CN105759355A - 一种片上集成型偏振分束器及其偏振分束方法 - Google Patents

一种片上集成型偏振分束器及其偏振分束方法 Download PDF

Info

Publication number
CN105759355A
CN105759355A CN201610327845.0A CN201610327845A CN105759355A CN 105759355 A CN105759355 A CN 105759355A CN 201610327845 A CN201610327845 A CN 201610327845A CN 105759355 A CN105759355 A CN 105759355A
Authority
CN
China
Prior art keywords
waveguide
silicon
coupled
polarization beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610327845.0A
Other languages
English (en)
Other versions
CN105759355B (zh
Inventor
肖金标
徐银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610327845.0A priority Critical patent/CN105759355B/zh
Publication of CN105759355A publication Critical patent/CN105759355A/zh
Application granted granted Critical
Publication of CN105759355B publication Critical patent/CN105759355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提出一种片上集成型偏振分束器及其偏振分束方法,包括混合等离子波导,位于混合等离子波导同一侧、依次串联且厚度相同的耦合波导、S弯型波导和输出硅波导;混合等离子波导从上至下分为金属覆盖层、上二氧化硅层、氮化硅波导层、下二氧化硅层和硅波导层;耦合波导、S弯型波导和输出硅波导的厚度与硅波导层的厚度相同;耦合波导为硅波导。包含有横电模和横磁模的输入信号在进入耦合区后,横电模光信号将被耦合至taper型耦合波导,进而通过S弯型波导及输出硅波导进行输出,而横磁模光信号将直接沿着混合等离子波导传输并直接输出,不发生波导耦合。本发明具有尺寸小、结构紧凑、偏振消光比高、插入损耗低、工作带宽较大等优点。

Description

一种片上集成型偏振分束器及其偏振分束方法
技术领域
本发明涉及集成光学技术领域,具体涉及一种片上集成型偏振分束器及其偏振分束方法。
背景技术
近年来,光子集成回路技术受到了研究人员的广泛关注,其中最为重要的材料平台是基于高折射率差波导结构的绝缘体上硅(Silicon-on-insulator,SOI)。然而高折射率差的结构将会给器件和系统带来强烈的偏振敏感性,特别是当光信号从光纤耦合至波导芯片时,由于光纤中的偏振态是随机变化的,将使偏振问题变得尤为突出。目前,在片上主要采用偏振分集方案来解决高折射率差波导的偏振敏感性问题以实现偏振透明传输,其中偏振分束器和偏振旋转器是其中的必备部件。偏振分束器主要用于将输入的横电模(TE)和横磁模(TM)分离至不同的输出波导,为此众多的器件结构已经被报道可用于实现片上的偏振分束,包括采用非对称定向耦合器、多模干涉耦合器、马赫-曾德尔干涉仪、光子晶体、光栅等等,然而这些结构还存在一些的问题,如器件耦合长度较长、偏振消光比较低、工作带宽窄和制造复杂等等。所以,作为一种重要的偏振控制器件仍然值得研究,以找寻新的方法或者器件工作原理来实现超紧凑、高性能的片上集成型偏振分束器。
随着金属材料被引入到介质波导的设计中,等离子波导(尤其是混合等离子波导)结构被提出,使得偏振分束器的尺寸有了很大的缩小,但因金属材料较大的吸收损耗使得器件的插入损耗较高。值得注意的是:等离子波导的光场局限性、器件尺寸和损耗是一对矛盾,即光场局限性越强,器件尺寸越小、但损耗越大。另外,对于氮化硅材料,其制作工艺与CMOS工艺高度兼容,且热稳定性比硅更好,近来也被广泛应用于光子集成回路器件的设计。但因其较低的折射率(约为2.0),使得光信号模场的局限性较低,导致需要较大的波导尺寸来承载光信号模式。若能将等离子波导结构和低折射率的氮化硅材料进行合理的优化设计,可以使得器件同时具备较小的尺寸和较低的插入损耗。
发明内容
发明目的:为解决上述技术问题,提供一种使得器件同时具备较小的尺寸和较低的插入损耗的偏振分束器,本发明提出一种片上集成型偏振分束器及其偏振分束方法。
技术方案:为实现上述技术效果,本发明提出的技术方案为:
一种片上集成型偏振分束器,它包括:衬底5,衬底5上设置有混合等离子波导1,厚度相同的耦合波导2、S弯型波导3和输出硅波导4;耦合波导2、S弯型波导3和输出硅波导4依次串联并位于混合等离子波导1的同一侧;混合等离子波导1从上至下分为金属覆盖层1-5、上二氧化硅层1-4、氮化硅波导层1-3、下二氧化硅层1-2和硅波导层1-1;耦合波导2、S弯型波导3和输出硅波导4的厚度与硅波导层1-1的厚度相同;耦合波导2为硅波导。
进一步的,所述耦合波导2为taper型耦合波导;taper型耦合波导与混合等离子波导1平行设置,taper型耦合波导的宽度沿taper型耦合波导的输入端至输出端方向由小到大递增;S弯型波导3和输出硅波导4均为等宽条状波导,S弯型波导3和输出硅波导4的宽度均与taper型耦合波导输出端的宽度相等。
进一步的,所述taper型耦合波导的厚度为120nm~150nm,宽度从300nm线性过渡至700nm,与之相连的S弯型波导3和输出硅波导4的波导宽度均为700nm;taper型耦合波导靠近混合等离子波导1的侧边与混合等离子波导1之间的间距保持不变,所述间距为150nm~200nm;所述混合等离子波导1宽度为600nm,混合等离子波导1中:金属覆盖层1-5的厚度为100nm;上二氧化硅层1-4厚度为40nm~80nm;氮化硅波导层1-3厚度为380nm~420nm;下二氧化硅层1-2厚度为40nm~60nm;硅波导层1-1厚度为120nm~150nm。
进一步的,所述耦合波导2为多模干涉耦合器,多模干涉耦合器为矩形波导,多模干涉耦合器输入端两角中,远离混合等离子波导1的一角被截去。
进一步的,片上集成型偏振分束器还包括包层6,所述混合等离子波导1、耦合波导2、S弯型波导3和输出硅波导4均包裹在包层6与衬底5之间。
本发明还提出另一种片上集成型偏振分束器,包括:衬底5,衬底5上设置有混合等离子波导1,混合等离子波导1两侧分别设有第一耦合波导2-1和第二耦合波导2-2,第一耦合波导2-1和第二耦合波导2-2与混合等离子波导1的距离相等;第一耦合波导2-1的输出端通过第一S弯型波导3-1与第一输出硅波导4-1相连;第二耦合波导2-2的输出端通过第二S弯型波导3-2与第二输出硅波导4-2相连;混合等离子波导1从上至下分为金属覆盖层1-5、上二氧化硅层1-4、氮化硅波导层1-3、下二氧化硅层1-2和硅波导层1-1;第一耦合波导2-1、第二耦合波导2-2、第一S弯型波导3-1、第二S弯型波导3-2、第一输出硅波导4-1和第二输出硅波导4-2的厚度均与硅波导层1-1的厚度相等。
进一步的,所述第一耦合波导2-1和第二耦合波导2-2为一对相同的taper型耦合波导。
本发明还提出一种片上集成型偏振分束器的偏振分束方法,该方法包括步骤:
(1)构建如权利要求1至7任意一项所述的片上集成型偏振分束器;
(2)将包含TE和TM模的输入信号从混合等离子波导1靠近耦合波导2的一端输入,TE和TM模分别分布在混合等离子波导1中的硅波导层1-1和氮化硅波导层1-3中;
(3)当输入信号进入由耦合波导2和硅波导层1-1构成的耦合区域中时,分布于混合等离子波导1底部硅波导层1-1的TE模与耦合波导2进行同向耦合,使TE模耦合到耦合波导2中并通过S弯型波导3和输出硅波导4输出;分布于氮化硅波导层1-3的TM模从混合等离子波导1的输出端输出,得到TE和TM模的分束信号。
有益效果:与现有技术相比,本发明具有以下优势:
1、器件插入损耗低、偏振消光比高。本发明采用硅波导、氮化硅波导、金属覆盖层及中间两层厚度较薄的低折射率二氧化硅共同构成一种新型的混合等离子波导结构,使得TE和TM模的光场能够分布于不同的波导区域中,进一步借助波导耦合结构可以将它们很好地分离。相比于一般的混合等离子波导结构,在该器件中,由于金属覆盖层与光场的互作用较低,即TM模主要分布于氮化硅波导中,而不是上二氧化硅薄层中(TE模不受金属覆盖层的影响),使得器件的插入损耗较低同时偏振消光比较高。
2、尺寸小、结构紧凑。本发明利用混合等离子波导的强偏振相关性(TE和TM的模式差异特别大),使得对TE模的耦合操作将不影响TM模的传输性能。相比于基于多模干涉耦合结构设计的偏振分束器,本发明器件的尺寸小很多。
