CN105754316A - 一种高强度超分子水凝胶及其制备方法 - Google Patents

一种高强度超分子水凝胶及其制备方法 Download PDF

Info

Publication number
CN105754316A
CN105754316A CN201610284182.9A CN201610284182A CN105754316A CN 105754316 A CN105754316 A CN 105754316A CN 201610284182 A CN201610284182 A CN 201610284182A CN 105754316 A CN105754316 A CN 105754316A
Authority
CN
China
Prior art keywords
polyethylene glycol
hydrogel
end group
monosaccharide
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610284182.9A
Other languages
English (en)
Other versions
CN105754316B (zh
Inventor
孙鹏飞
李金红
范曲立
黄维
候焕知
李晓珍
田思超
程鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201610284182.9A priority Critical patent/CN105754316B/zh
Publication of CN105754316A publication Critical patent/CN105754316A/zh
Application granted granted Critical
Publication of CN105754316B publication Critical patent/CN105754316B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明属于生物高分子材料技术领域。本发明提供了一种高强度超分子水凝胶及其制备方法。所述水凝胶由端基为单糖的聚乙二醇和α环糊精制备而成,其中聚乙二醇端基单糖之间的糖糖作用形成了第二个交联网络。采用端基修饰单糖的聚乙二醇和α?环糊精制备高强度的水凝胶,并将单糖修饰聚乙二醇低温处理增强糖糖相互作用,本发明制备的凝胶相对于文献中报道的其它PPR凝胶具有更高的强度。所述制备方法操作简单,所用聚合物易于合成,所制得水凝胶具有剪切变稀特性,可作为抗癌药物的可控缓释载体。

Description

一种高强度超分子水凝胶及其制备方法
技术领域
本发明属于生物高分子材料技术领域,尤其涉及一种高强度超分子水凝胶及其的制备方法。
背景技术
α-环糊精(α-cyclodextrins,α-CD)是一类由6个D-吡喃葡萄糖单元通过α-1,4糖苷键首尾连接而成的大环化合物。α-CD作为一种客体分子其能够和聚乙二醇(PEG)通过超分子作用形成准聚轮烷(PPR)水凝胶。其原理为PEG穿过α-CDs的空腔形成准聚轮烷,在疏水作用下α-CD可以进一步结晶形成物理交联点。由于α-CD结晶微区的物理交联点在外力作用下会发生解离,因此PPR凝胶具备剪切变稀特性,可以通过注射器将PPR凝胶注射到活体的皮下易于,这一特性使其在药物缓释方面得到了广泛的应用。同时PEG和α-CD均具有良好的生物相容性使PPR凝胶也具有无毒副作用的优点。但是PPR水凝胶中仅存在α-CD结晶形成的物理交联点使其强度相对较低,限制了其在药物缓释中的应用。针对此问题人们主要是通过在凝胶中引入纳米SiO2或黏土等无机材料增强其强度,虽然可以在一定程度增强其强度但是也增加了PPR水凝胶的生物毒性。
准聚轮烷(PPR)水凝胶用于药物缓释时,主要针对的是生物体,生物相容性尤其重要,最好不能具有生物毒性。由此可见,制备同时具备高强度和生物相容性的水凝胶,对其在生物和医药领域的推广应用有非常重要的意义。本发明通过引入天然存在的单糖来增强PPR水凝胶的强度,同时还保持PPR水凝胶的生物相容性。
发明内容
鉴于现有技术中存在上述技术问题,本发明提供了一种高强度超分子水凝胶及其制备方法,所述水凝胶中,除了超分子作用形成的第一个交联网络,聚乙二醇(PEG-Sugar)的端基单糖之间形成了第二个交联网络,使水凝胶同时具有良好的生物相容性和强度,尤其是无生物毒性。本发明采用的技术方案如下所述。
本发明提供一种高强度超分子水凝胶,所述水凝胶由端基为单糖的聚乙二醇(PEG-Sugar)和α环糊精(α-CD)制备而成,其中端基为单糖的聚乙二醇(PEG-Sugar)之间的糖糖作用形成了第二个交联网络。
上述端基为单糖的聚乙二醇(PEG-Sugar)包括三种,是端基分别为半乳糖、葡萄糖和甘露糖的聚乙二醇PEG-Gal、PEG-Glc和PEG-Man,其中聚乙二醇的重复单元数n为100-1000。三种聚乙二醇的分子式如下:
所述高强度超分子水凝胶中具有两个交联网络结构,一是聚乙二醇穿过α环糊精的空腔形成准聚轮烷,在疏水作用下α环糊精结晶形成的物理交联点;二是聚乙二醇的单糖端基之间通过糖糖作用形成的第二个交联点。
交联点的增多,大大增强了水凝胶的储能模量,同时单糖结构不具备生物毒性,不影响水凝胶的生物相容性。同时,由于第二交联点本质上还是一种物理交联点,并不会影响水凝胶的剪切变稀作用。由此可见,本发明扩大了水凝胶材料在药物缓释领域的应用范围,为开发新型PPR凝胶药物载体材料,实现对抗癌药物的缓释做出贡献。
本发明还提供上述高强度超分子水凝胶的制备方法,其具体步骤为:
(1)将端基为单糖的聚乙二醇(PEG-Sugar)水溶液冷冻处理一段时间,溶化后使用;
(2)将处理过的α环糊精(α-CD)水溶液加入到PEG-Sugar水溶液中搅拌混合均匀,经超声处理即可得到水凝胶。
所述端基为单糖的聚乙二醇(PEG-Sugar)包括三种,是端基分别为半乳糖、葡萄糖和甘露糖的聚乙二醇PEG-Gal、PEG-Glc和PEG-Man,聚乙二醇的重复单元数n为100-1000,三种聚乙二醇的分子式如下:
所述的PEG-Sugar是PEG-Gal、PEG-Glc和PEG-Man的一种或多种。
所述的PEG-Sugar水溶液的质量分数为100~400mg/mL。
所述的α-CD水溶液的质量分数为100~400mg/mL。
所述PEG-Sugar水溶液和α-CD水溶液的体积比为1:2~2:1。
所述低温环境温度为-80~-20℃。
所述低温处理时间12~48h。
上述方法操作简单,并制备了高强度的PEG-环糊精PPR水凝胶,从而扩大PPR水凝胶在各类抗癌药物可控释放中的应用范围。
本发明具有如下有益效果:1、所制得的水凝胶具有高强度、高生物相容性的优点,同时还保持了剪切变稀特性;2、所述水凝胶的制备方法操作简单,原料容易得到,成本低廉;3、为开发新型PPR凝胶药物载体材料,实现对抗癌药物的缓释做出贡献。
附图说明
图1为本发明实施例1、2、3和对比例所制备的水凝胶的外观图;
图2为本发明实施例1所制备的水凝胶的扫描电镜图;
图3为本发明实施例2所制备的水凝胶的储能模量曲线。
具体实施方式
下面结合具体实施例和附图来说明本发明的技术方案。
本发明所述高强度超分子水凝胶由端基为单糖的聚乙二醇(PEG-Sugar)和α环糊精(α-CD)制备而成,其中端基为单糖的聚乙二醇(PEG-Sugar)之间的糖糖作用形成了第二个交联网络。下面通过实施例1-10和对比例来说明本发明的制备方法。
对比例:
(1)将α-CD水溶液(1mL,100mg/mL)加入PEG水溶液(PEG重复单元数为100,1mL,100mg/mL)中,快速搅拌混合均匀,超声10min。
实施例1:
(1)将PEG-Gal水溶液(PEG重复单元数为100,1mL,100mg/mL)经-80℃冷冻处理24h;
(2)将α-CD水溶液(1mL,100mg/mL)加入处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
图1为本发明实施例1所制备的水凝胶的扫描电镜图,有图可知水凝胶形成了有序的三维网络结构,且存在空洞可以用于负载药物。
实施例2:
(1)将PEG-Glc水溶液(PEG重复单元数为100,1mL,100mg/mL)经-80℃冷冻处理24h;
(2)将α-CD水溶液(1mL,100mg/mL)加入到处理过的PEG-Man水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
图3为本发明实施例2所制备的水凝胶的储能模量曲线,可见本实施例制得的水凝胶的储能强度远远大于普通PEG-PPR凝胶的储能强度。
实施例3:
(1)将PEG-Man水溶液(PEG重复单元数为100,1mL,100mg/mL)经-80℃冷冻处理24h;
(2)将α-CD水溶液(1mL,100mg/mL)加入到处理过的PEG-Glc水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
图1为本发明实施例1、2、3和对比例所制备的水凝胶的外观图,从图中可知相同条件下,纯聚乙二醇与α环糊精无法形成水凝胶,而PEG-Gal、PEG-Glc和PEG-Man与α环糊精可形成水凝胶。这是因为相同条件下,纯聚乙二醇与α环糊精之间形成的交联点无法维持其固态的形状,在自然状态下无法形成水凝胶,而PEG-Gal、PEG-Glc和PEG-Man还存在糖糖作用形成的第二种交联点,两种交联点的共同作用下,使得它们与α环糊精混合后形成水凝胶结构。
实施例4:
(1)将PEG-Gal水溶液(PEG重复单元数为1000,1mL,100mg/mL)经-40℃冷冻处理24h;
(2)将α-CD水溶液(1mL,400mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例5:
(1)将PEG-Gal水溶液(PEG重复单元数为300,1mL,100mg/mL)经-20℃冷冻处理36h;
(2)将α-CD水溶液(1mL,100mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例6:
(1)将PEG-Gal水溶液(PEG重复单元数为100,1mL,100mg/mL)经-80℃冷冻处理12h;
(2)将α-CD水溶液(1.5mL,200mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例7:
(1)将PEG-Gal水溶液(PEG重复单元数为100,1mL,200mg/mL)经-20℃冷冻处理48h;
(2)将α-CD水溶液(1mL,200mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例8:
(1)将PEG-Gal水溶液(PEG重复单元数为200,1mL,100mg/mL)经-20℃冷冻处理24h;
(2)将α-CD水溶液(2mL,100mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例9:
(1)将PEG-Gal水溶液(PEG重复单元数为300,2mL,200mg/mL)经-80℃冷冻处理24h;
(2)将α-CD水溶液(1mL,100mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。
实施例10:
(1)将PEG-Gal水溶液(PEG重复单元数为200,1.5mL,400mg/mL)经-80℃冷冻处理48h;
(2)将α-CD水溶液(1mL,100mg/mL)加入到处理过的PEG-Gal水溶液中,快速搅拌混合均匀,超声10min即可得到水凝胶。

Claims (10)

1.一种高强度超分子水凝胶,其特征在于,所述水凝胶由端基为单糖的聚乙二醇和α环糊精制备而成,其中聚乙二醇端基单糖的糖糖作用形成了第二个交联网络。
2.根据权利要求1所述的水凝胶,其特征在于,所述端基为单糖的聚乙二醇包括三种,是端基分别为半乳糖、葡萄糖和甘露糖的聚乙二醇,其中聚乙二醇的重复单元数n为100-1000,三种聚乙二醇的分子式如下:
3.一种如权利要求1或2所述的高强度超分子水凝胶的制备方法,其特征在于,具体步骤为:
(1)将端基为单糖的聚乙二醇水溶液冷冻处理一段时间,溶化后使用;
(2)将α环糊精水溶液加入到端基为单糖的聚乙二醇水溶液中搅拌混合均匀,经超声处理后即可得到水凝胶。
4.根据权利要求3所述的方法,其特征在于,所述端基为单糖的聚乙二醇包括三种,是端基分别为半乳糖、葡萄糖和甘露糖的聚乙二醇,其中聚乙二醇的重复单元数n为100-1000,三种聚乙二醇的分子式如下:分子式如下:
5.根据权利要求4中所述的方法,其特征在于,所述端基为单糖的聚乙二醇可以是上述三种聚合物中的一种或多种。
6.根据权利要求3中所述的方法,其特征在于,所述端基为单糖的聚乙二醇水溶液的质量分数为100~400mg/mL。
7.根据权利要求3中所述的方法,其特征在于,所述α环糊精水溶液的质量分数为100~400mg/mL。
8.根据权利要求3中所述的方法,其特征在于,所述端基为单糖的聚乙二醇水溶液和α环糊精水溶液的体积比为1:2~2:1。
9.根据权利要求3中所述的方法,其特征在于,步骤(1)中冷冻处理的温度为-80~-20℃。
10.根据权利要求3中所述的方法,其特征在于,步骤(1)中冷冻处理的时间为12~48h。
CN201610284182.9A 2016-05-03 2016-05-03 一种高强度超分子水凝胶及其制备方法 Expired - Fee Related CN105754316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610284182.9A CN105754316B (zh) 2016-05-03 2016-05-03 一种高强度超分子水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610284182.9A CN105754316B (zh) 2016-05-03 2016-05-03 一种高强度超分子水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN105754316A true CN105754316A (zh) 2016-07-13
CN105754316B CN105754316B (zh) 2017-12-29

Family

ID=56323199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610284182.9A Expired - Fee Related CN105754316B (zh) 2016-05-03 2016-05-03 一种高强度超分子水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN105754316B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376004A (zh) * 2017-06-29 2017-11-24 广东泰宝医疗器械技术研究院有限公司 一种聚乙二醇医用敷料及其制备方法
CN109734934A (zh) * 2019-01-11 2019-05-10 闽江学院 一种纳米纤维素温敏凝胶的制备方法
CN112142805A (zh) * 2020-09-09 2020-12-29 江南大学 一种n-烷基葡萄糖胺小分子醇凝胶及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516739A (zh) * 2011-12-13 2012-06-27 中国科学院成都生物研究所 一种多重敏感型水凝胶材料及其制备方法
CN102827446A (zh) * 2012-09-14 2012-12-19 武汉大学 一种温度响应型可注射水凝胶及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516739A (zh) * 2011-12-13 2012-06-27 中国科学院成都生物研究所 一种多重敏感型水凝胶材料及其制备方法
CN102827446A (zh) * 2012-09-14 2012-12-19 武汉大学 一种温度响应型可注射水凝胶及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIEN BABINOT,ET AL: ""Preparation of Clickable Poly(3-hydroxyalkanoate) (PHA): Application to Poly(ethylene glycol) (PEG) Graft Copolymers Synthesis"", 《MACROMOL. RAPID COMMUN.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376004A (zh) * 2017-06-29 2017-11-24 广东泰宝医疗器械技术研究院有限公司 一种聚乙二醇医用敷料及其制备方法
CN109734934A (zh) * 2019-01-11 2019-05-10 闽江学院 一种纳米纤维素温敏凝胶的制备方法
CN109734934B (zh) * 2019-01-11 2021-11-02 闽江学院 一种纳米纤维素温敏凝胶的制备方法
CN112142805A (zh) * 2020-09-09 2020-12-29 江南大学 一种n-烷基葡萄糖胺小分子醇凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN105754316B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
Mo et al. Advances in Injectable and Self‐healing Polysaccharide Hydrogel Based on the Schiff Base Reaction
Teng et al. Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses
Fu et al. The chitosan hydrogels: From structure to function
Das et al. Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications
Zhang et al. Schizophyllan: A review on its structure, properties, bioactivities and recent developments
Brzeziński et al. Micro‐and nanostructures of polylactide stereocomplexes and their biomedical applications
CN100417417C (zh) 表面修饰疏水改性壳寡糖聚合物载药胶团及其制备方法
EP3412313A1 (en) Temperature sensitive hydrogel composition including nucleic acid and chitosan
CN106822911A (zh) 一种可控释放的抗生素水凝胶及其制备方法和应用
CN105754316A (zh) 一种高强度超分子水凝胶及其制备方法
CN101612128B (zh) 海藻酸无机纳米复合凝胶微球及其制备方法
CN102688195A (zh) 一种具有pH敏感性的包载盐酸阿霉素的壳聚糖羧甲基壳聚糖纳米缓释微粒的制备方法
CN107118360A (zh) 一种大豆分离蛋白基天然高分子水凝胶及其制备方法
Wu et al. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy
CN108096214B (zh) 一种趋磁细菌量子点微胶囊及其制备方法
CN102247602B (zh) 一种超分子水凝胶双重药物载体及其制备方法和应用
Almajidi et al. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review
Shekhar et al. Sustainable polysaccharide hydrogels based on dynamic schiff base linkages as versatile building blocks for fabricating advanced functional materials
Putro et al. Polysaccharides gums in drug delivery systems: A review
Zhou et al. Pectin-based self-healing hydrogel through acylhydrazone connection for controlled drug release and enhanced tumor therapy
CN105153428B (zh) 一种用于粘液渗透的pH响应性高分子胶束及其制备方法
CN101608029A (zh) 聚多糖纳米粒复合超分子水凝胶及制备方法
CN110302146A (zh) 一种可注射凹凸棒石复合超分子水凝胶的制备和应用
Liu et al. Bioadhesive chitosan-coated cyclodextrin-based superamolecular nanomicelles to enhance the oral bioavailability of doxorubicin
CN105924685A (zh) 一种双组份高强度水凝胶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171229