CN105760664A - 一种基于直角坐标解法的极坐标牛顿法潮流算法 - Google Patents

一种基于直角坐标解法的极坐标牛顿法潮流算法 Download PDF

Info

Publication number
CN105760664A
CN105760664A CN201610079596.8A CN201610079596A CN105760664A CN 105760664 A CN105760664 A CN 105760664A CN 201610079596 A CN201610079596 A CN 201610079596A CN 105760664 A CN105760664 A CN 105760664A
Authority
CN
China
Prior art keywords
newton method
polar coordinate
delta
sigma
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610079596.8A
Other languages
English (en)
Inventor
陈恳
王宇俊
邵尉哲
陆节涣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610079596.8A priority Critical patent/CN105760664A/zh
Publication of CN105760664A publication Critical patent/CN105760664A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Complex Calculations (AREA)

Abstract

一种基于直角坐标解法的极坐标牛顿法潮流算法,包括以下步骤:读入导纳矩阵Y数据文件;用对极坐标牛顿法计算式进行数学变换得到的基于直角坐标解法的计算式计算ΔPi、ΔQi和J阵元素;对J阵进行消元和回代求取ΔVi、Δδi;判断是否满足收敛条件,并根据判断结果继续进行潮流计算或结束迭代并输出结果。本发明计算ΔPi、ΔQi和J阵元素的速度均快于极坐标牛顿法。对各IEEE?30~?118系统进行验算,不考虑元素稀疏性时,计算时间分别为极坐标牛顿法的65.99%、69.10%、70.21%;考虑元素稀疏性时,分别为极坐标牛顿法的61.64%、52.97%、34.61%。随着系统节点数增加,计算速度优势愈加明显。

Description

一种基于直角坐标解法的极坐标牛顿法潮流算法
技术领域
本发明属于电力系统分析计算领域。
背景技术
牛顿-拉夫逊法(牛顿法)是电力系统潮流计算中最常用的方法,根据计算过程可将牛顿法潮流算法分为直角坐标牛顿法和极坐标牛顿法,两者的计算特性没有太大的优劣之分,因此在电力系统均被广泛使用。但由于两者的实际计算过程不同,从而导致两者的潮流计算速度有所不同。设系统的节点数为n、PQ节点数为m时,则直角坐标牛顿法与极坐标牛顿法相比有以下几点不同:
1、修正方程式方程组的个数不同。直角坐标牛顿法修正方程式方程组的个数为2(n-1),极坐标牛顿法的个数为(n-1+m),极坐标牛顿法比直角坐标牛顿法少PV节点所对应的ΔVi 2的方程个数(n-1-m),还少求对应的(n-1-m)个ΔVi 2的值。
2、雅克比矩阵J中元素的分类和数量不同。直角坐标牛顿法J阵中元素分为H、N、M、L、R、S六类,而极坐标牛顿法J阵中的元素分为H、N、M、L四类。如果不考虑Rij=0、Sij=0对R、S元素计算的简化,直角坐标牛顿法J阵元素的计算个数为4(n-1)2,而极坐标牛顿法J阵元素的计算个数为(n-1+m)2;如果考虑Rij=0、Sij=0对R、S元素计算的简化,直角坐标牛顿法J阵元素的计算量仍比极坐标牛顿法多2(n-1-m)个。
3、潮流计算的迭代次数可能不同。一般潮流计算中,极坐标牛顿法的迭代次数与直角坐标牛顿法的迭代次数基本相同,但在不少计算实例中极坐标牛顿法比直角坐标牛顿法少一次。
4、J阵元素的计算方式不同。极坐标牛顿法中含大量sin、cos三角函数的计算,对其计算速度应有所影响。只是现在由于计算机性能优异,该问题似乎可以忽略不计。然而实际计算分析表明,极坐标牛顿法中大量三角函数的计算对其计算速度仍有较大影响,有时甚至能抵消极坐标牛顿法在计算速度上的优势。直角坐标牛顿法则无此问题。
5、节点电流Ipi、Iqi或节点功率ΔPi、ΔQi的计算不同。极坐标牛顿法中含sin、cos三角函数的计算,对其计算速度可能有些影响。直角坐标牛顿法则无此问题。
6、潮流计算过程中角度与弧度之间的转换。一般给出极坐标牛顿法的相角初值δ(0) i为角度,计算Ipi、Iqi或ΔPi、ΔQi时所用的δi或δij也是角度,而求解修正方程式得到的是弧度,因此极坐标牛顿法的潮流计算过程中要反复进行角度与弧度之间的转换,对其计算速度可能造成影响。直角坐标牛顿法则无此问题。
根据上述分析可以看出,1~3会导致直角坐标牛顿法的计算效率比极坐标牛顿法低,但4~6似乎效果相反。因此,尽管极坐标牛顿法比直角坐标牛顿法有一定的优势,但由于大量三角函数的计算和角度与弧度之间的不断转换使得极坐标牛顿法的计算效率并未达到最为理想的状态。
发明内容
为了克服上述现有技术的不足,提高极坐标牛顿法的计算效率和计算速度,针对上述分析中4~6所存在的问题,本发明提出一种基于直角坐标解法的极坐标牛顿法潮流算法。
直角坐标和极坐标形式的节点电压可分别表示为:
V · i = e i + jf i , V · i = V i ∠ δ i = V i ( cosδ i + j sinδ i )
它们之间的关系为:
ei=Vi cosδi,fi=Vi sinδi
本发明是通过以下技术方案实现的,主要包括以下步骤:
步骤1:打开数据文件,读取Y阵数据文件到Y(n,2n)数组;
步骤2:根据Y(n,2n)数组,用对极坐标牛顿法的计算式进行数学变换得到新的基于直角坐标解法的计算式计算ΔPi、ΔQi和J阵元素;
(1)假设系统的节点数为n,PQ节点数为m,m+1及其后的节点均为PV节点,第n个节点是平衡节点。J阵元素排列和对应的修正方程式如下:
(2)极坐标牛顿法潮流算法中的主要计算式如下:
ΔP i = P i - V i Σ j = 1 j = n V j ( G i j cosδ i j + B i j sinδ i j )
ΔQ i = Q i - V i Σ j = 1 j = n V j ( G i j sinδ i j - B i j cosδ i j )
Hij=-ViVj(Gij sinδij-Bij cosδij)
Nij=-ViVj(Gij cosδij+Bij sinδij)
Mij=ViVj(Gij cosδij+Bij sinδij)=-Nij
Lij=-ViVj(Gij sinδij-Bij cosδij)=Hij
H i i = V i Σ j = 1 j ≠ i j = n V j ( G i j sinδ i j - B i j cosδ i j )
N i i = - V i Σ j = 1 j ≠ i j = n V j ( G i j cosδ i j + B i j sinδ i j ) - 2 V i 2 G i i
M i i = - V i Σ j = 1 j ≠ i j = n V j ( G i j cosδ i j + B i j sinδ i j )
L i i = - V i Σ j = 1 j ≠ i j = n V j ( G i j sinδ i j - B i j cosδ i j ) + 2 V i 2 B i i
(3)本发明对上述极坐标牛顿法的计算式进行数学变换得到如下新的计算式:
ΔP i = P i - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j )
ΔQ i = Q i - Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j )
Hij=-Gijejfi+Gijeifj+Bijeiej+Bijfifj
Nij=-Gijeiej-Gijfifj-Bijejfi+Bijeifj
Mij=Gijeiej+Gijfifj+Bijejfi-Bijeifj=-Nij
Lij=-Gijejfi+Gijeifj+Bijeiej+Bijfifj=Hij
H i i = Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j ) + B i i e i 2 + B i i f i 2
N i i = - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j ) + G i j e i e j + G i j f i f j - 2 ( e i 2 + f i 2 ) G i i
M i i = - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j ) + G i j e i e j + G i j f i f j = N i i + 2 ( e i 2 + f i 2 ) G i i
L i i = - Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j ) - B i i e i 2 - B i i f i 2 + 2 V i 2 B i i = - H i i + 2 ( e i 2 + f i 2 ) B i i
可以看出,由于变换后的计算式只有简单的四则运算而没有三角函数计算,因此在极坐标牛顿法中ΔPi、ΔQi和J阵元素的计算速度大大提高。
步骤3:对J阵进行消元和回代求取ΔVi、Δδi
通过ΔVi、Δδi求出电压幅值和相角的新值Vi (k+1)=Vi (k)+ΔVi (k)、δi (k+1)=δi (k)+Δδi (k),再通过三角变换得到电压的实部和虚部ei (k+1)、fi (k+1),然后计算ΔPi、ΔQi
步骤4:判断是否满足收敛条件;
如果ΔPi、ΔQi不满足收敛条件,则跳转到步骤2;如果满足收敛条件,则执行步骤5。
步骤5:结束迭代并输出结果。
技术效果主要是:如用本发明方法对各IEEE-30~-118系统进行验算,在不考虑元素稀疏性时,本发明方法的潮流计算时间分别为极坐标牛顿法的65.99%、69.10%、70.21%;在考虑元素稀疏性时,分别为极坐标牛顿法的61.64%、52.97%、34.61%。且随着系统节点数的增加,本发明方法的计算速度优势愈加明显。
附图说明
图1为极坐标牛顿法潮流计算框图。
图2为本发明方法潮流计算流程图。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例。分别比较极坐标牛顿法和本发明不考虑元素稀疏性和考虑元素稀疏性对IEEE-30、-57、-118节点系统进行潮流计算的时间和迭代次数,比较结果如表1所示。
表1极坐标牛顿法和本发明对IEEE系统潮流计算时间和迭代次数的比较
tn.p:不考虑元素稀疏性时极坐标牛顿法潮流计算的平均时间,其中不判断Y(n,2n)的非零元素形成J阵、不判断J阵的非零元素对J阵进行消元和回代(下同)。
ts.p:考虑元素稀疏性时极坐标牛顿法潮流计算的平均时间,其中仅判断Y(n,2n)的虚部元素形成J阵、按列判断J阵中的非零元素对J阵进行消元和回代(下同)。
tn.new:本发明不考虑元素稀疏性时潮流计算的平均时间。
ts.new:本发明考虑元素稀疏性时潮流计算的平均时间。
INs:潮流计算迭代次数。
根据表1对IEEE-30、-57、-118节点系统的计算结果可以看出:
(1)不考虑元素稀疏性时,本发明的潮流计算时间分别为极坐标牛顿法的65.99%、69.10%、70.21%;考虑元素稀疏性时,分别为极坐标牛顿法的61.64%、52.97%、34.61%。说明本发明方法的潮流计算时间比极坐标牛顿法更快,且考虑元素稀疏性后,其速度优势愈加明显。
(2)对极坐标牛顿法,考虑元素稀疏性的潮流计算时间分别为不考虑元素稀疏性的82.17%、46.64%、29.72%;而本发明分别为76.76%、35.75%、14.65%。同样说明本发明考虑元素稀疏性后,随着系统节点数的增加其速度优势愈加明显。
(3)本发明潮流的迭代次数与极坐标牛顿法完全相同。说明本发明只是改变极坐标牛顿法的计算形式,并没有改变其计算过程。
因此,可得出结论:无论考虑还是不考虑元素稀疏性,本发明的潮流计算速度大大优于极坐标牛顿法,且随着系统节点数的增加,本发明的速度优势愈加明显。
本发明可以采用任何一种编程语言和编程环境实现,这里采用C++编程语言,开发环境是Visual C++。

Claims (1)

1.一种基于直角坐标解法的极坐标牛顿法潮流算法,其特征包括以下步骤:
步骤1:打开数据文件,读取Y阵数据文件到Y(n,2n)数组;
步骤2:根据Y(n,2n)数组,用对极坐标牛顿法的计算式进行数学变换得到基于直角坐标解法的计算式计算ΔPi、ΔQi和J阵元素;
数学变换后的基于直角坐标解法的计算式如下:
ΔP i = P i - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j )
ΔQ i = Q i - Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j )
Hij=-Gijejfi+Gijeifj+Bijeiej+Bijfifj
Nij=-Gijeiej-Gijfifj-Bijejfi+Bijeifj
Mij=Gijeiej+Gijfifj+Bijejfi-Bijeifj=-Nij
Lij=-Gijejfi+Gijeifj+Bijeiej+Bijfifj=Hij
H i i = Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j ) + B i i e i 2 + B i i f i 2
N i i = - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j ) + G i j e i e j + G i j f i f j - 2 ( e i 2 + f i 2 ) G i i
M i i = - Σ j = 1 j = n ( G i j e i e j + G i j f i f j + B i j e j f i - B i j e i f j ) + G i j e i e j + G i j f i f j = N i i + 2 ( e i 2 + f i 2 ) G i i
L i i = - Σ j = 1 j = n ( G i j e j f i - G i j e i f j - B i j e i e j - B i j f i f j ) - B i i e i 2 - B i i f i 2 + 2 V i 2 B i i = - H i i + 2 ( e i 2 + f i 2 ) B i i
步骤3:对J阵进行消元和回代求取ΔVi、Δδi
通过ΔVi、Δδi求出电压幅值和相角的值再通过极坐标与直角坐标转换得到电压的实部和虚部然后计算ΔPi、ΔQi
步骤4:判断是否满足收敛条件;
如果不满足收敛条件,则跳转到步骤2;如果满足收敛条件,则执行步骤5;
步骤5:结束迭代并输出结果。
CN201610079596.8A 2016-02-04 2016-02-04 一种基于直角坐标解法的极坐标牛顿法潮流算法 Pending CN105760664A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610079596.8A CN105760664A (zh) 2016-02-04 2016-02-04 一种基于直角坐标解法的极坐标牛顿法潮流算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610079596.8A CN105760664A (zh) 2016-02-04 2016-02-04 一种基于直角坐标解法的极坐标牛顿法潮流算法

Publications (1)

Publication Number Publication Date
CN105760664A true CN105760664A (zh) 2016-07-13

Family

ID=56330607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610079596.8A Pending CN105760664A (zh) 2016-02-04 2016-02-04 一种基于直角坐标解法的极坐标牛顿法潮流算法

Country Status (1)

Country Link
CN (1) CN105760664A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110659444A (zh) * 2019-08-22 2020-01-07 南昌大学 基于对称直角坐标的快速极坐标牛顿-拉夫逊潮流方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037231A1 (en) * 2004-10-01 2006-04-13 Patel Sureshchandra B System and method of parallel loadflow computation for electrical power system
CN102427229A (zh) * 2011-10-18 2012-04-25 清华大学 基于修正牛顿法的带零注入约束的电力系统状态估计方法
CN103065059A (zh) * 2013-01-29 2013-04-24 河海大学 一种基于变量代换的辐射型配电网潮流计算方法
CN104933528A (zh) * 2015-06-24 2015-09-23 南昌大学 一种基于稀疏矩阵技术快速形成电力系统潮流计算中雅可比矩阵的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037231A1 (en) * 2004-10-01 2006-04-13 Patel Sureshchandra B System and method of parallel loadflow computation for electrical power system
CN102427229A (zh) * 2011-10-18 2012-04-25 清华大学 基于修正牛顿法的带零注入约束的电力系统状态估计方法
CN103065059A (zh) * 2013-01-29 2013-04-24 河海大学 一种基于变量代换的辐射型配电网潮流计算方法
CN104933528A (zh) * 2015-06-24 2015-09-23 南昌大学 一种基于稀疏矩阵技术快速形成电力系统潮流计算中雅可比矩阵的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARSON W. TAYLOR: "《电力系统电压稳定》", 31 December 2002 *
孙淑琴等: "《电力系统分析》", 31 March 2012 *
杨淑英: "《电力系统概论》", 30 September 2007 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110659444A (zh) * 2019-08-22 2020-01-07 南昌大学 基于对称直角坐标的快速极坐标牛顿-拉夫逊潮流方法

Similar Documents

Publication Publication Date Title
Qi et al. Finite-time event-triggered stabilization for discrete-time fuzzy Markov jump singularly perturbed systems
CN103116704B (zh) 一种基于局部几何参数化的连续潮流计算方法
Dörfler et al. Spectral analysis of synchronization in a lossless structure-preserving power network model
CN102799950B (zh) 基于粒子群算法的船舶电网重构优化方法
Bu et al. A note on block representations of the group inverse of Laplacian matrices
CN107248822A (zh) 基于分数阶pid离散滑模变结构的逆变器控制方法
CN104462715B (zh) 一种基于Bezier函数的光伏电池输出特性的建模方法
CN104810826A (zh) 结合拉丁超立方抽样的双向迭代并行概率潮流计算方法
CN102918406B (zh) 交流电气量测定装置及交流电气量测定方法
CN106229988A (zh) 一种基于Matlab的极坐标牛顿法潮流计算方法
CN104022507A (zh) 一种直角坐标牛顿法潮流计算方法
CN106483851B (zh) 基于Lyapunov函数分析的时滞稳定判据保守性评估方法
CN105760664A (zh) 一种基于直角坐标解法的极坐标牛顿法潮流算法
CN107180277B (zh) 应用精英反向和声搜索的无人机巡检路径规划方法
CN106094972B (zh) 一种基于函数模型的光伏发电系统最大功率点跟踪方法
CN104156574B (zh) 基于改进连续潮流法的配电网pv曲线生成方法
Gao et al. Application of BPSO with GA in model-based fault diagnosis of traction substation
CN105391352A (zh) 一种永磁同步电机的分数阶阶跃最优itae速度控制方法
Ding et al. Definition of multi-state weighted k-out-of-n: F systems
CN107957974B (zh) 一种提取极坐标潮流方程雅可比矩阵的方法
Sambariya et al. Stable reduced model of a single machine infinite bus power system
CN106130029B (zh) 大电网准稳态无功类灵敏度的分析方法
CN103580560B (zh) 永磁式同步电机t-s模糊速度调节器的设计方法
CN104391824A (zh) 一种基于a=lr三角分解法快速求取电力系统节点阻抗矩阵的方法
Wang Mean-square stability of Euler method for nonlinear neutral stochastic delay differential equations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160713