3、器件的工作带宽较大。在波导耦合区,本发明采用了taper型的定向耦合器,能够有效改善普通定向耦合器较窄的工作带宽,且对耦合区波导宽度微小的变化不敏感,因而具有较大的器件制作公差。
附图说明
图1为本发明第一个实施例的结构示意图;
图2为本发明第一个实施例中耦合区横截面的局部放大图;
图3为本发明第一个实施例中混合等离子波导横电模的主分量模场分布图;
图4为本发明第一个实施例中混合等离子波导横磁模的主分量模场分布图;
图5为本发明第一个实施例中耦合区波导横电偶模的主分量模场分布图;
图6为本发明第一个实施例中耦合区波导横电奇模的主分量模场分布图;
图7为本发明第一个实施例中耦合区波导横磁偶模的主分量模场分布图;
图8为本发明第二个实施例的结构示意图;
图9为本发明第三个实施例的结构示意图。
图中:1、混合等离子波导,1-1、硅波导层,1-2、下二氧化硅层,1-3、氮化硅波导层,1-4、上二氧化硅层,1-5、金属覆盖层,2、耦合波导,2-1、第一耦合波导,2-2、第二耦合波导,3、S弯型波导,3-1、第一S弯型波导,3-2、第二S弯型波导,4、输出硅波导,4-1、第一输出硅波导,4-2、第二输出硅波导,5、衬底,6、包层。
具体实施方式
本发明利用等离子波导结合氮化硅材料,设计一种片上集成型偏振分束器,基于特殊的结构和工作机制,使得TE模被局限在高折射率的硅波导中,而TM模被局限在低折射率的氮化硅波导中,两者分布于不同的波导区域,进而利用耦合结构可将其中的TE模耦合至交叉输出波导,最终实现输入TE和TM模的高效分离。
下面结合附图和具体实施例对本发明作更进一步的说明。
实施例1:如图1至图2所示为本发明第一个实施例的结构图,它包括:
衬底5,衬底5上设置有混合等离子波导1,厚度相同的taper型耦合波导、S弯型波导3和输出硅波导4;taper型耦合波导、S弯型波导3和输出硅波导4依次串联并位于混合等离子波导1的同一侧,taper型耦合波导与混合等离子波导1平行设置;混合等离子波导1从上至下分为金属覆盖层1-5、上二氧化硅层1-4、氮化硅波导层1-3、下二氧化硅层1-2和硅波导层1-1;耦合波导2、S弯型波导3和输出硅波导4的厚度与硅波导层1-1的厚度相同;耦合波导2为硅波导。
在本实施例中,各部分的尺寸为:
taper型耦合波导的厚度为120nm~150nm,宽度从300nm线性过渡至700nm,与之相连的S弯型波导3和输出硅波导4的波导宽度均为700nm;taper型耦合波导靠近混合等离子波导1的侧边与混合等离子波导1之间的间距保持不变,所述间距为150nm~200nm;所述混合等离子波导1宽度为600nm,混合等离子波导1中:金属覆盖层1-5的厚度为100nm;上二氧化硅层1-4厚度为40nm~80nm;氮化硅波导层1-3厚度为380nm~420nm;下二氧化硅层1-2厚度为40nm~60nm;硅波导层1-1厚度为120nm~150nm。
具体的,光信号在实施例1所述的偏振分束器中的传输特征如下:包含TE和TM模的输入信号从混合等离子波导1输入,在进入由耦合波导2和混合等离子波导1构成的耦合区后,分布于底部硅波导层1-1的TE模与其附近的taper型耦合波导因模场匹配从而产生高效地同向耦合,但TM模主要分布于氮化硅波导层1-3与taper型耦合波导的模式差异较大且它们位于不同的波导层,故无法进行高效地光耦合。所以在通过耦合区后,TE和TM模已经被初步地分离。为进一步提高器件的偏振消光比,在taper型耦合波导的末端引入了一段S弯型波导3及相应的输出硅波导4,用于输出TE模光信号。最终在两输出端口可以获得高偏振消光比的TE和TM模光信号。图2为本实施例中耦合区的横截面图,右侧为混合等离子波导1,左侧为用于耦合TE模的taper型耦合波导,混合等离子波导1采用多层波导结构,自下而上分别为:硅波导层1-1、下二氧化硅层1-2、氮化硅波导层1-3、上二氧化硅层1-4和金属覆盖层1-5;taper型耦合波导为与混合等离子波导1中底部硅波导1-1厚度相同的硅波导,同时S弯型波导3及输出硅波导4的截面结构和taper型耦合波导相同。通过优化taper型耦合波导的尺寸,可以实现TE模在两耦合波导间的高效耦合。此外,采用数值模式求解器分析了本实施例所提出的混合等离子波导1的偏振特性,给出了两种偏振模式(TE和TM)的光场分布图,如图3和图4所示。从图中可以看出,TE和TM模的主要分布区域是不重合的,TE模主要分布于底部的硅波导层1-1而TM模则主要分布于中间的氮化硅波导层1-3,这种模式分布的差异性特别适合设计集成型的偏振分束器,只需要耦合出其中的一种偏振态模式即可。考虑到器件实际制作工艺的要求,将TE模耦合出输入和输出混合等离子波导1是最易于实现的。
图5和图6所示为耦合区波导横电偶模和横电奇模的主分量模场分布图,两者的模场分布与普通的定向耦合器非常类似,因而完全可以通过定向耦合原理实现TE模在不同波导间的同向耦合。此外,值得注意的是,金属覆盖层1-5与底部硅波导层1-1的间距很大,使得其与光场的互作用很弱,基本不影响TE模的场特性。图7为耦合区波导横磁偶模的主分量模场分布图,其主要分布于中间的氮化硅波导层1-3,基本不受taper型耦合波导的影响,且该波导结构不存在横磁奇模,故无法进行同向耦合。所以,输入的TM模将只能在混合等离子波导中传输并直接输出。
实施例2:图8为本发明的第二个实施例,采用改进的多模干涉耦合器代替taper型定向耦合器将TE模耦合输出。多模干涉耦合器为矩形波导,为减小多模干涉耦合器的反射损耗,我们将多模干涉耦合器输入端两角中远离混合等离子波导1的一角截去,这样可以有效降低因输入和输出波导与多模干涉耦合器间的结构尺寸失配带来的部分反射损耗对传输性能的影响。通过优化多模干涉耦合器的宽度和纵向传输长度,可以在输出端获得两个高性能的线偏振模,TE和TM模。
实施例3:图9为本发明的第三个实施例,包括:衬底5,衬底5上设置有混合等离子波导1,混合等离子波导1两侧分别设有第一耦合波导2-1和第二耦合波导2-2,第一耦合波导2-1和第二耦合波导2-2与混合等离子波导1的距离相等;第一耦合波导2-1的输出端通过第一S弯型波导3-1与第一输出硅波导4-1相连;第二耦合波导2-2的输出端通过第二S弯型波导3-2与第二输出硅波导4-2相连;混合等离子波导1从上至下分为金属覆盖层1-5、上二氧化硅层1-4、氮化硅波导层1-3、下二氧化硅层1-2和硅波导层1-1;第一耦合波导2-1、第二耦合波导2-2、第一S弯型波导3-1、第二S弯型波导3-2、第一输出硅波导4-1和第二输出硅波导4-2的厚度均与硅波导层1-1的厚度相等。所述第一耦合波导2-1和第二耦合波导2-2为一对相同的taper型耦合波导。
本实施例采用对称的taper型定向耦合器将输入的TE模均匀地耦合至两侧的taper型定向耦合器中进行输出,而输入的TM模仍然沿着中间的混合等离子波导传输,不发生波导耦合。所以在输出端可以得到未发生耦合的TM模,及两个功率均等的TE模。
本发明具有尺寸小、结构紧凑、偏振消光比高、插入损耗低、工作带宽较大等优点,可用于片上集成型的偏振分束及构建超紧凑、高性能的片上偏振分集方案。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种片上集成型偏振分束器,其特征在于包括:衬底(5),衬底(5)上设置有混合等离子波导(1),厚度相同的耦合波导(2)、S弯型波导(3)和输出硅波导(4);耦合波导(2)、S弯型波导(3)和输出硅波导(4)依次串联并位于混合等离子波导(1)的同一侧;混合等离子波导(1)从上至下分为金属覆盖层(1-5)、上二氧化硅层(1-4)、氮化硅波导层(1-3)、下二氧化硅层(1-2)和硅波导层(1-1);耦合波导(2)、S弯型波导(3)和输出硅波导(4)的厚度与硅波导层(1-1)的厚度相同;耦合波导(2)为硅波导。
2.根据权利1所述的一种片上集成型偏振分束器,其特征在于,所述耦合波导(2)为taper型耦合波导;taper型耦合波导与混合等离子波导(1)平行设置,taper型耦合波导的宽度沿taper型耦合波导输入端至输出端方向由小到大递增;S弯型波导(3)和输出硅波导(4)均为等宽条状波导,S弯型波导(3)和输出硅波导(4)的宽度均与taper型耦合波导输出端的宽度相等。
3.根据权利2所述的一种片上集成型偏振分束器,其特征在于,所述taper型耦合波导的厚度为120nm~150nm,宽度从300nm线性过渡至700nm,与之相连的S弯型波导(3)和输出硅波导(4)的波导宽度均为700nm;taper型耦合波导靠近混合等离子波导(1)的侧边与混合等离子波导(1)之间的间距保持不变,所述间距为150nm~200nm;所述混合等离子波导(1)宽度为600nm,混合等离子波导(1)中:金属覆盖层(1-5)的厚度为100nm;上二氧化硅层(1-4)厚度为40nm~80nm;氮化硅波导层(1-3)厚度为380nm~420nm;下二氧化硅层(1-2)厚度为40nm~60nm;硅波导层(1-1)厚度为120nm~150nm。
4.根据权利1所述的一种片上集成型偏振分束器,其特征在于,所述耦合波导(2)为多模干涉耦合器,多模干涉耦合器为矩形波导,多模干涉耦合器输入端两角中,远离混合等离子波导(1)的一角被截去。
5.根据权利1所述的一种片上集成型偏振分束器,其特征在于,还包括包层(6),所述混合等离子波导(1)、耦合波导(2)、S弯型波导(3)和输出硅波导(4)均包裹在包层(6)与衬底(5)之间。
6.一种片上集成型偏振分束器,其特征在于,包括:衬底(5),衬底(5)上设置有混合等离子波导(1),混合等离子波导(1)两侧分别设有第一耦合波导(2-1)和第二耦合波导(2-2),第一耦合波导(2-1)和第二耦合波导(2-2)与混合等离子波导(1)的距离相等;第一耦合波导(2-1)的输出端通过第一S弯型波导(3-1)与第一输出硅波导(4-1)相连;第二耦合波导(2-2)的输出端通过第二S弯型波导(3-2)与第二输出硅波导(4-2)相连;混合等离子波导(1)从上至下分为金属覆盖层(1-5)、上二氧化硅层(1-4)、氮化硅波导层(1-3)、下二氧化硅层(1-2)和硅波导层(1-1);第一耦合波导(2-1)、第二耦合波导(2-2)、第一S弯型波导(3-1)、第二S弯型波导(3-2)、第一输出硅波导(4-1)和第二输出硅波导(4-2)的厚度均与硅波导层(1-1)的厚度相等。
7.根据权利要求6所述的一种片上集成型偏振分束器,其特征在于,所述第一耦合波导(2-1)和第二耦合波导(2-2)为一对相同的taper型耦合波导。
8.一种片上集成型偏振分束器的偏振分束方法,其特征在于,包括步骤:
(1)构建如权利要求1至7任意一项所述的片上集成型偏振分束器;
(2)将包含TE和TM模的输入信号从混合等离子波导(1)靠近耦合波导(2)的一端输入,TE和TM模分别分布在混合等离子波导(1)中的硅波导层(1-1)和氮化硅波导层(1-3)中;
(3)当输入信号进入由耦合波导(2)和硅波导层(1-1)构成的耦合区域中时,分布于混合等离子波导(1)底部硅波导层(1-1)的TE模与耦合波导(2)进行同向耦合,使TE模耦合到耦合波导(2)中并通过S弯型波导(3)和输出硅波导(4)输出;分布于氮化硅波导层(1-3)的TM模从混合等离子波导(1)的输出端输出,得到TE和TM模的分束信号。
CN201610327845.0A 2016-05-17 2016-05-17 一种片上集成型偏振分束器及其偏振分束方法 Active CN105759355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610327845.0A CN105759355B (zh) 2016-05-17 2016-05-17 一种片上集成型偏振分束器及其偏振分束方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610327845.0A CN105759355B (zh) 2016-05-17 2016-05-17 一种片上集成型偏振分束器及其偏振分束方法

Publications (2)

Publication Number Publication Date
CN105759355A true CN105759355A (zh) 2016-07-13
CN105759355B CN105759355B (zh) 2019-09-03

Family

ID=56324339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610327845.0A Active CN105759355B (zh) 2016-05-17 2016-05-17 一种片上集成型偏振分束器及其偏振分束方法

Country Status (1)

Country Link
CN (1) CN105759355B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873077A (zh) * 2017-03-17 2017-06-20 东南大学 一种基于非对称定向耦合器的硅基te模检偏器
CN106959163A (zh) * 2017-03-17 2017-07-18 东南大学 一种基于对称三波导定向耦合器结构的te模检偏器
CN107015376A (zh) * 2017-06-08 2017-08-04 厦门大学 一种基于等离激元纳米结构的偏振分束器
CN107132616A (zh) * 2017-05-22 2017-09-05 浙江大学 一种基于复合波导的横向电场通过的偏振器
CN107765366A (zh) * 2017-11-02 2018-03-06 中山大学 一种非对称形状的氮化硅偏振分束器及其制备方法
CN108563030A (zh) * 2018-01-31 2018-09-21 中国地质大学(武汉) 一种偏振分束器
CN109001858A (zh) * 2018-08-31 2018-12-14 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器
CN109445026A (zh) * 2018-12-28 2019-03-08 武汉邮电科学研究院有限公司 基于等离子体结构的模式转换及复用器
CN110646883A (zh) * 2019-09-30 2020-01-03 华东师范大学重庆研究院 一种三通硅基分束器芯片及其制造方法
CN110780381A (zh) * 2019-12-02 2020-02-11 中国科学院半导体研究所 非对称三波导结构的偏振分束器及其制备方法
CN111624709A (zh) * 2020-05-08 2020-09-04 清华-伯克利深圳学院筹备办公室 耦合分束器及设置方法
CN112041717A (zh) * 2018-04-26 2020-12-04 华为技术有限公司 具有三叉戟结构的分光器
CN112394447A (zh) * 2020-11-10 2021-02-23 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN112433295A (zh) * 2020-11-10 2021-03-02 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN112748493A (zh) * 2019-10-30 2021-05-04 中移(苏州)软件技术有限公司 一种偏振装置
CN113740960A (zh) * 2021-07-27 2021-12-03 中国科学院微电子研究所 一种偏振分束器
WO2023203387A1 (en) * 2022-04-19 2023-10-26 New York University In Abu Dhabi Corporation Devices and methods for polarization control and wavelength multiplexing
US20230375779A1 (en) * 2022-05-19 2023-11-23 Taiwan Semiconductor Manufacturing Company Ltd. Optical power splitter and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441271A (zh) * 2002-02-27 2003-09-10 中国科学院半导体研究所 波导型偏振模式分离器
CN102841407A (zh) * 2012-09-20 2012-12-26 电子科技大学 一种波导型偏振光分束器
CN103018832A (zh) * 2012-12-31 2013-04-03 江苏大学 一种偏振分束器
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
KR20150120012A (ko) * 2014-04-16 2015-10-27 성균관대학교산학협력단 입사광으로부터 광과 표면 플라즈몬 폴라리톤을 분리하는 광 플라즈몬 분리 장치 및 방법
CN105093408A (zh) * 2015-09-22 2015-11-25 东南大学 一种基于模式演变原理的硅基纳米线偏振分束器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441271A (zh) * 2002-02-27 2003-09-10 中国科学院半导体研究所 波导型偏振模式分离器
CN102841407A (zh) * 2012-09-20 2012-12-26 电子科技大学 一种波导型偏振光分束器
CN103018832A (zh) * 2012-12-31 2013-04-03 江苏大学 一种偏振分束器
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
KR20150120012A (ko) * 2014-04-16 2015-10-27 성균관대학교산학협력단 입사광으로부터 광과 표면 플라즈몬 폴라리톤을 분리하는 광 플라즈몬 분리 장치 및 방법
CN105093408A (zh) * 2015-09-22 2015-11-25 东南大学 一种基于模式演变原理的硅基纳米线偏振分束器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖金标 等: "梯形截面硅基水平多枘纳米线定向耦合器全矢量分析", 《物理学报》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959163A (zh) * 2017-03-17 2017-07-18 东南大学 一种基于对称三波导定向耦合器结构的te模检偏器
CN106959163B (zh) * 2017-03-17 2018-06-19 东南大学 一种基于对称三波导定向耦合器结构的te模检偏器
CN106873077A (zh) * 2017-03-17 2017-06-20 东南大学 一种基于非对称定向耦合器的硅基te模检偏器
CN106873077B (zh) * 2017-03-17 2019-04-30 东南大学 一种基于非对称定向耦合器的硅基te模检偏器
CN107132616A (zh) * 2017-05-22 2017-09-05 浙江大学 一种基于复合波导的横向电场通过的偏振器
CN107015376B (zh) * 2017-06-08 2020-04-10 厦门大学 一种基于等离激元纳米结构的偏振分束器
CN107015376A (zh) * 2017-06-08 2017-08-04 厦门大学 一种基于等离激元纳米结构的偏振分束器
CN107765366A (zh) * 2017-11-02 2018-03-06 中山大学 一种非对称形状的氮化硅偏振分束器及其制备方法
CN108563030A (zh) * 2018-01-31 2018-09-21 中国地质大学(武汉) 一种偏振分束器
CN112041717B (zh) * 2018-04-26 2023-09-22 华为技术有限公司 具有三叉戟结构的分光器
CN112041717A (zh) * 2018-04-26 2020-12-04 华为技术有限公司 具有三叉戟结构的分光器
CN109001858B (zh) * 2018-08-31 2023-02-24 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器
CN109001858A (zh) * 2018-08-31 2018-12-14 中国地质大学(武汉) 一种基于表面等离子体亚波长光栅的偏振分束器
CN109445026B (zh) * 2018-12-28 2020-12-01 武汉邮电科学研究院有限公司 基于等离子体结构的模式转换及复用器
CN109445026A (zh) * 2018-12-28 2019-03-08 武汉邮电科学研究院有限公司 基于等离子体结构的模式转换及复用器
CN110646883A (zh) * 2019-09-30 2020-01-03 华东师范大学重庆研究院 一种三通硅基分束器芯片及其制造方法
CN112748493A (zh) * 2019-10-30 2021-05-04 中移(苏州)软件技术有限公司 一种偏振装置
CN110780381A (zh) * 2019-12-02 2020-02-11 中国科学院半导体研究所 非对称三波导结构的偏振分束器及其制备方法
CN111624709A (zh) * 2020-05-08 2020-09-04 清华-伯克利深圳学院筹备办公室 耦合分束器及设置方法
CN112433295B (zh) * 2020-11-10 2022-08-16 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN112433295A (zh) * 2020-11-10 2021-03-02 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN112394447B (zh) * 2020-11-10 2023-09-05 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN112394447A (zh) * 2020-11-10 2021-02-23 武汉光谷信息光电子创新中心有限公司 一种超宽带分合束器
CN113740960A (zh) * 2021-07-27 2021-12-03 中国科学院微电子研究所 一种偏振分束器
CN113740960B (zh) * 2021-07-27 2023-11-03 中国科学院微电子研究所 一种偏振分束器
WO2023203387A1 (en) * 2022-04-19 2023-10-26 New York University In Abu Dhabi Corporation Devices and methods for polarization control and wavelength multiplexing
US20230375779A1 (en) * 2022-05-19 2023-11-23 Taiwan Semiconductor Manufacturing Company Ltd. Optical power splitter and method of manufacturing the same
US11953719B2 (en) * 2022-05-19 2024-04-09 Taiwan Semiconductor Manufacturing Company Ltd. Optical power splitter and method of manufacturing the same

Also Published As

Publication number Publication date
CN105759355B (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN105759355A (zh) 一种片上集成型偏振分束器及其偏振分束方法
CN106405733B (zh) 一种偏振分束-合束器
US6980720B2 (en) Mode transformation and loss reduction in silicon waveguide structures utilizing tapered transition regions
CN105093408B (zh) 一种基于模式演变原理的硅基纳米线偏振分束器
CN110618487B (zh) 一种基于亚波长光栅结构的多模干涉型偏振不敏感功分器
CN204536588U (zh) 偏振分束旋转器
CN102749676B (zh) 一种基于线性锥形多模干涉原理的十字交叉波导
CN201173978Y (zh) 并行模式变换器和由其构成的光分路器
CN105652372A (zh) 一种偏振分束-旋转器
CN109407229B (zh) 一种端面耦合器
CN106959163B (zh) 一种基于对称三波导定向耦合器结构的te模检偏器
CN109270627A (zh) 一种基于多模亚波长光栅的偏振不敏感定向耦合器
CN105759357A (zh) 一种基于槽式波导的紧凑式模阶数转换器
US9164232B2 (en) TE- polarization splitter based on photonic crystal waveguide
CN106094107A (zh) 一种偏振分束器
CN108508539A (zh) 基于锥形非对称定向耦合器的硅基波分复用器
CN113740960B (zh) 一种偏振分束器
US20070122081A1 (en) Improved waveguide structure
CN111458795A (zh) 一种基于硅波导的全波段起偏器
CN216083169U (zh) 一种偏振分束器
CN112596254B (zh) 基于光子晶体的紧凑型偏振分束器
CN212160140U (zh) 基于硅波导的全波段起偏器
EP3312647B1 (en) Polarization mode converter
CN113050220A (zh) 一种渐变弯曲波导器件
CN202676942U (zh) 一种基于线性锥形多模干涉原理的十字交叉波导

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant