of the process in the production process, and the working environment of the actual chip.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种单粒子加固FPGA的分布式RAM写入延时匹配电路,使用户能够根据芯片的工艺角、使用环境和是否开启单粒子瞬态滤波电路来编程设定分布式RAM的写入匹配延时,调整分布式RAM待输入数据的有效宽度,确保数据在各种条件下均能以最少的时间准确写入分布式RAM。The technical problem of the present invention is: to overcome the deficiencies of the prior art, to provide a distributed RAM writing delay matching circuit for single particle reinforced FPGA, so that the user can check the chip according to the process angle of the chip, the use environment and whether to open the single particle instant The state filter circuit is used to program and set the write matching delay of the distributed RAM, adjust the effective width of the data to be input in the distributed RAM, and ensure that the data can be accurately written into the distributed RAM in the least time under various conditions.
本发明的技术解决方案是:一种单粒子加固FPGA分布式RAM的写入时序匹配电路,包括与门,单粒子加固触发器、镜像单粒子加固静态随机访问存储器、n级延时链、n选1多路选择器、n位配置单元、反相器、传输门、单粒子瞬态滤波器及其配置单元、二选一选择器、查找表单粒子加固静态随机访问存储器,所述n值为正整数,除n位配置单元以外,该写入时序匹配电路其他部分均位于FPGA芯片的CLB内,FPGA的WR和EN信号通过与门相与输出至单粒子加固触发器,当EN和WR同时为高电平时,时钟信号到达后,单粒子加固触发器的Q端输出高电平,该高电平信号从镜像单粒子加固静态随机访问存储器DI端写入存储器,然后从存储器的DO端输出至n级延时链得到该信号的n级延时信号,该n级延时信号分别接入至n选一多路选择器,由n位配置单元配置n选一多路选择器从n级延时信号中选出1个信号输出至单粒子加固触发器的复位端,复位端高电平有效,使得单粒子加固触发器2的Q端异步复位到低电平,单粒子加固触发器的Q端输出为数据选通信号,该数据选通信号输入至传输门的正端,同时经过反相器反相输入至传输门的负端,当数据选通信号为高电平时,传输门打开,待输入数据通过传输门,当单粒子瞬态滤波器配置单元配置为0时,待输入数据经由二选一选择器的0端输入至查找表单粒子加固静态随机访问存储器,当单粒子瞬态滤波器配置单元配置为1时,待输入数据经单粒子瞬态滤波器滤波处理后经由二选一选择器的1端输入至查找表单粒子加固静态随机访问存储器。The technical solution of the present invention is: a write timing matching circuit of a single-event hardened FPGA distributed RAM, including an AND gate, a single-event hardened flip-flop, a mirrored single-event hardened static random access memory, n-level delay chains, n Select 1 multiplexer, n-bit configuration unit, inverter, transmission gate, single-event transient filter and its configuration unit, two-choice selector, lookup table particle hardened static random access memory, and the value of n is Positive integer, except for the n-bit configuration unit, other parts of the write timing matching circuit are located in the CLB of the FPGA chip. The WR and EN signals of the FPGA are output to the single event hardened flip-flop through the AND gate. When EN and WR are simultaneously When it is high level, after the clock signal arrives, the Q terminal of the single event hardened flip-flop outputs a high level, and the high level signal is written into the memory from the DI terminal of the mirrored single event hardened SRAM, and then output from the DO terminal of the memory To the n-level delay chain to obtain the n-level delay signal of the signal, the n-level delay signal is respectively connected to the n-choice multiplexer, and the n-level configuration unit configures the n-choice one-way multiplexer from the n-level Select one signal from the delay signal and output it to the reset terminal of the single event reinforcement trigger. The output of the Q terminal is a data strobe signal. The data strobe signal is input to the positive terminal of the transmission gate, and is input to the negative terminal of the transmission gate through the inversion of the inverter. When the data strobe signal is high, the transmission gate is opened. , the data to be input passes through the transmission gate. When the single event transient filter configuration unit is configured as 0, the data to be input is input to the lookup table particle-hardened static random access memory through the 0 terminal of the two-choice selector. When the single event transient When the filter configuration unit is configured as 1, the input data is input to the lookup table particle-hardened static random access memory through terminal 1 of the one-two selector after being filtered by the single-event transient filter.
写入时序匹配电路中n级延时链由n-1个延时单元串联组成,所述镜像单粒子加固静态随机访问存储器的输出连接到第1个延时单元的输入端,同时作为n级延时链的第1级输出,第m级延时单元的输出端连接到第m+1级延时单元的输入端,同时作为n级延时链的第m+1级输出,m为自然数,m∈[2,n-1]。The n-level delay chain in the write timing matching circuit is composed of n-1 delay units connected in series, and the output of the mirror image single particle reinforced static random access memory is connected to the input end of the first delay unit, and simultaneously serves as an n-level The first stage output of the delay chain, the output end of the mth stage delay unit is connected to the input end of the m+1 stage delay unit, and at the same time it is used as the m+1 stage output of the n stage delay chain, m is a natural number , m∈[2,n-1].
写入时序匹配电路中n值满足如下条件:The value of n in the write timing matching circuit satisfies the following conditions:
其中,为向上取整,Tjitter_filter为单粒子瞬态滤波器所引起的数据宽度最大缩减值,Tdelay_slice为n级延时链的每个延时单元的单位延时值。in, To round up, T jitter_filter is the maximum reduction value of the data width caused by the single event transient filter, and T delay_slice is the unit delay value of each delay unit of the n-level delay chain.
n选1多路选择器由n个NMOS管M1~Mn,第一反相器、第二反相器和一个PMOS管Mn+1组成,第i个NMOS管Mi的漏极连接至n级延时链4的第i级输出端,Mi的栅极连接至n位配置单元的第n位输出端,M1~Mn的源级都连接到第一反相器的输入端,第一反相器与第二反相器串联连接,PMOS管Mn+1为弱上拉管,其漏极和栅极分别连接在第一反相器的输入端和输出端,源级连接至电源VDD,第二反相器的输出端为n选1多路选择器的输出,i为自然数,i∈[1,n]。The n-to-1 multiplexer is composed of n NMOS transistors M 1 ~M n , the first inverter, the second inverter and a PMOS transistor M n+1 , and the drain of the i-th NMOS transistor M i is connected to To the output end of the i-th stage of the n-stage delay chain 4, the gate of Mi is connected to the n-th output end of the n-bit configuration unit, and the source stages of M 1 ~ M n are all connected to the input end of the first inverter , the first inverter and the second inverter are connected in series, the PMOS transistor Mn +1 is a weak pull-up transistor, its drain and gate are respectively connected to the input and output of the first inverter, and the source Connected to the power supply VDD, the output terminal of the second inverter is the output of an n-to-1 multiplexer, i is a natural number, i∈[1,n].
n位配置单元可以位于FPGA芯片每一列CLB上方或下方,同一列CLB内n选1多路选择器的第i个输入端均与n位配置单元的第i位输出端相连,i为自然数,i∈[1,n]。The n-bit configuration unit can be located above or below each CLB column of the FPGA chip. The i-th input terminal of the n-to-1 multiplexer in the same column CLB is connected to the i-bit output terminal of the n-bit configuration unit, and i is a natural number. i∈[1,n].
n位配置单元也可以位于FPGA芯片每一列CLB左方或右方,同一行CLB内n选1多路选择器的第i个输入端均与n位配置单元的第i位输出端相连,i为自然数,i∈[1,n]。The n-bit configuration unit can also be located on the left or right side of each column CLB of the FPGA chip, and the i-th input terminal of the n-to-1 multiplexer in the same row of CLBs is connected to the i-th output terminal of the n-bit configuration unit, i is a natural number, i∈[1,n].
n位配置单元还可以位于FPGA芯片各个时钟域内,每个时钟域内所有CLB中n选1多路选择器的第i个输入端均与n位配置单元的第i位输出端相连,i为自然数,i∈[1,n]。The n-bit configuration unit can also be located in each clock domain of the FPGA chip, and the i-th input terminal of the n-to-1 multiplexer in all CLBs in each clock domain is connected to the i-th output terminal of the n-bit configuration unit, and i is a natural number , i∈[1,n].
n位配置单元中的单bit配置单元可以由单粒子加固静态随机存储器和反相器组成,单粒子加固静态随机存储器的输出连接到反相器的输入端,反相器的输出为单bit配置单元的输出。The single-bit configuration unit in the n-bit configuration unit may be composed of a single-event reinforced SRAM and an inverter, the output of the single-event reinforced SRAM is connected to the input of the inverter, and the output of the inverter is a single-bit configuration output of the unit.
n位配置单元中的单bit配置单元还可以由熔丝和反相器组成,熔丝的一端连接到电源地,另一端连接到反相器的输入端,反相器的输出为单bit配置单元的输出。The single-bit configuration unit in the n-bit configuration unit can also be composed of a fuse and an inverter. One end of the fuse is connected to the power ground, and the other end is connected to the input terminal of the inverter. The output of the inverter is a single-bit configuration. output of the unit.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明通过提供n位配置单元,使用户可以通过配置不同的配置值实现在单粒子加固FPGA在开启或关闭单粒子瞬态滤波器时能够编程调整分布式RAM的写入匹配延时,通过延时匹配电路调整待输入数据的宽度,以便将需要存储的数据正确的写入到分布式RAM中,减小分布式RAM写入失效率,并且采用了镜像的DICESRAM可测得数据正常写入LUT中的DICESRAM所需要的最小延时,得到分布式RAM最大的数据存储速率。1. The present invention provides an n-bit configuration unit, so that users can program and adjust the write matching delay of distributed RAM when the single-event hardened FPGA is turned on or off when the single-event transient filter is turned on or off by configuring different configuration values, Adjust the width of the data to be input through the delay matching circuit, so that the data to be stored can be correctly written into the distributed RAM, reducing the write failure rate of the distributed RAM, and the mirrored DICESRAM can be used to measure the normal writing of data The minimum delay required to enter the DICESRAM in the LUT obtains the maximum data storage rate of the distributed RAM.
2.利用本发明的分布式RAM写入时序匹配电路,可以根据生产的芯片实际的工艺角、工作环境和是否开启单粒子瞬态滤波电路,改变芯片每列、每行或者每个时钟域的分布式RAM数据写入时间,为单粒子加固FPGA芯片的增加了可靠性和环境适用性,同时减少由于分布式RAM写入失败导致的芯片废品率。2. Using the distributed RAM write timing matching circuit of the present invention, it is possible to change the timing of each column, each row or each clock domain of the chip according to the actual process angle of the produced chip, the working environment and whether to open the single event transient filter circuit. Distributed RAM data writing time increases the reliability and environmental applicability of single-particle hardened FPGA chips, and at the same time reduces the chip scrap rate caused by distributed RAM writing failures.
3.本发明共用配置单元相对于每个CLB设置一组配置单元更加节省面积,同时也减少了用户配置的麻烦,同时按行或按列共用配置单元在版图布线上也更加容易实现。3. Compared with setting a group of configuration units for each CLB, the shared configuration unit of the present invention saves more area, and at the same time reduces the trouble of user configuration, and at the same time, sharing configuration units by row or column is also easier to implement in layout wiring.
4.本发明按时钟域共用配置单元,可以使得分布式RAM的时钟周期可以更加灵活的设计,使得开启单粒子滤波器的分布式RAM可以工作在独立的时钟域,未开启单粒子滤波器的分布式RAM工作在不同的时钟域,两时钟域工作在不同的时钟频率,提高设计的灵活性。4. The present invention shares the configuration unit according to the clock domain, so that the clock cycle of the distributed RAM can be designed more flexibly, so that the distributed RAM with the single event filter enabled can work in an independent clock domain, and the distributed RAM with the single event filter not enabled can work in an independent clock domain. The distributed RAM works in different clock domains, and the two clock domains work in different clock frequencies, which improves design flexibility.
5.本发明可以采用单粒子加固SRAM作为延时设置存储单元,可以在工作环境变化的时候通过动态可重配技术实时的调整写入延时时间。5. The present invention can use a single particle reinforced SRAM as a delay setting storage unit, and can adjust the write delay time in real time through the dynamic reconfigurable technology when the working environment changes.
附图说明Description of drawings
图1为单粒子加固FPGA的整体框图;Figure 1 is the overall block diagram of a single particle hardened FPGA;
图2为本发明写入时序匹配电路示意图;FIG. 2 is a schematic diagram of a write timing matching circuit of the present invention;
图3为未使用延迟链路时数据有效宽度变化示意图;Fig. 3 is a schematic diagram of data effective width variation when no delay link is used;
图4为使用延迟链路时数据有效宽度变化示意图;Fig. 4 is a schematic diagram of data effective width variation when using a delay link;
图5为本发明n级延时链电路示意图;Fig. 5 is the circuit diagram of n-stage delay chain circuit of the present invention;
图6为本发明n级延时链单元电路图;Fig. 6 is the unit circuit diagram of n-level delay chain unit of the present invention;
图7为本发明n选1多路选择器的示意图;Fig. 7 is the schematic diagram of n selecting 1 multiplexer of the present invention;
图8为本发明写入时序匹配电路的配置单元按列分布的示意图;FIG. 8 is a schematic diagram of the configuration units of the write timing matching circuit according to the present invention;
图9为本发明写入时序匹配电路的配置单元按行分布的示意图;FIG. 9 is a schematic diagram of row-by-row distribution of configuration units of the write timing matching circuit of the present invention;
图10为本发明写入时序匹配电路的配置单元按时钟域分布的示意图;FIG. 10 is a schematic diagram of the configuration units of the write timing matching circuit according to the clock domain according to the present invention;
图11为基于单粒子加固静态随机存储器的单bit配置单元电路示意图,Fig. 11 is a schematic diagram of a single-bit configuration unit circuit based on single-event hardened SRAM,
图12为基于熔丝结构的单bit配置单元电路示意图。FIG. 12 is a schematic diagram of a single-bit configuration unit circuit based on a fuse structure.
具体实施方式detailed description
下面结合附图和具体实施例对本发明作进一步详细的描述:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
图2给出了一种单粒子加固FPGA分布式随机访问存储器的写入时序匹配电路,可实现可编程的分布式RAM数据写入匹配延时控制。通过配置相应的n位配置单元中的存储值,可以实现不同的分布式RAM的数据写入匹配延时时间。通过编程在n位配置单元中写入不同的值保证在不同工艺角、不同的工作环境和开启或关闭单粒子瞬态滤波电路下分布式RAM的数据能够将数据能够在最短时间内正常写入LUT中的查找表单粒子加固静态随机存储器DICESRAM。为单粒子加固FPGA芯片的增加了可靠性和环境适用性,同时减少了由于分布式RAM写入失败导致的废品率。CLB利用LUT中的单粒子加固静态随机访问存储器DICESRAM和额外的控制逻辑来实现分布式RAM和移位寄存器功能的方式一样,因此,本发明同样适用于移位寄存器。Figure 2 shows a single event hardened FPGA distributed random access memory write timing matching circuit, which can realize programmable distributed RAM data write matching delay control. By configuring the storage value in the corresponding n-bit configuration unit, the data writing matching delay time of different distributed RAMs can be realized. Write different values in the n-bit configuration unit by programming to ensure that the data of the distributed RAM can be written normally in the shortest time under different process angles, different working environments and the single event transient filter circuit is turned on or off Lookup forms in LUT Particle-hardened SRAM DICESRAM. It increases the reliability and environmental applicability of single-particle hardened FPGA chips, and at the same time reduces the scrap rate caused by distributed RAM write failures. CLB utilizes the single-event hardened static random access memory DICESRAM in the LUT and additional control logic to realize the functions of the distributed RAM and the shift register in the same way, therefore, the present invention is also applicable to the shift register.
如图2所示,单粒子加固FPGA分布式随机访问存储器的写入时序匹配电路包括与门AND,单粒子加固触发器DICEFF、镜像单粒子加固静态随机访问存储器MirrorDICESRAM、n级延时链DL、n选1多路选择器MUX、n位配置单元、反相器INV、传输门TG、单粒子瞬态滤波器及其配置电路、二选一选择器MUX2、查找表单粒子加固静态随机访问存储器LUTDICESRAM。所述n值为正整数,除n位配置单元以外,该写入时序匹配电路其他部分均位于FPGA芯片的CLB内。As shown in Figure 2, the write timing matching circuit of single event hardened FPGA distributed random access memory includes AND gate AND, single event hardened trigger DICEFF, mirror single event hardened static random access memory MirrorDICESRAM, n-level delay chain DL, n-to-1 multiplexer MUX, n-bit configuration unit, inverter INV, transmission gate TG, single-event transient filter and its configuration circuit, two-to-one selector MUX2, lookup table particle reinforced static random access memory LUTDICESRAM . The n value is a positive integer, except for the n-bit configuration unit, other parts of the write timing matching circuit are located in the CLB of the FPGA chip.
写入时序匹配电路的连接关系为:写信号WR和使能信号EN分别连接到与门1的两个输入端,与门1的输出端连接到单粒子加固触发器2的数据输入端D,单粒子加固触发器2的时钟端CLK连接到全局时钟上,单粒子加固触发器2的输出端Q连接到镜像单粒子加固静态随机访问存储器3的输入端DI,镜像单粒子加固静态随机访问存储器3的输出端DO连接到n级延时链4的输入端,n级延时链4的第i个输出端连接到n选1多路选择器5的第i个输入端上,i=1~n,多路选择器5第i个选择端按位连接到n位配置单元6的第i位输出端上,多路选择器5输出端连接到单粒子加固触发器2的复位端,形成反馈回路。单粒子加固触发器2的输出端Q还连接到传输门8的正向选择端,反相器7的输入端与输出端分别连接到传输门8的正向与反向选择端,数据信号DATA连接到传输门8的输入端,传输门8的输出端分成两路,一路连接到二选一选择器10的0输入端,另一路通过单粒子瞬态滤波器连接到二选一选择器10的1输入端,二选一选择器10的选择端连接到单粒子瞬态滤波器配置单元12上,二选一选择器10的输出端连接到查找表单粒子加固静态随机访问存储器11输入端。The connection relationship of the write timing matching circuit is as follows: the write signal WR and the enable signal EN are respectively connected to the two input terminals of the AND gate 1, and the output terminal of the AND gate 1 is connected to the data input terminal D of the single event hardened flip-flop 2, The clock terminal CLK of the single event hardened flip-flop 2 is connected to the global clock, the output terminal Q of the single event hardened flip-flop 2 is connected to the input port DI of the mirrored single event hardened SRAM 3, and the mirrored single event hardened SRAM The output terminal DO of 3 is connected to the input terminal of n-level delay chain 4, and the i-th output end of n-level delay chain 4 is connected to the i-th input end of n-choice 1 multiplexer 5, i=1 ~ n, the i-th selection end of the multiplexer 5 is connected bit by bit to the i-th output end of the n-bit configuration unit 6, and the output end of the multiplexer 5 is connected to the reset end of the single event reinforcement trigger 2, forming feedback loop. The output terminal Q of the single event reinforcement trigger 2 is also connected to the forward selection terminal of the transmission gate 8, the input terminal and the output terminal of the inverter 7 are respectively connected to the forward selection terminal and the reverse selection terminal of the transmission gate 8, and the data signal DATA Connected to the input end of the transmission gate 8, the output end of the transmission gate 8 is divided into two paths, one path is connected to the 0 input end of the one-to-two selector 10, and the other path is connected to the one-to-two selector 10 through a single event transient filter 1 input terminal, the selection terminal of the one-two selector 10 is connected to the single event transient filter configuration unit 12, and the output terminal of the one-two selector 10 is connected to the input terminal of the lookup table particle hardened SRAM 11.
写入时序匹配电路的工作原理为:EN为使能信号,当EN为低电平时,该电路不使能,LUT未使用或者作普通查找表功能,当EN为高电平时,WR为电平时为分布式RAM或移位寄存器读过程,这是不需要写入数据,所以该电路也未使用。只有当EN和WR同时为高电平时,LUT用作分布式RAM或移位寄存器,并且处于写入状态,写入时序匹配电路处于工作状态。当匹配电路处于工作状态时,时钟信号上升沿到达后,在经历Tclk-q的延时后单粒子加固触发器的Q端输出高电平,该高电平信号从镜像单粒子加固静态随机访问存储器DI端写入存储器,然后经过TDICESRAM从存储器的DO端输出至n级延时链得到该信号的n级延时信号,该n级延时信号分别接入至n选一多路选择器,由n位配置单元配置n选一多路选择器从n级延时信号中选出1个延时信号输出至单粒子加固触发器的复位端,该延时信号的延时为Tdelayline,复位端高电平有效,该延时高电平信号使得单粒子加固触发器的Q端异步复位到低电平,复位过程的延时为Tclr-q。所述单粒子加固触发器的Q端输出为数据选通信号,该数据选通信号输入至传输门8的正端,同时经过反相器7反相输入至传输门的负端,当数据选通信号为高电平时,传输门8打开,待输入数据通过传输门,当单粒子瞬态滤波器配置单元12配置为0时,待输入数据经由二选一选择器10的0端输入至查找表单粒子加固静态随机访问存储器11,当单粒子瞬态滤波器配置单元12配置为1时,待输入数据经单粒子瞬态滤波器9滤波处理后经由二选一选择器10的1端输入至查找表单粒子加固静态随机访问存储器11。The working principle of the write timing matching circuit is: EN is the enable signal, when EN is low level, the circuit is not enabled, LUT is not used or used as a general lookup table function, when EN is high level, WR is level For distributed RAM or shift register read process, it is not necessary to write data, so this circuit is also unused. Only when EN and WR are high at the same time, the LUT is used as a distributed RAM or a shift register, and it is in a writing state, and the writing timing matching circuit is in a working state. When the matching circuit is in the working state, after the rising edge of the clock signal arrives, the Q terminal of the single event reinforcement flip-flop outputs a high level after a delay of T clk-q , and the high level signal is from the mirror image single event reinforcement static random Access the DI terminal of the memory to write into the memory, and then output from the DO terminal of the memory to the n-level delay chain through T DICESRAM to obtain the n-level delay signal of the signal, and the n-level delay signal is respectively connected to the n-selection multiplexer An n-bit configuration unit configures an n-choice multiplexer to select a delayed signal from the n-level delayed signals and output it to the reset terminal of the single event reinforcement trigger. The delay of the delayed signal is T delayline , the reset terminal is active at high level, and the delayed high-level signal makes the Q terminal of the single event reinforcement trigger asynchronously reset to low level, and the delay of the reset process is T clr-q . The Q terminal output of the single event reinforcement flip-flop is a data strobe signal, and the data strobe signal is input to the positive terminal of the transmission gate 8, and is input to the negative terminal of the transmission gate through the inversion of the inverter 7 at the same time. When the pass signal is at a high level, the transmission gate 8 is opened, and the data to be input passes through the transmission gate. When the configuration unit 12 of the single event transient filter is configured as 0, the data to be input is input to the search channel via the terminal 0 of the selector 10. Form particle reinforced static random access memory 11, when the single event transient filter configuration unit 12 is configured as 1, the input data is filtered by the single event transient filter 9 and then input to the Lookup Form Particle Hardened SRAM 11.
上述数据选通信号的宽度的计算公式为:The formula for calculating the width of the above data strobe signal is:
Tperiod=TDICESRAM+Tdelayline+Tclr-q(2)T period =T DICESRAM +T delayline +T clr-q (2)
数据选通信号有效时打开输入数据通路,数据选通信号有效时间决定了信号被写入分布式RAM或移位寄存器的周期。The input data path is opened when the data strobe signal is valid, and the valid time of the data strobe signal determines the cycle in which the signal is written into the distributed RAM or the shift register.
数据DATA输入到查找表单粒子加固静态随机访问存储器时需要至少保持一定的时间Treq才能满足DICESRAM的建立/保持条件,保证能够正确写入LUTDICESRAM。When the data DATA is input into the lookup form particle-reinforced static random access memory, it needs to be kept for at least a certain time T req to meet the establishment/holding conditions of DICESRAM and ensure that it can be correctly written into LUTDICESRAM.
当用户关闭单粒子瞬态滤波器时,即单粒子瞬态滤波器配置单元中存储的值为0,MUX2选择0输入端,单粒子瞬态滤波器被旁路,经过单粒子瞬态滤波器的数据直接输入到查找表单粒子加固静态随机访问存储器。由于镜像单粒子加固静态随机访问存储器MirrorDICESRAM与LUTDICESRAM采用相同的工艺实现,数据写入时间基本相同,镜像单粒子加固静态随机访问存储器MirrorDICESRAM模拟了查找表单粒子加固静态随机访问存储器LUTDICESRAM写入过程,LUTDICESRAM的数据的最小写入时间可以通过使用标志信号通过一个加固触发器DICEFF,写入MirrorDICESRAM,标志信号写入后输出反馈到DICEFF的复位端,清除标志位来实现自动测量,本发明中采用WR和EN的与信号作为该标志信号。所以,当关闭单粒子瞬态滤波器时,输入数据的最小有效宽度为查找表单粒子加固静态随机访问存储器LUTDICESRAM所需要的最小数据写入时间,采用镜像单粒子加固静态随机访问存储器就可以自动测得该最小数据写入时间Treq,从而控制输入数据有效宽度。为了得到最大的数据写入速率,在未开启单粒子瞬态滤波器时Tdelayline可以设置为0,此时,数据写入最小宽度为Tmin=TDICESRAM+Tclr-q。When the user closes the single event transient filter, that is, the value stored in the single event transient filter configuration unit is 0, MUX2 selects the 0 input terminal, the single event transient filter is bypassed, and passes through the single event transient filter The data is input directly into the lookup form particle-hardened SRAM. Since Mirror DICESRAM and LUTDICESRAM are implemented with the same process, the data writing time is basically the same. Mirror DICESRAM simulates the write process of lookup form particle-hardened SRAM LUTDICESRAM, LUTDICESRAM The minimum writing time of the data can be written into MirrorDICESRAM by using a flag signal through a reinforcement trigger DICEFF, after the flag signal is written, the output is fed back to the reset terminal of DICEFF, and the flag bit is cleared to realize automatic measurement. In the present invention, WR and The AND signal of EN is used as the flag signal. Therefore, when the single-event transient filter is turned off, the minimum effective width of the input data is the minimum data writing time required by the lookup form particle-hardened SRAM LUTDICESRAM, which can be automatically measured by using a mirrored single-event-hardened SRAM The minimum data writing time T req is obtained, so as to control the effective width of the input data. In order to obtain the maximum data writing rate, T delayline can be set to 0 when the single event transient filter is not enabled, and at this time, the minimum data writing width is T min =T DICESRAM +T clr-q .
然而,当开启单粒子瞬态滤波器时,输入数据通过单粒子瞬态滤波器进行滤波处理,由于数据位上的滤波影响,数据路径上的数据实际有效宽度会减小,可能会导致地址或者使能信号在数据写入DICESRAM过程中切换而导致实际写入单个DICESRAM的写入时间不满足DICESRAM的建立/保持时间。所以,本发明写入时序匹配电路中设计了n级延迟链引入Tdelayline对选通信号增加延时控制使输入到单粒子瞬态滤波器的数据宽度变大,从而实现匹配延时和数据写入宽度相匹配。这种方法弥补单粒子瞬态滤波器所带来的数据宽度损失,使得写入LUTDICESRAM的数据能够满足建立/保持时间要求。用户可以通过n位配置单元和多路选择器来调整延时链中的具体延迟的大小,根据电路设计的需要实现延时的动态调整。However, when the single event transient filter is turned on, the input data is filtered through the single event transient filter. Due to the filtering effect on the data bit, the actual effective width of the data on the data path will be reduced, which may cause address or The enable signal is switched during the process of writing data into DICESRAM, so that the writing time actually written into a single DICESRAM does not meet the setup/hold time of DICESRAM. Therefore, an n-stage delay chain is designed in the timing matching circuit of the present invention to introduce T delayline to increase the delay control of the strobe signal so that the data width input to the single event transient filter becomes larger, thereby realizing matching delay and data writing to match the input width. This method makes up for the loss of data width caused by the single-event transient filter, so that the data written into LUTDICESRAM can meet the setup/hold time requirements. The user can adjust the size of the specific delay in the delay chain through the n-bit configuration unit and the multiplexer, and realize the dynamic adjustment of the delay according to the needs of the circuit design.
图3和图4分别为未引入延时链路和引入延迟链路时,在开启和关闭单粒子瞬态滤波器两种情况下到达LUTDICESRAM的数据有效宽度变化。图中,Data表示写入LUTDICESRAM的数据,Addr表示数据存入LUTDICESRAM的地址,TG_EN为选通信号,FilteroffLUTDICESRAMDatain为关闭单粒子瞬态滤波器时输入到LUTDICESRAM的数据,FilteronLUTDICESRAMDatain为关闭单粒子瞬态滤波器时输入到LUTDICESRAM的数据,T为数据最小写入时间要求,从图3中可以看出,经过单粒子瞬态滤波器的处理后,数据的有效宽度变为T1,T1<T数据不能稳定可靠地写入LUTDICESRAM中,图4中引入了Tdelayline,选通信号有效宽度为T2,经过单粒子瞬态滤波器的处理后,数据的有效宽度变为T,满足LUTDICESRAM的最小写入脉宽要求,数据能够可靠地写入LUTDICESRAM中。Fig. 3 and Fig. 4 show the change of the effective width of the data arriving at LUTDICESRAM when the delay link is not introduced and the delay link is introduced, and the single event transient filter is turned on and off. In the figure, Data represents the data written into LUTDICESRAM, Addr represents the address where the data is stored in LUTDICESRAM, TG_EN is the strobe signal, FilteroffLUTDICESRAMDatain is the data input to LUTDICESRAM when the single event transient filter is turned off, and FilteronLUTDICESRAMDatain is the single event transient filter off When the data is input to LUTDICESRAM, T is the minimum data write time requirement. It can be seen from Figure 3 that after the processing of the single event transient filter, the effective width of the data becomes T1, and the data of T1<T cannot be stable Reliably write into LUTDICESRAM, T delayline is introduced in Figure 4, the effective width of the strobe signal is T2, after processing by the single event transient filter, the effective width of the data becomes T, which meets the minimum write pulse width of LUTDICESRAM Requirements, data can be reliably written in LUTDICESRAM.
本发明在单粒子加固FPGA中为单粒子加固FPGA分布式随机访问存储器的写入时序匹配电路设计n位配置单元,n为正整数,n值满足如下条件:The present invention designs an n-bit configuration unit for the write timing matching circuit of the single-particle reinforced FPGA distributed random access memory in the single-particle reinforced FPGA, where n is a positive integer, and the value of n satisfies the following conditions:
数值根据实际电路需要、版图面积和延时单元的单位延时值综合决定。N越大,需要的配置单元就越多,所需要的版图面积越大,用户可配置的余量越大,作为最优的选择,n可以为:The value is comprehensively determined according to actual circuit requirements, layout area and unit delay value of the delay unit. The larger N is, the more configuration units are required, the larger the required layout area, and the larger the user-configurable margin. As the optimal choice, n can be:
其中,为向上取整,Tjitter_filter为单粒子瞬态滤波器所引起的数据宽度最大缩减,Tdelay_slice为延时链中延时单元的延时值。用户可以根据选择所需要的延时,满足最小延时的情况下,用户选择的延时越小,用户可以设计的时钟速率可以越快,FPGA存储器读写的速率越快。由于加工的工艺角和芯片工作条件的不同,在出厂时测试时芯片厂商会给出建议的延时值供用户开启单粒子瞬态滤波器时设置。in, To round up, T jitter_filter is the maximum data width reduction caused by the single event transient filter, and T delay_slice is the delay value of the delay unit in the delay chain. The user can select the required delay. When the minimum delay is met, the smaller the delay selected by the user, the faster the clock rate can be designed by the user, and the faster the read and write rate of the FPGA memory. Due to the difference in the processing angle and chip working conditions, the chip manufacturer will give a suggested delay value for the user to set when turning on the single event transient filter when testing at the factory.
图5中为本发明中的n级延时链的设计示意图,本发明的n级延时链DL由n-1个延时单元串联组成,所述n级延时链DL的输入连接到第1个延时单元的输入端,同时作为n级延时链的第1级输出,第m级延时单元的输出端连接到第m+1级延时单元的输入端,同时作为n级延时链的第m+1级输出,m为自然数,m∈[2,n-1]。Fig. 5 is the schematic diagram of the design of the n-level delay chain in the present invention, the n-level delay chain DL of the present invention is made up of n-1 time delay units in series, and the input of the n-level delay chain DL is connected to the first The input end of one delay unit is simultaneously used as the first-stage output of the n-stage delay chain, and the output end of the m-th stage delay unit is connected to the input end of the m+1-th stage delay unit, and simultaneously serves as an n-stage delay chain The m+1th stage output of the time chain, m is a natural number, m∈[2,n-1].
延时单元有很多种,可以是模拟的,也可以是数字的,图6中为一种常用的延时单元的示意图。包含2个反相器串联组成,也可以设计成偶数个反相器串联组成,延时单元的延时值可以根据芯片采用的工艺参数、结构和使用晶体管尺寸使用SPICE软件计算得到一个近似值。There are many kinds of delay units, which can be analog or digital. Figure 6 is a schematic diagram of a commonly used delay unit. It consists of 2 inverters in series, or can be designed as an even number of inverters in series. The delay value of the delay unit can be calculated using SPICE software to obtain an approximate value according to the process parameters, structure and transistor size used by the chip.
如图7所示,所述n选1多路选择器由n个NMOS管M1~Mn,第一反相器13、第二反相器14和一个PMOS管Mn+1组成,第i个NMOS管Mi的漏极连接至n级延时链4的第i级输出端,Mi的栅极连接至n位配置单元6的第n位输出端M_SEL[i],M1~Mn的源级都连接到第一反相器13的输入端,第一反相器13与第二反相器14串联连接,PMOS管Mn+1为弱上拉管,即其宽长比正常反相器中的PMOS管宽长比小。As shown in FIG. 7, the n-to-1 multiplexer is composed of n NMOS transistors M 1 -M n , a first inverter 13, a second inverter 14 and a PMOS transistor M n+1 . The drain of the i NMOS transistor M i is connected to the i-th output end of the n-level delay chain 4, and the gate of M i is connected to the n-th output end M_SEL[i] of the n-bit configuration unit 6, M 1 ~ The source stages of Mn are all connected to the input end of the first inverter 13, the first inverter 13 is connected in series with the second inverter 14, and the PMOS transistor Mn +1 is a weak pull-up transistor, that is, its width and length The width-to-length ratio of the PMOS tube in the normal inverter is smaller.
当n级延时链的第i个输出端M_SEL[i]为高电平时,第i个NMOS管导通,Mi的输出为D_OUT[i],当D_OUT[i]为0时,第一反相器的输出为1,PMOS管Mn+1关闭,n选1多路选择器的输出为Mi的输出;当D_OUT[i]为1时,第一反相器的输出0,PMOS管Mn+1导通,Mn+1可以补偿高电平通过NMOS管所造成的阈值损失,使n选1多路选择器的输出为Mi的输出为VDD,第一反相器和第二反相器配对使用。When the i-th output terminal M_SEL[i] of the n-level delay chain is high level, the i-th NMOS transistor is turned on, and the output of M i is D_OUT[i]. When D_OUT[i] is 0, the first The output of the inverter is 1, the PMOS tube M n+1 is turned off, and the output of the n-to-1 multiplexer is the output of M i ; when D_OUT[i] is 1, the output of the first inverter is 0, and the PMOS The tube M n+1 is turned on, and M n+1 can compensate the threshold loss caused by the high level passing through the NMOS tube, so that the output of the n-to-1 multiplexer is Mi and the output of M i is VDD, and the first inverter and The second inverter is used as a pair.
本发明采用.13um工艺实现M1~Mn的长0.13um,宽为2um,Mn+1的长0.13um,宽为0.2um,反相器13中NMOS管长为0.13um,宽为9.8um,PMOS管长为0.13um,宽为4.6um,反相器14中NMOS管长0.13um,宽4.8um,PMOS管长0.13um,宽9.6um。The present invention adopts the .13um process to realize that the length of M1~ Mn is 0.13um and the width is 2um, the length of Mn +1 is 0.13um and the width is 0.2um, and the length of the NMOS tube in the inverter 13 is 0.13um and the width is 9.8um. um, the PMOS tube is 0.13um long and 4.6um wide, the NMOS tube in the inverter 14 is 0.13um long and 4.8um wide, and the PMOS tube is 0.13um long and 9.6um wide.
图8中为本发明中的配置单元按列分布的示意图,为了简洁,图中只画出了CLB模块。FPGA芯片中每一列CLB中所有的分布式RAM写入保证电路共用一个n位配置单元,如图所示,n位配置单元位于FPGA芯片每一列CLB下方,同一列CLB内n选1多路选择器5的第i个输入端均与n位配置单元6的第i位输出端相连,i为自然数,i∈[1,n]。也可以将配置单元放置在FPGA芯片每一列CLB上方。FIG. 8 is a schematic diagram of the distribution of configuration units in columns according to the present invention. For simplicity, only the CLB module is drawn in the figure. All distributed RAM write guarantee circuits in each column of CLB in the FPGA chip share an n-bit configuration unit, as shown in the figure, the n-bit configuration unit is located under each column of CLB in the FPGA chip, and n selects 1 multiplex in the same column of CLB The i-th input end of the device 5 is connected to the i-th output end of the n-bit configuration unit 6, i is a natural number, i∈[1,n]. The configuration unit can also be placed above each CLB column of the FPGA chip.
图9中为本设计中的配置单元按行分布的示意图,为了简洁,图中只画出了CLB模块。FPGA芯片中每一行CLB中所有的分布式RAM写入保证电路共用n个配置单元。n位配置单元6位于FPGA芯片每一列CLB右方,同一行CLB内n选1多路选择器5的第i个输入端均与n位配置单元6的第i位输出端相连,i为自然数,i∈[1,n]。也可以将配置单元放置在FPGA芯片每一列CLB右方。Figure 9 is a schematic diagram of the configuration units in this design distributed in rows. For simplicity, only the CLB module is drawn in the figure. All distributed RAM write guarantee circuits in each row of CLBs in the FPGA chip share n configuration units. The n-bit configuration unit 6 is located on the right side of each column CLB of the FPGA chip, and the i-th input terminal of the n-choice 1 multiplexer 5 in the same row of CLBs is connected to the i-th output terminal of the n-bit configuration unit 6, and i is a natural number , i∈[1,n]. The configuration unit can also be placed on the right side of each column CLB of the FPGA chip.
共用配置单元相对于每个CLB设置一组配置单元更加节省面积,同时也减少了用户配置的麻烦,同时按行或按列共用配置单元在版图布线上也更加容易实现。Compared with setting a group of configuration cells for each CLB, sharing configuration cells saves more area, and also reduces the trouble of user configuration. At the same time, sharing configuration cells by row or column is also easier to implement in layout and wiring.
图10中为本设计中的配置单元按时钟域的分布示意图,为了简洁,图中只画出CLB模块。FPGA芯片中每一个时钟域的所有CLB中的分布式RAM写入保证电路共用n个配置单元。所述n位配置单元6位于FPGA芯片各个时钟域内,每个时钟域内所有CLB中n选1多路选择器5的第i个输入端均与n位配置单元6的第i位输出端相连,i为自然数,i=1~n。Figure 10 is a schematic diagram of the distribution of the configuration units in this design according to the clock domain. For simplicity, only the CLB module is drawn in the figure. The distributed RAM writing guarantee circuits in all CLBs of each clock domain in the FPGA chip share n configuration units. The n-bit configuration unit 6 is located in each clock domain of the FPGA chip, and the i-th input terminal of the n-choice 1 multiplexer 5 in all CLBs in each clock domain is connected to the i-th output terminal of the n-bit configuration unit 6, i is a natural number, i=1~n.
采用图10所示的配置单元排列方式,同一时钟域所有CLB中的查找表单粒子加固静态随机访问存储器LUTDICESRAM写入数据宽度一致,用户配置大容量随机访问存储器时,选择同一时钟域内的CLB组成,所得到的存储器单元读写性能一致性较好。同时,按时钟域共用配置单元,可以使得分布式RAM的时钟周期可以更加灵活的设计,使得开启单粒子滤波器的分布式RAM可以工作在独立的时钟域,未开启单粒子滤波器的分布式RAM工作在不同的时钟域,两时钟域工作在不同的时钟频率,提高设计的灵活性。Using the arrangement of configuration units shown in Figure 10, the data width written in the lookup table particle-hardened static random access memory LUTDICESRAM in all CLBs in the same clock domain is consistent. When configuring a large-capacity random access memory, the user selects CLBs in the same clock domain. The read and write performance of the obtained memory unit is relatively good. At the same time, sharing the configuration unit according to the clock domain can make the clock cycle of the distributed RAM more flexible, so that the distributed RAM with the single event filter enabled can work in an independent clock domain, and the distributed RAM without the single event filter enabled The RAM works in different clock domains, and the two clock domains work in different clock frequencies, which improves design flexibility.
图11和图12给出了两种n位配置单元的单bit配置单元的示意图。图11中所示的单bit配置单元中是由单粒子加固静态随机存储器DICESRAM15和反相器16组成,DICESRAM的字线wb、字线的补码wb_b、和写使能en连接到配置总线上,DICESRAM的输出bit_b连接到反相器16的输入端,反相器16的输出端为单bit配置单元的输出,反相器16的尺寸较正常反相器的尺寸大,以便有更大的驱动能力,该尺寸需要根据后接负载的大小来选择。FIG. 11 and FIG. 12 show schematic diagrams of single-bit configuration units of two kinds of n-bit configuration units. The single-bit configuration unit shown in Figure 11 is composed of a single-particle hardened SRAM DICESRAM15 and an inverter 16, and the word line wb of the DICESRAM, the complement code wb_b of the word line, and the write enable en are connected to the configuration bus , the output bit_b of the DICESRAM is connected to the input terminal of the inverter 16, the output terminal of the inverter 16 is the output of the single-bit configuration unit, and the size of the inverter 16 is larger than that of a normal inverter, so as to have a larger Drive capacity, the size needs to be selected according to the size of the load behind it.
图12中所示的单bit配置单元由熔丝17和反相器18组成,熔丝17的一端连接到电源地,另一端连接到反相器18的输入端,反相器18的输出为单bit配置单元的输出,反相器18的尺寸较正常反相器的尺寸大,以便有更大的驱动能力。该尺寸需要根据后接负载的大小来选择。The single-bit configuration unit shown in FIG. 12 is composed of a fuse 17 and an inverter 18. One end of the fuse 17 is connected to the power ground, and the other end is connected to the input of the inverter 18. The output of the inverter 18 is For the output of the single-bit configuration unit, the size of the inverter 18 is larger than that of a normal inverter in order to have a greater driving capability. The size needs to be selected according to the size of the subsequent load.
图11中的配置单元更容易实现,并且可以重复配置,而且可以与其他模块共用配置逻辑和路径,但是配置单粒子的抗辐射能力比图12中弱,图12中的配置单元抗单粒子的能力更强,但需要额外的烧写电路,而且不可以重复烧写。The configuration unit in Figure 11 is easier to implement, can be reconfigured, and can share configuration logic and paths with other modules, but the anti-radiation ability of configuring single events is weaker than that in Figure 12, and the configuration unit in Figure 12 is resistant to single events The ability is stronger, but additional programming circuits are required, and repeated programming is not possible.
本说明书中未作详细描述的内容属本领域专业技术人员的公知技术。The contents not described in detail in this specification belong to the well-known technologies of those skilled in the art.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610080515.6A CN105761746B (en) | 2016-02-04 | 2016-02-04 | A kind of single-particle reinforces the write timing match circuit of FPGA distributions RAM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610080515.6A CN105761746B (en) | 2016-02-04 | 2016-02-04 | A kind of single-particle reinforces the write timing match circuit of FPGA distributions RAM |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105761746A true CN105761746A (en) | 2016-07-13 |
CN105761746B CN105761746B (en) | 2018-09-11 |
Family
ID=56330647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610080515.6A Active CN105761746B (en) | 2016-02-04 | 2016-02-04 | A kind of single-particle reinforces the write timing match circuit of FPGA distributions RAM |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105761746B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107705818A (en) * | 2016-08-08 | 2018-02-16 | 中芯国际集成电路制造(上海)有限公司 | A kind of access time measuring circuit and access time measuring method |
CN107888178A (en) * | 2017-11-24 | 2018-04-06 | 中科亿海微电子科技(苏州)有限公司 | Single particle effect reinforces programmable latch |
CN108023587A (en) * | 2017-11-07 | 2018-05-11 | 北京时代民芯科技有限公司 | A kind of programmable configuration logic single-particle in the block reinforces clock control circuit and control method |
CN108933582A (en) * | 2017-05-25 | 2018-12-04 | 三星电子株式会社 | Equipment for sequence circuit |
CN109088619A (en) * | 2018-07-24 | 2018-12-25 | 北京时代民芯科技有限公司 | A kind of enable signal production method and circuit |
CN110988496A (en) * | 2019-12-13 | 2020-04-10 | 西安电子科技大学 | A single-event transient pulse width measurement circuit for three-way testing |
CN112417798A (en) * | 2020-11-27 | 2021-02-26 | 成都海光微电子技术有限公司 | Time sequence testing method and device, electronic equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030016052A1 (en) * | 2001-07-17 | 2003-01-23 | International Business Machines Corporation | Asynchronous latch design for field programmable gate arrays |
CN101552034A (en) * | 2009-02-27 | 2009-10-07 | 北京时代民芯科技有限公司 | An anti-SEU storage cell circuit in an anti-radiation hardening FPGA chip |
CN103580678A (en) * | 2013-11-04 | 2014-02-12 | 复旦大学 | High-performance lookup table circuit based on FGPA |
CN103744014A (en) * | 2013-12-24 | 2014-04-23 | 北京微电子技术研究所 | SRAM type FPGA single particle irradiation test system and method |
CN105244054A (en) * | 2015-09-29 | 2016-01-13 | 北京时代民芯科技有限公司 | Single event transient (SET)-resistant reinforced register suitable for SRAM type FPGA for aerospace |
-
2016
- 2016-02-04 CN CN201610080515.6A patent/CN105761746B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030016052A1 (en) * | 2001-07-17 | 2003-01-23 | International Business Machines Corporation | Asynchronous latch design for field programmable gate arrays |
CN101552034A (en) * | 2009-02-27 | 2009-10-07 | 北京时代民芯科技有限公司 | An anti-SEU storage cell circuit in an anti-radiation hardening FPGA chip |
CN103580678A (en) * | 2013-11-04 | 2014-02-12 | 复旦大学 | High-performance lookup table circuit based on FGPA |
CN103744014A (en) * | 2013-12-24 | 2014-04-23 | 北京微电子技术研究所 | SRAM type FPGA single particle irradiation test system and method |
CN105244054A (en) * | 2015-09-29 | 2016-01-13 | 北京时代民芯科技有限公司 | Single event transient (SET)-resistant reinforced register suitable for SRAM type FPGA for aerospace |
Non-Patent Citations (1)
Title |
---|
孙洪波等: "SRAM型FPGA单粒子翻转防护的工程实现", 《电子科学技术》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107705818A (en) * | 2016-08-08 | 2018-02-16 | 中芯国际集成电路制造(上海)有限公司 | A kind of access time measuring circuit and access time measuring method |
CN108933582A (en) * | 2017-05-25 | 2018-12-04 | 三星电子株式会社 | Equipment for sequence circuit |
CN108933582B (en) * | 2017-05-25 | 2024-03-08 | 三星电子株式会社 | Apparatus for sequential circuits |
CN108023587A (en) * | 2017-11-07 | 2018-05-11 | 北京时代民芯科技有限公司 | A kind of programmable configuration logic single-particle in the block reinforces clock control circuit and control method |
CN108023587B (en) * | 2017-11-07 | 2022-01-11 | 北京时代民芯科技有限公司 | Single-particle reinforced clock control circuit and control method in programmable configuration logic block |
CN107888178A (en) * | 2017-11-24 | 2018-04-06 | 中科亿海微电子科技(苏州)有限公司 | Single particle effect reinforces programmable latch |
CN109088619A (en) * | 2018-07-24 | 2018-12-25 | 北京时代民芯科技有限公司 | A kind of enable signal production method and circuit |
CN110988496A (en) * | 2019-12-13 | 2020-04-10 | 西安电子科技大学 | A single-event transient pulse width measurement circuit for three-way testing |
CN110988496B (en) * | 2019-12-13 | 2021-05-11 | 西安电子科技大学 | A single-event transient pulse width measurement circuit for three-way testing |
CN112417798A (en) * | 2020-11-27 | 2021-02-26 | 成都海光微电子技术有限公司 | Time sequence testing method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN105761746B (en) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105761746B (en) | A kind of single-particle reinforces the write timing match circuit of FPGA distributions RAM | |
US7116131B1 (en) | High performance programmable logic devices utilizing dynamic circuitry | |
US9916889B1 (en) | Memory circuitry with row-wise gating capabilities | |
US9166596B2 (en) | Memory interface circuitry with improved timing margins | |
US6373779B1 (en) | Block RAM having multiple configurable write modes for use in a field programmable gate array | |
EP2965429B1 (en) | Integrated circuit devices having memory and methods of implementing memory in an integrated circuit device | |
US7088136B1 (en) | Programmable logic device latch circuits | |
US7548089B1 (en) | Structures and methods to avoiding hold time violations in a programmable logic device | |
CA2713142C (en) | A circuit for and method of minimizing power consumption in an integrated circuit device | |
CN111512552B (en) | Selectively providing clock signals using programmable control circuitry | |
US7876601B2 (en) | Variable sized soft memory macros in structured cell arrays, and related methods | |
US9799379B2 (en) | Hold time aware register file module and method therefor | |
US7463056B1 (en) | Writeable shift register lookup table in FPGA with SRAM memory cells in lookup table reprogrammed by writing after initial configuration | |
CN105356875B (en) | A kind of single-particle reinforces the lut circuits of FPGA | |
US9767892B1 (en) | Memory elements with dynamic pull-up weakening write assist circuitry | |
US9007110B1 (en) | Register circuits and methods of storing data in a register circuit | |
US7417918B1 (en) | Method and apparatus for configuring the operating speed of a programmable logic device through a self-timed reference circuit | |
US7852108B1 (en) | Single event upset resilient programmable interconnect | |
US7193436B2 (en) | Fast processing path using field programmable gate array logic units | |
US7518394B1 (en) | Process monitor vehicle | |
US9018980B1 (en) | Bimodal clock generator | |
US7319619B1 (en) | Programmable logic device memory blocks with adjustable timing | |
CN113039722B (en) | Circuits and methods for ensuring IO interface stability during reconfiguration of a portion of a reprogrammable integrated circuit device | |
US9729153B1 (en) | Multimode multiplexer-based circuit | |
CN103631754A (en) | Programmable signal processing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |