CN110302146A - 一种可注射凹凸棒石复合超分子水凝胶的制备和应用 - Google Patents
一种可注射凹凸棒石复合超分子水凝胶的制备和应用 Download PDFInfo
- Publication number
- CN110302146A CN110302146A CN201910763038.7A CN201910763038A CN110302146A CN 110302146 A CN110302146 A CN 110302146A CN 201910763038 A CN201910763038 A CN 201910763038A CN 110302146 A CN110302146 A CN 110302146A
- Authority
- CN
- China
- Prior art keywords
- attapulgite
- supramolecular hydrogel
- peg
- injectable
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/196—Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/40—Cyclodextrins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明公开了一种可注射凹凸棒石复合超分子水凝胶,是将末端正电荷修饰的聚乙二醇链通过静电作用修饰到活化凹凸棒石表面,随后引入α‑环糊精,并利用α‑CD与PEG链的主‑客体识别作用自组装交联形成超分子水凝胶。本发明利用凹凸棒石特色的棒状、刚性结构可有效诱导相邻的PPR之间发生定向聚集,从而使超分子水凝胶内部形成规整的多孔结构,同时也会极大改善水凝胶的机械强度。利用复合超分子水凝胶内部规整的多孔结构,进一步作为药物或者细胞的载体,实现药物的有效负载和缓释。另外,超分子水凝胶具有优良的生物相容性和可注射性,在药物传输体系中有非常好的应用前景。
Description
技术领域
本发明涉及一种凹凸棒石复合超分子水凝胶的制备,尤其涉及一种可注射凹凸棒石复合超分子水凝胶的制备,主要作为药物缓释载体用于抗炎、抗肿瘤类药物的制备,属于复合材料技术领域和生物医药领域。
背景技术
α-环糊精(α-CD)与一定浓度的高分子量聚乙二醇(PEG)混合时,由于α-CD与PEG部分包合形成的准聚轮烷(PPR)之间强烈的氢键作用可形成超分子水凝胶。该类超分子水凝胶具有可逆的剪切变稀性质,同时由于PEG和α-CD均具有优异的生物相容性,因此可作为注射性凝胶,在药物传输体系中有非常好的应用前景。然而,PPR超分子水凝胶在作为药物/细胞释放载体及组织工程支架应用的生物医用材料时,存在着机械强度差、三维内部结构无序等问题,因此难以实现所负载药物的均匀分布及可控释放,而且在实际应用过程中可操作性较差,这极大地限制了其在生物医药领域的进一步应用。因此,发展具有规整内部三维多孔结构的高强度PPR水凝胶势在必行(J. Li, et al., Polym. J., 1994, 26, 1019-1026; J. Li, NPG Asia Mater., 2010, 2, 112-118.)。
解决PPR水凝胶强度问题的关键在于为PPR水凝胶引入一类刚性的、固定的交联点作为凝胶骨架,诱导PPR之间发生定向排列从而赋予凝胶规整的内部三维多孔结构及更高的强度。凹凸棒石是一种天然一维纳米材料矿物,具有特殊的刚性棒状晶体结构。凹凸棒优异的吸附性、流变性、填充性和抗菌性等性能,使其在高分子复合材料领域具有非常大的研究价值和开发潜力。凹凸棒石还具有优异的生物相容性,可作为食品添加剂使用,但是其在生物医药复合材料方面的基础、应用研究却很少受到关注。
发明内容
本发明的目的是提供一种可注射凹凸棒石复合超分子水凝胶的制备方法;
本发明的另一目的是提供上述凹凸棒石复合超分子水凝胶作为药物缓释载体的应用。
一、凹凸棒石复合超分子水凝胶的制备
本发明可注射凹凸棒石复合超分子水凝胶的制备方法,包括如下步骤:
(1)凹凸棒石的活化:将凹凸棒石分散到水中,加入1~ 4 M氢氧化钠,加热至30~50℃,搅拌3~8 h,离心洗涤2~3次,得到活化凹凸棒石;
凹凸棒石的直径为20 ~ 70 nm;分散到水中的浓度为0.2 ~0.5wt%,优选0.5wt%;
(2)PEG修饰凹凸棒石的制备:将活化凹凸棒石分散到水中,加入末端正电荷修饰的PEG链(PEG-N+),用氢氧化钠水溶液并控制混合溶液的pH值为8~9,磁力搅拌1~5 h,离心除去未吸附的PEG链,即PEG修饰的凹凸棒石;
活化凹凸棒石分散到水的浓度为0.3~0.8wt%,优选为0.4wt%;
PEG链的平均分子量为1000~50000,PEG链在水分散液中的浓度为2~10wt%;
PEG-N+的合成参见文献方法(Langmuir, 2011, 27, 12650-12656)。其反应式如下:
(3)可注射凹凸棒石复合超分子水凝胶制备:将PEG修饰的凹凸棒石超声分散于水中(浓度为0.3~0.8wt%,优选0.4wt%),加入α-CD(5~16wt%),超声分散5~10 min;然后将混合溶液静置48~72小时,通过α-CD与PEG链的主-客体作用自组装交联形成超分子水凝胶。
二、各阶段产物的表征
分别取活化后的凹凸棒石、PEG2000修饰凹凸棒石,PEG5000修饰凹凸棒石4 mL,浓度均为1 mg/mL,利用激光动态光散射仪(Zetasizer Nano 3600, UK)测试溶液的Zeta电位值。图1为活化凹凸棒石、PEG2000修饰凹凸棒石和PEG5000修饰凹凸棒石的Zeta电位图。从图1可见,活化后的凹凸棒石电位值为-21.9 mV,表明凹凸棒石表面经活化后具有很强的负电性,可进一步通过静电吸附作用进行修饰。通过PEG2000-N+和PEG5000-N+修饰后,凹凸棒石表面电位分别变为-9.1和-11.7 mV,说明PEG-N+链占据了凹凸棒石表面大量的负电荷,进一步表明PEG链成功修饰到了凹凸棒石表面。
PEG修饰凹凸棒石可极大改善凹凸棒石的水溶性,可在水中形成均一的水溶液。当引入α-CD后,在超声条件下,均一的水溶液可转变为超分子水凝胶。凝胶的形成速度、强度取决于PEG修饰凹凸棒石和α-CD的浓度和比例。当PEG修饰凹凸棒石浓度为0.4wt%时,α-CD在浓度范围为5wt%~12wt%时均可形成凹凸棒石复合超分子水凝胶(见图2)。
将4wt%PEG修饰凹凸棒石/10wt% α-CD超分子水凝胶冻干后,利用扫描电镜(SEM)考察其内部结构,如图3所示,利用凹凸棒石特色的棒状、刚性结构可有效诱导相邻的PPR之间发生定向聚集,从而使超分子水凝胶内部形成规整的多孔结构,这对于药物负载和可控释放具有很大优势。
三、凹凸棒石复合超分子水凝胶性能测试
1、流变学性质
使用旋转流变仪(HAAKE RS6000)测量形成的超分子水凝胶的流变学性质,测试条件:35 mm平行盘,测试温度20°C,盘间距1 mm,振荡应力1 Pa;凝胶测试之前需室温静置72h。如图4a所示,4wt%PEG修饰凹凸棒石/10wt% α-CD超分子水凝胶样品在整个测量范围内的储能模量(G’)远远大于其损耗模量(G”),说明形成了超分子水凝胶并且超分子水凝胶具有永久的交联网络。相较于传统PPR超分子水凝胶,该类凹凸棒石水凝胶的储能模量提高了10倍以上,说明将凹凸棒石引入到PPR超分子水凝胶可显著提高其机械强度。此外,G’和G”随角频率变化很小,说明凝胶具有典型的高度非共价交联的超分子水凝胶特征。如图4b所示,超分子水凝胶还显示出了可注射水凝胶所具有的典型的剪切变稀性质。
2、超分子水凝胶体外释放能力
由于凹凸棒石超分子水凝胶具有高度亲水的内部结构,可进一步用于负载另外一种抗炎或抗肿瘤药物,以抗炎药物双氯灭痛为例,将总计1 ml的混合液(4wt%PEG2000修饰凹凸棒石/10wt% α-CD /1% 双氯灭痛)或(4wt%PEG2000修饰凹凸棒石/10wt% α-CD /1% 双氯灭痛)注射至10 mL瓶内,超声形成凝胶后放置72 h。随后加入4mL血清作为释放介质,随后置于37℃水浴中。根据预先设定好的时间点,从试管内取出0.5mL上清液,然后加入0.5 mL新鲜血清,维持其体积在5 mL。利用紫外分光光度计对不同时间点取出的溶液进行分析,双氯灭痛的最大检测波长为276 nm。
图5为负载抗炎药物双氯灭痛的凹凸棒石复合超分子水凝胶的体外药物释放行为。结果显示,在初始5天内药物释放速度较快,几乎呈线性关系,说明双氯灭痛在凝胶内主要依靠扩散作用释放,5天后,凝胶开始逐步瓦解,这主要是由于药物吸附到了凹凸棒石表面,因此后期药物释放较慢。另外,不同PEG链长凝胶药物释放结果还显示,PEG2000体系药物释放速度要慢于PEG5000体系,这主要是因为PEG2000体系中凝胶的孔径较小,药物在凝胶中扩散速度要低于PEG5000体系。总体来说,该凹凸棒凝胶体系对药物的体外释放时间均≥7天,最长可达到15天,完全可满足临床对双氯灭痛的缓释需求。
综上所述,凹凸棒石表面因含有大量的羟基而显负电性,非常有利于PEG链的修饰,在引入α-CD后,利用凹凸棒石特色的棒状、刚性结构可有效诱导相邻的PPR之间发生定向聚集,从而使超分子水凝胶内部形成规整的多孔结构,同时也会极大改善水凝胶的机械强度。利用复合超分子水凝胶内部规整的多孔结构,进一步作为药物或者细胞的载体,实现药物的有效负载和缓释。另外,超分子水凝胶具有优良的生物相容性和可注射性,可作为药物载体在药物传输体系中有非常好的应用前景。
附图说明
图1为活化凹凸棒石、PEG2000修饰凹凸棒石和PEG5000修饰凹凸棒石的Zeta电位图。
图2为PEG修饰凹凸棒石浓度为0.4wt%,α-CD在浓度范围为5wt%~12wt%时超分子水凝胶形成图。
图3为4wt%PEG2000修饰凹凸棒石/10wt% α-CD超分子水凝胶扫描电镜测试图。
图4为4wt%PEG2000修饰凹凸棒石/10wt% α-CD超分子水凝胶流变动力学测试图。
图5为4wt%PEG2000修饰凹凸棒石/10wt% α-CD/1%双氯灭痛超分子水凝胶体外药物释放行为图。
具体实施方式
下面通过具体实施例对本发明可注射凹凸棒石复合超分子水凝胶的制备方法和应用做进一步说明。
实施例一
1、凹凸棒石的活化:取 200 mg(直径≈50 nm)凹凸棒石分散到50 mL水中,加入4 g氢氧化钠(2 M),加热至35℃下搅拌4.5 h,离心洗涤3次,得到活化凹凸棒石;
2、PEG2000修饰凹凸棒石的制备:将活化凹凸棒石分散到水中,制备成浓度0.4wt%的水溶液;取2mL活化凹凸棒石水溶液中(0.4wt%),加入70 mg末端正电荷修饰的PEG-N+,并用0.1M氢氧化钠水溶液控制溶液的pH值为8.5,磁力搅拌2 h,离心除去未吸附的PEG2000-N+,即得PEG2000修饰凹凸棒石;
3、可注射凹凸棒石复合超分子水凝胶制备:将PEG修饰凹凸棒石分散到水中制成浓度0.4wt%的水分散液;取1 mLPEG2000修饰凹凸棒石分散液中(0.4wt%),加入80 mgα-CD,超声10 min,静置72 h,即得到超分子水凝胶;
4、负载5-氟尿嘧啶的可注射凹凸棒石复合超分子水凝胶制备:取5mg 5-氟尿嘧啶,加入到1 mLPEG2000修饰凹凸棒石分散液中(0.4wt%),超声10 min,加入100 mg α-CD,超声10min,静置72h,即得负载5-氟尿嘧啶的凹凸棒石复合超分子水凝胶。
实施例二
1、凹凸棒石的活化:同实施例1;
2、PEG5000修饰凹凸棒石的制备:将活化凹凸棒石分散到水中,制备成浓度0.4wt%的水溶液;取2mL活化凹凸棒石水溶液中(0.4wt%),加入70 mg末端正电荷修饰的PEG-N+,并用0.1M氢氧化钠水溶液控制溶液的pH值为8.5,磁力搅拌2 h,离心除去未吸附的PEG5000-N+,即得PEG5000修饰凹凸棒石;
3、可注射凹凸棒石复合超分子水凝胶制备:将PEG5000修饰凹凸棒石分散到水中制成浓度0.4wt%的水分散液;取1 mLPEG5000修饰凹凸棒石分散液中(0.4wt%),加入100 mgα-CD,超声5 min,静置72 h,即得到超分子水凝胶;
4、负载双氯灭痛的可注射凹凸棒石复合超分子水凝胶制备:取10 mg双氯灭痛,加入到1 mLPEG5000修饰凹凸棒石分散液中(0.4wt%),超声10 min,加入100 mgα-CD,超声5 min,静置72 h,即得负载双氯灭痛的凹凸棒石复合超分子水凝胶。
Claims (6)
1.一种可注射凹凸棒石复合超分子水凝胶的制备方法,包括以下步骤:
(1)凹凸棒石的活化:将凹凸棒石分散到水中,加入1~4 M氢氧化钠,加热至30~50℃,搅拌3~8 h,离心洗涤,得到活化凹凸棒石;
(2)PEG修饰凹凸棒石的制备:将活化凹凸棒石分散到水中,加入末端正电荷修饰的PEG链,并氢氧化钠水溶液控制混合溶液的pH值为8~9,磁力搅拌1~5 h,离心除去未吸附的PEG链,即得PEG修饰的凹凸棒石;
(3)可注射凹凸棒石复合超分子水凝胶制备:将PEG修饰的凹凸棒石分散于水中,加入α-CD,超声分散5~10 min;然后将混合溶液静置48~72小时,通过α-CD与PEG链的主-客体作用自组装交联形成超分子水凝胶。
2.如权利要求1所述一种可注射凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(1)中,凹凸棒石的直径为20 ~ 70 nm;凹凸棒石分散到水中的浓度为0.2~0.5wt%。
3.如权利要求1所述一种可注射凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(2)中,活化凹凸棒石分散到水中的浓度为0.3~0.8wt%。
4.如权利要求1所述一种可注射凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(2)中,PEG链的平均分子量为1000~50000,PEG链在水分散液中的浓度为2~10wt%。
5.如权利要求1所述一种可注射凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(3)中,PEG链修饰凹凸棒石在水分散液中的浓度为0.3~0.8wt%,α-CD浓度为5~16wt%。
6.如权利要求1所述方法制备的可注射凹凸棒石复合超分子水凝胶作为抗炎、抗肿瘤类药物缓释载体的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910763038.7A CN110302146B (zh) | 2019-08-19 | 2019-08-19 | 一种可注射凹凸棒石复合超分子水凝胶的制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910763038.7A CN110302146B (zh) | 2019-08-19 | 2019-08-19 | 一种可注射凹凸棒石复合超分子水凝胶的制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110302146A true CN110302146A (zh) | 2019-10-08 |
CN110302146B CN110302146B (zh) | 2022-03-25 |
Family
ID=68083599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910763038.7A Active CN110302146B (zh) | 2019-08-19 | 2019-08-19 | 一种可注射凹凸棒石复合超分子水凝胶的制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110302146B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112315976A (zh) * | 2020-11-16 | 2021-02-05 | 山西大同大学 | 一种载银凹凸棒交联的可注射型抗菌复合水凝胶及其制备方法和应用 |
CN115672261A (zh) * | 2022-10-31 | 2023-02-03 | 江苏海洋大学 | 一种含巯基席夫碱侧基聚合物修饰的凹凸棒土及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107714641A (zh) * | 2017-10-12 | 2018-02-23 | 中国科学院兰州化学物理研究所 | 一种用于联合用药的喜树碱前药负载双药物超分子水凝胶的制备方法 |
-
2019
- 2019-08-19 CN CN201910763038.7A patent/CN110302146B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107714641A (zh) * | 2017-10-12 | 2018-02-23 | 中国科学院兰州化学物理研究所 | 一种用于联合用药的喜树碱前药负载双药物超分子水凝胶的制备方法 |
Non-Patent Citations (3)
Title |
---|
AMORNRAT KLAEWKLOD ET AL.: "Characterization of supramolecular gels based on β-cyclodextrin and polyethyleneglycol and their potential use for topical drug delivery", 《MATERIALS SCIENCE AND ENGINEERING C》 * |
YUE ZHENG ET AL.: "Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide): Syntheses, Structural Characterizations and Applications for Drug Delivery", 《POLYMERS》 * |
杨保平等: "纳米凹土复合α-CD/EPE超分子水凝胶及其性能", 《武汉大学学报(理学版)》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112315976A (zh) * | 2020-11-16 | 2021-02-05 | 山西大同大学 | 一种载银凹凸棒交联的可注射型抗菌复合水凝胶及其制备方法和应用 |
CN112315976B (zh) * | 2020-11-16 | 2022-10-11 | 山西大同大学 | 一种载银凹凸棒交联的可注射型抗菌复合水凝胶及其制备方法和应用 |
CN115672261A (zh) * | 2022-10-31 | 2023-02-03 | 江苏海洋大学 | 一种含巯基席夫碱侧基聚合物修饰的凹凸棒土及其制备方法 |
CN115672261B (zh) * | 2022-10-31 | 2024-02-20 | 江苏海洋大学 | 一种含巯基席夫碱侧基聚合物修饰的凹凸棒土及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110302146B (zh) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery | |
Ren et al. | Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering | |
Fan et al. | Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering | |
Qu et al. | pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy | |
Zhao et al. | An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery | |
Cheng et al. | Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration | |
Dhanka et al. | Methotrexate loaded gellan gum microparticles for drug delivery | |
Abeer et al. | A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects | |
Ghanbari et al. | Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering | |
Ruan et al. | Progress in the application of sustained-release drug microspheres in tissue engineering | |
Zhang et al. | Porous electrospun fibers with self‐sealing functionality: An enabling strategy for trapping biomacromolecules | |
Gao et al. | Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery | |
Zhu et al. | Responsive hydrogels based on triggered click reactions for liver cancer | |
Chen et al. | Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing | |
CN106492220A (zh) | 具有控释功能的纳米介孔硅复合水凝胶的制备方法 | |
CN107855080A (zh) | 高分子凝胶颗粒、其制备方法、包含其的复合凝胶颗粒及用途 | |
WO2008121447A1 (en) | Self-assembling membranes and related methods thereof | |
JPH11507679A (ja) | 水溶性ポリマーの粒子の水性分散液の製造法および得られた粒子 | |
De Witte et al. | Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications | |
Li et al. | Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing | |
Hu et al. | Preparation and properties of an injectable scaffold of poly (lactic-co-glycolic acid) microparticles/chitosan hydrogel | |
CN115521627A (zh) | 一种结构蛋白/透明质酸复合微纳米颗粒及颗粒水凝胶材料和应用 | |
Yang et al. | In situ formation of poly (thiolated chitosan-co-alkylated β-cyclodextrin) hydrogels using click cross-linking for sustained drug release | |
Niu et al. | Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate | |
Tang et al. | Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |