CN105734411B - 具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法 - Google Patents

具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法 Download PDF

Info

Publication number
CN105734411B
CN105734411B CN201510988508.1A CN201510988508A CN105734411B CN 105734411 B CN105734411 B CN 105734411B CN 201510988508 A CN201510988508 A CN 201510988508A CN 105734411 B CN105734411 B CN 105734411B
Authority
CN
China
Prior art keywords
steel plate
martensite
hot
phase
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510988508.1A
Other languages
English (en)
Other versions
CN105734411A (zh
Inventor
韩箱浩
韩成豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN105734411A publication Critical patent/CN105734411A/zh
Application granted granted Critical
Publication of CN105734411B publication Critical patent/CN105734411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明提供具有优异拉伸性能的热浸镀锌钢板和合金化热浸镀锌钢板,以及制造热浸镀锌钢板和合金化热浸镀锌钢板的方法。本发明涉及其中热浸镀锌层形成于钢板基材表面的热浸镀锌钢板,所述热浸镀锌钢板具有优异的拉伸性能且特征在于其组成及微观结构。

Description

具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造 其的方法
相关申请的交叉引用
本申请要求于2014年12月24日向韩国知识产权局提出的韩国专利申请第10-2014-0187935号申请的权益,其公开内容通过引用并入本文。
背景技术
本发明涉及高强度钢板,具体而言,涉及热浸镀锌钢板和合金化热浸镀锌钢板,其由于具有优良成形性而适用于汽车覆盖件(automotive body panel)等,以及涉及制造热浸镀锌钢板和合金化热浸镀锌钢板的方法。
着重于车辆中的防撞性规定和燃油效率,高强度钢板正积极地用于汽车应用中,以便实现对高强度和汽车车身重量减轻的需要,以及与这些趋势一致,高强度钢板被应用于汽车覆盖件。目前,340MPa级的烘烤硬化钢通常用于汽车覆盖件。然而,虽然490MPa级的烘烤硬化钢也用于一些应用中,但进一步希望未来590MPa级的烘烤硬化钢的应用。
虽然这样的用于车体覆盖件的烘烤硬化钢可使重量减少并提高抗冲击力,但这样的钢板的使用可能是不利的,因为成形性随强度增加而降低。因此,近来顾客需要具有低屈强比(YR=YS/TS)和优异延展性的钢板,从而弥补应用于汽车覆盖件的高强度钢板的不足的加工性。此外,首先,用于汽车覆盖件的钢板应具有优异的表面质量。然而,由于淬透性赋予元素和易氧化元素(例如,Si、Mn等)(添加其以得到高强度),难以保证镀钢板的所需表面质量。
另一方面,这样的钢板适当用于汽车应用中需要优异耐腐蚀性,因此具有优异耐腐蚀性的热浸镀锌钢板通常用作汽车应用的钢板。通过连续热浸镀锌设备制造这些钢板,其中再结晶退火和电镀在相同线上进行,并因此具有可以低成本制造具有高度耐腐蚀性的钢板的优势。此外,由于除优异耐腐蚀性外还有优异焊接性或成形性,通过热浸镀锌和其后的重新加热得到的热浸镀锌钢板被广泛地实施。
因此,为了减少汽车覆盖件的重量并增加其加工性,需要开发具有优异成形性的高强度冷轧钢板,此外,也需要开发具有优异耐腐蚀性、焊接性和成形性的高强度热浸镀锌钢板。
作为其中这样的高强度钢板的加工性得到提高的现有技术,专利文献1公开了包括马氏体作为主要成分的多相钢板,并提出了制造高强度钢板的方法,其中粒径为1-100nm的细Cu沉淀物分布在结构中以提高加工性。然而,根据专利文献1公开的内容,为了沉淀细Cu粒子需要添加过量的Cu,例如2-5%的Cu,从而可能发生由Cu引起的热脆性(redshortness),并可过度增加制造成本。
专利文献2公开了包含铁素体作为初生相、残留奥氏体作为二次相以及贝氏体和马氏体(其是低温转变相)的多相不锈钢板,和提高钢板延展性和延伸凸缘性的方法。然而,根据专利文献2公开的内容,添加大量的Si和Al以获得残留奥氏体相,因此难以确保炼钢和连铸中的电镀质量和表面质量。另外,存在的缺点在于由于相变诱发塑性导致初始YS值较高,并因此屈强比较高。
专利文献3涉及用于提供展现出良好加工性的高强度热浸镀锌钢板的特征,其公开了具有微观结构(包含相对软的磁铁氧体和相对硬的马氏体的复合材料)的钢板和用于提高钢板的延伸率和兰克福特值(elongation and Lankford value,R-value)的制造方法。然而,基于该特征,添加大量的Si,并因此难以获得优异的电镀质量,且由于大量Ti和Mo的添加导致制造成本增加。
[相关领域文献]
(专利文献1)日本专利申请特开2005-264176号公报
(专利文献2)日本专利申请特开2004-292891号公报
(专利文献3)韩国专利申请特开2002-0073564号公报
发明内容
本发明一方面可提供热浸镀锌钢板和合金化热浸镀锌钢板,其适用于汽车覆盖件,其中优化合金的设计和制造条件以达到抗拉强度450-650MPa和展现出优异的低屈强比(YS/TS)性能,特别是允许显著提高延展性、降低屈强比。
本发明一方面也可提供制造热浸镀锌钢板和合金化热浸镀锌钢板的方法。
然而,本发明的实施方案并不限于此,本领域技术人员从以下描述可以清楚地理解本文没有提及的其它技术方案。
根据本发明的一个方面,提供了热浸镀锌钢板,其中在钢板基材表面上形成热浸镀锌层,所述热浸镀锌钢板具有优异的拉伸性能,其中,
所述钢板基材:
以wt%计,含有0.02-0.08%的碳(C)、1.3-2.1%的锰(Mn)、0.3%或更少的硅(Si)(排除0%)、1.0%或更少的铬(Cr)(排除0%)、0.1%或更少的磷(P)(排除0%)、0.01%或更少的硫(S)(排除0%)、0.01%或更少的氮(N)(排除0%)、0.02-0.06%的铝(溶Al)、0.2%或更少的钼(Mo)(排除0%)、0.003%或更少的硼(B)(排除0%),以及余量是铁(Fe)和其它不可避免的杂质;
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构(microstructure);
含有如等式2所定义的90%或更高百分含量的马氏体(M%),所述马氏体的平均粒径为5μm或更小且占据铁素体晶界(包括晶界三相点)空间;以及
在基于钢板厚度(t)的1/4t处,铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且铁素体相中Mn浓度(c)与马氏体相中Mn浓度(d)之比,即(c)/(d)为0.8或更小。
[等式1]
B(%)={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积。
[等式2]
M(%)={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,马氏体的平均粒径为5μm或更小。
在所述钢板基材中,铁素体相的平均晶粒大小可为4μm或更大,在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积可为10%或更高。
根据本发明的另一方面,提供了合金化热浸镀锌钢板,其中合金化热浸镀锌层形成于钢板基材表面上,所述合金化热浸镀锌钢板具有优异的拉伸性能,其中,
所述钢板基材:
以wt%计,含有0.02-0.08%的碳(C)、1.3-2.1%的锰(Mn)、0.3%或更少的硅(Si)(排除0%)、1.0%或更少的铬(Cr)(排除0%)、0.1%或更少的磷(P)(排除0%)、0.01%或更少的硫(S)(排除0%)、0.01%或更少的氮(N)(排除0%)、0.02-0.06%的铝(溶Al)、0.2%或更少的钼(Mo)(排除0%)、0.003%或更少的硼(B)(排除0%),以及余量是铁(Fe)和其它不可避免的杂质;
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构;
含有如等式2所定义的90%或更高百分含量的马氏体(M%),所述马氏体的平均粒径为5μm或更小且占据铁素体晶界(包括晶界三相点)空间;以及
在基于钢板厚度(t)的1/4t处,铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且铁素体相中Mn浓度(c)与马氏体相中Mn浓度(d)之比,即(c)/(d)为0.8或更小。
晶界中
在所述钢板基材中,铁素体相的平均晶粒大小可为4μm或更大,在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积可为10%或更高。
根据本发明的另一个方面,提供了一种制造具有优异的拉伸性能的热浸镀锌钢板的方法,该方法包括:
准备具有上述组成成分的钢坯,然后重新加热钢坯;
在Ar3+50℃-950℃的温度范围内对重新加热后的钢坯进行终热轧,此后将终热轧后的钢板在450-700℃下收卷;
对收卷的热轧钢板以压下率40-80%进行冷轧,此后在760-850℃的温度范围内对冷轧后的钢板进行连续退火;
对连续退火后的钢板以2-8℃/s的平均冷却速率进行第一次冷却至630-670℃的温度范围;此后对第一次冷却后的钢板以3-10℃/s的平均冷却速率进行第二次冷却至Ms+20℃-Ms+50℃的温度范围;以及
在440-480℃的温度范围内对第二次冷却后的钢板进行热浸镀锌,此后对热浸镀锌后的钢板以4℃/s或更高的平均冷却速率进行冷却至Ms-100℃或更低的温度。
在热浸镀锌钢板的钢板基材中,
微观结构可包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据铁素体晶界(包括晶界三相点)空间;以及
在基于钢板厚度(t)的1/4t处,铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且铁素体相中Mn浓度(c)与马氏体相中Mn浓度(d)之比,即(c)/(d)为0.8或更小。
在热浸镀锌钢板的钢板基材中,铁素体相的平均晶粒大小可为4μm或更大,且在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积可为10%或更高。
根据本发明的另一个方面,提供了一种制造具有优异的拉伸性能的合金化热浸镀锌钢板的方法,该方法包括:
准备具有上述的组成成分的钢坯,然后重新加热钢坯;
在Ar3+50℃-950℃的温度范围内对重新加热后的钢坯进行终热轧,此后将终热轧后的钢板在450-700℃下收卷;
以40-80%的压下率(reduction ratio)对收卷的热轧钢板进行冷轧,此后进行连续退火,其中,对冷轧后的钢板以2℃/s或更小的平均加热速率进行第二次加热至760-850℃的温度范围;
对连续退火后的钢板以2-8℃/s的平均冷却速率进行第一次冷却至630-670℃的温度范围;此后对第一次冷却后的钢板以3-10℃/s的平均冷却速率进行第二次冷却到Ms+20℃至Ms+50℃的温度范围;以及
在440-480℃的温度范围内对第二次冷却后的钢板进行热浸镀锌,此后对热浸镀锌后的钢板进行合金化热处理,随后将合金化热处理后的钢板以4℃/s或更高的平均冷却速率冷却至Ms-100℃或更低的温度。
在合金化热浸镀锌钢板的钢板基材中,
微观结构可包含90%或更多的铁素体,以及余量是马氏体和如等式1所定义的3%或更少的贝氏体;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据铁素体晶界(包括晶界三相点)空间;以及
在基于钢板厚度(t)的1/4t处,铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且铁素体相中Mn浓度(c)与马氏体相中Mn浓度(d)之比,即(c)/(d)为0.8或更小。
在合金化热浸镀锌钢板的钢板基材中,铁素体相的平均晶粒大小可为4μm或更大,且在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积可为10%或更高。
附图简要说明
本发明的上述方面和其它方面、特征和其它优点将从以下结合附图的详细描述更清楚地理解,其中:
图1是显示在基于根据本发明的实施方案制造的热浸镀锌钢板的厚度(t)的1/4t处,铁素体相和马氏体相中C和Mn的浓度比的曲线图;
图2是显示基于图1中在钢板基材的厚度(t)的1/4t处的微观结构的结果的图像。
详细说明
将参考附图进行详细描述本发明示例性的实施方案。
然而,本发明可以多种不同的方式举例说明,不应视为限于本文提出的具体实施方案。相反,提供这些实施方案以使本发明全面和完整,并向本领域技术人员充分传达本发明的范围。
由于为提供具有强度和延展性的钢板并因此展现出优异的成形性以适用于汽车覆盖件的深入调查,本发明人发现了满足所需性能的多相钢板可通过优化制造条件连同合金设计来提供,并最终实现本发明。
首先,根据本发明将详细描述具有优异拉伸性能的热浸镀锌钢板和合金化热浸镀锌钢板。
根据本发明的热浸镀锌钢板,以wt%计,含有0.02-0.08%的碳(C)、1.3-2.1%的锰(Mn)、0.3%或更少的硅(Si)(排除0%)、1.0%或更少的铬(Cr)(排除0%)、0.1%或更少的磷(P)(排除0%)、0.01%或更少的硫(S)(排除0%)、0.01%或更少的氮(N)(排除0%)、0.02-0.06%的铝(溶Al)、0.2%或更少的钼(Mo)(排除0%)、0.003%或更少的硼(B)(排除0%),以及余量是铁(Fe)和其它不可避免的杂质;
在下文中,将详细描述限制本发明如上所述热浸镀锌钢板的合金组分的原因。除非另有特别说明,每个组分的含量指的是wt%。
C:0.02-0.08%
碳(C)在制造多相钢板中是重要组分,且通过形成马氏体在强度方面是有益元素,马氏体是双相结构的一个。通常,较高的C含量促进马氏体的形成,且因此在制造多相钢中是有利的。然而,需要将C含量控制在适度水平以便控制所需强度和屈强比(YS/TS)。
特别是,因为在退火后冷却期间也发生贝氏体转变,因此较高的C含量倾向于增加钢的屈强比。在本发明中,如有可能,最小化贝氏体形成和以适度水平形成马氏体是重要的,由此获得所需的材料性能。
因此,优选将C含量控制在0.02%或更大。当C含量少于0.02%时,难以得到为本发明目的的450MPa级强度和难以以适度水平形成马氏体。相反,当C含量多于0.08%时,在退火后冷却期间加速了粒间贝氏体的形成,由此增加了屈强比(YS/TS),从而在汽车部件形成中易于发生弯曲(warping)和表面缺陷。因此,本发明中,优选将C含量控制在0.02-0.08%,更优选地,将C含量控制在0.03-0.06%以得到适当的强度。
Mn:1.3-2.1%
锰(Mn)是多相钢板中提高淬透性的元素,且尤其是形成马氏体的重要元素。常规固溶强化钢中,Mn由于固溶强化作用可有效提高强度,并将S(其不可避免地添加至钢中)沉淀为MnS,从而对抑制热轧过程中由S引起的钢板破裂和高温脆化起重要作用。
本发明中,优选加入1.3%或更多的Mn。当Mn含量少于1.3%时,不能形成马氏体,因此难以制造多相钢。相反,当Mn含量多于2.1%时,形成过量马氏体,从而导致材料不稳定性,并在结构中形成Mn带(Mn氧化物带),结果增加了工作裂缝(work cracks)和钢板破裂的风险。此外,退火期间Mn氧化物被释放至表面,从而显著恶化了涂布性能。因此,本发明中,优选将Mn含量限制在1.3-2.1%,更优选地,将Mn含量限制在1.4-1.8%。
Cr:1.0%或更少(排除0%)
铬(Cr)是与上述Mn具有相似性质的组分,其被加入以提高淬透性并获得高强度钢。Cr在形成马氏体方面是有效的,且在热轧过程中形成粗Cr碳化物例如Cr23C6,从而将溶解于钢中的C沉淀至适度水平以下,并因此抑制屈服点延伸(elongation)(YP-EI)。因此,Cr是制造屈强比低的多相钢的有益元素。此外,Cr使延伸率的降低最小化却增加强度,因此在制造具有高延展性的多相钢中也是有益的。
本发明中,上述的Cr通过提高淬透性而促进马氏体形成。然而,当Cr含量多于1.0%时,形成马氏体的含量过度增加,从而导致强度和延伸率降低。因此,本发明中,优选将Cr含量限制在1.0%或更少,考虑到制造期间会不可避免地添加而排除0%。
Si:0.3%或更少(排除0%)
通常,Si是在退火后的冷却期间以适度水平形成残留奥氏体的元素,因此显著有助于提高延伸率。然而,当C含量高(例如约0.6%)时这是有效的。此外,众所周知,上述的Si用于通过固溶强化作用来提高钢的强度,或者,超过适度水平时,提高热浸镀锌钢板的表面性质。
本发明中,将Si含量限制在0.3%或更少(排除0%)以获得足够的强度并提高延伸率。即使不添加Si,在性能方面也没有显著问题。然而,考虑到制造期间会不可避免地添加而排除0%。当Si含量多于0.3%时,镀钢板的表面性质恶化,但在形成多相钢中几乎没有作用。
P:0.1%或更少(排除0%)
钢中的磷(P)在获得足够强度而不显著恶化成形性中是最有益的元素。然而,问题在于,当过量添加P时,脆性断裂的可能性显著增加,从而增加板坯热轧期间钢板破裂的可能性,且P充当恶化镀钢板的表面性质的元素。
因此,本发明中,将P含量限制在0.1%,考虑到会不可避免地添加而排除0%。
S:0.01%或更少(排除0%)
硫(S)是不可避免地添加至钢中的杂质元素,且将S含量控制至尽可能低是重要的。特别是,由于钢中的S增加热脆性的可能性,优选将S含量控制在0.01%或更少。然而,考虑到制造期间会不可避免地添加而排除0%。
N:0.01%或更少(排除0%)
氮(N)是不可避免地添加至钢中的杂质元素。虽然将N含量控制至尽可能低是重要的,但为此钢铁冶炼成本会大幅增加。因此,优选将N含量控制在0.01%或更少,其中操作条件是可行的。然而,考虑到制造期间会不可避免地添加而排除0%。
溶Al:0.02-0.06%
酸溶铝(溶Al,Sol.Al)是为了钢的晶粒细化和脱氧而添加的元素。当溶Al含量少于0.02%时,在常规稳定状态中不能产生铝镇静钢。相反,当溶Al含量多于0.06%时,其在强度提高方面是有利的,但在炼钢连铸期间形成过量的包含物,由此增加了热浸镀锌钢板表面缺陷的可能性并导致制造成本增加。因此,本发明中优选将溶Al含量控制在0.02-0.06%。
Mo:0.2%或更少(排除0%)
钼(Mo)是为了延迟奥氏体转变为珠光体和实现铁素体细化及强度提高而添加的元素。Mo提高钢的淬透性,并可在晶界中形成精细马氏体,因此能够控制屈强比。然而,作为昂贵的元素,制造中较高的含量是不宜的。因此,优选适当地控制Mo含量。
为了获得如上所述的效果,优选添加至多0.2%的Mn。多于0.2%的Mn含量导致合金成本急剧上升,从而降低经济效率而不是降低钢的延展性。虽然本发明中,Mo的最佳含量是0.05%,但即使没有实质地添加Mo的情况下,获得所需性质也没有困难。然而,考虑到制造期间会不可避免地添加而排除0%。
B:0.003%或更少(排除0%)
钢中的硼(B)是为了防止由P的添加引起的二次加工脆性而添加的元素。多于0.003%的B含量导致延伸率降低。因此,控制B含量为0.003%或更少,考虑到会不可避免地添加而排除0%。
本发明的钢板,除上述组分外,余量是Fe和其它不可避免的杂质。
在本发明的满足上述组分的热浸镀锌钢板和合金化热浸镀锌钢板中,优选钢板基材的微观结构包含铁素体为初生相和余量马氏体。在这种情况下,一些微观结构可包含贝氏体,如可能,优选使贝氏体的量最小化,或优选不存在贝氏体。因此,优选本发明的热浸镀锌钢板的钢板基材优微观结构包含,以面积%计,90%或更多的铁素体,余量是马氏体和如等式1所定义的3%或更少的贝氏体(B)。
优选,在基于钢板基材的总厚度(t)的1/4t处,铁素体分数是90%或更多,包含余量的马氏体和贝氏体的双相结构的分数是1-10%。当双相结构的分数少于1%时,难以形成多相钢,并因此难以得到屈强比低的钢板。相反,当双相结构的分数多于10%时,强度变得太高以至于不能得到所需的加工性。
根据本发明人的实验结果,在基于钢板基材的厚度的1/4t处,马氏体结构的较优分数是2-5%。这是通过控制细马氏体的最佳含量获得优异的低屈强比和足够的延展性的最佳条件。此外,如下面的等式1所示,虽然贝氏体可能不存在,但当贝氏体不可避免地形成时优选3%或更少的贝氏体。当贝氏体含量多于3%时,贝氏体周围的C含量增加,从而恶化延展性并增加屈强比,因此对本发明是不适当的。
[等式1]
B(%)={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积。
本发明中,将整个双相结构中贝氏体的面积比控制为很低是重要的。这是因为,在贝氏体与马氏体相比的情况下,贝氏体晶粒内的溶质原子即C和N容易陷入位错(dislocation),导致位错运动妨碍和不连续屈服行为,从而显著增加屈强比。
因此,当整个双相结构中贝氏体的面积比是3%或更少时,可将平整轧制之前的屈强比控制为0.57或更少,且通过随后的平整轧制可将屈强比控制在适度水平。当贝氏体的面积比高于3%时,平整轧制之前的屈强比高于0.57,使得难以制造屈强比低的多相钢板,并因此导致延展性降低。
此外,在本发明的热浸镀锌钢板和合金化热浸镀锌钢板中,优选在铁素体晶界中的平均粒径为5μm或更小的马氏体占据的比例(M%)为90%或更高,由下面的等式2所定义。也就是说,与存在于铁素体晶粒内相比,当平均粒径为5μm或更小的细马氏体主要存在于铁素体晶界中时,有利于提高延展性,同时维持低屈强比。
[等式2]
M(%)={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,马氏体的平均粒径为5μm或更小。
因此,当铁素体晶界中的马氏体占据的比例是90%或更高时,可将平整轧制之前的屈强比控制为0.55或更少,且通过随后的平整轧制可将屈强比控制在适度水平。当马氏体占据的比例低于90%时,形成于晶粒内的马氏体增加拉伸应变期间的屈服强度,使得屈强比增加且不能通过平整轧制控制。另外,由于形成期间晶粒内的马氏体显著妨碍位错运动而拉伸率降低,从而削弱延展性并因此导致延伸率降低。而且,由于铁素体晶粒内形成大量马氏体使得延伸率降低,从而产生太多错位,并因此妨碍形成期间可动位错的移动。设计本发明以最大化F含量并因此实现延展性。
此外,在本发明的热浸镀锌钢板和合金化热浸镀锌钢板中,优选的是,在基于钢板基材的厚度的1/4t处,铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且铁素体相中Mn浓度(c)与马氏体相中Mn浓度(d)之比,即(c)/(d)为0.8或更小。
这些特征在本发明中是非常重要的,且其技术意义是,即使在相同的铁素体含量下,通过控制基体结构(matrix structure)内铁素体和马氏体中C和Mn的浓度来提供具有优异延展性的多相钢,从而与马氏体相比,将铁素体中C和Mn的浓度比控制为尽可能低。在基于钢板基材的厚度的1/4t处,当铁素体相中C浓度(a)与马氏体相中C浓度(b)之比,即(a)/(b)是0.7或更小,且Mn浓度比小于0.8时,铁素体的软化性能得到提高,并可得到更好的延展性。然而,当C浓度高于0.7或Mn浓度高于0.8时,马氏体和铁素体之间C和Mn的浓度比几乎没有区别,从而不可能得到所需的延展性。这可以通过组分设计和操作条件的表征来开发。
同时,在本发明的热浸镀锌钢板和合金化热浸镀锌钢板中,优选的是,在钢板基材中,铁素体相的平均晶粒大小为4μm或更大,且将整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积控制为10%或更高。当铁素体相具有更大的晶粒大小和更均匀的晶粒时,可能制造具有优异延展性的钢板。当平均晶粒大小小于4μm时,不可能获得所需的延展性。而且,当整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积少于10%时,不能进行铁素体晶粒粗化,从而在获得足够延展性中有问题。
接下来,将详细描述制造本发明具有优异拉伸性能的热浸镀锌钢板和合金化热浸镀锌钢板的方法。
首先,本发明中,准备具有上述组成成分的钢坯,然后将其重新加热。进行这样的重新加热步骤是为了顺利地进行后续的热轧步骤,并充分地获得钢板的所需性能。本发明并不特别地限于这样的重新加热条件,可采用一般条件。作为实例,重新加热步骤可在1100-1300℃的温度范围内进行。
随后,本发明中,使重新加热的钢坯在Ar3+50℃-950℃的温度范围内经受终热轧。本发明中,优选使重新加热的钢坯在Ar3+50℃-950℃的温度范围内经受终热轧,如下面的等式3所定义。从根本上讲,在奥氏体单相区中进行终热轧是有利的。这是因为将更均匀的形变施加至基本上由单相晶粒组成的结构,并且因此可以提高结构中的均匀性。当终热轧温度低于Ar3+50℃时,轧制极有可能在铁素体+奥氏体双相区中进行,从而导致不良的材料均匀性。相反,终热轧温度高于950℃时,在热轧后的冷却期间,由于异常粗晶粒的形成引起的材料不均匀性,导致可能发生钢卷扭曲。
[等式3]
Ar3=910–310*C–80*Mn–20*Cu–15*Cr–55*Ni–80*Mo
其中,Ar3是理论温度。
然后,本发明中,使终热轧后的钢板在450-700℃下收卷。当收卷温度低于450℃时,形成过量的马氏体或贝氏体,从而引起强度的过量增加,使得在随后的冷轧期间,例如形状缺陷的问题可能由负载引起。相反,当收卷温度高于700℃时,存在的问题是钢中例如Si、Mn和B的元素的严重表面富集,这些元素减少热浸镀锌湿润性。因此,考虑到这些问题,优选将收卷温度控制在450-700℃。然后,可使收卷后的热轧钢板在一般条件下经受酸洗。
随后,本发明中,收卷后的热轧钢板经受压下率为40-80%的冷轧。优选以40-80%的压下率进行冷轧。当冷轧压下率小于40%时,难以获得所需厚度和强度的钢板。相反,当冷轧压下率大于80%时,在钢板边缘很有可能产生裂缝,其可导致冷轧超负荷。
随后,优选使上述步骤制备的冷轧钢板在760-850℃的温度范围内经受连续退火。在连续合金化镀锌退火炉中进行连续退火。
连续退火步骤的目的是进行再结晶,形成铁素体和奥氏体再结晶并分布碳。当连续退火温度低于760℃时,没有实现完全再结晶,并难以充分形成奥氏体,使得获得本发明目的的强度变得困难。相反,当连续退火温度大于850℃时,问题在于生产力降低,且过量形成奥氏体,因此由于冷却后的贝氏体导致延展性降低。因此,考虑到这些问题,优选将连续退火温度范围控制在760-850℃。更优选地,在770-810℃的温度范围内进行连续退火。
虽然这些温度范围对应于双相区(铁素体+奥氏体),优选连续退火在尽可能多地包含铁素体区的温度下进行。退火温度下在双相区中较高量的初始铁素体可促进退火后的晶粒生长,由此提高延展性。降低马氏体初始温度(Ms)同时增加奥氏体中C富集的程度,使得在随后热浸镀锌后的终冷却期间在槽(pot)中可形成马氏体,因此细的和均匀的马氏体主要分布于晶界内,从而能够制造具有优异延展性和低屈强比的钢板。二次加热温度范围越低,越有利于铁素体中的C扩散至奥氏体中(奥氏体中C的饱和度高于铁素体中C的饱和度),并且具有更高C富集程度的奥氏体的更高含量促进细马氏体的形成,从而能够制造具有高延展性的钢板。
此外,本发明中,连续退火后的钢板以2-8℃/s的平均冷却速率经受第一次冷却。本发明中,较高的第一次冷却温度和较低的第一次冷却速率允许更均匀的铁素体和更高的粗化倾向,因此在延展性方面是有利的。此外,在第一次冷却期间,给予C(虽然数量较少)足够的时间以扩散至奥氏体中。这在本发明中具有重要意义。更详细而言,在双相区中,C总是动态扩散至奥氏体中,通常具有较高程度的C富集,扩散速度随温度和时间的增加而增加。因此,第一次冷却温度是重要的。当第一次冷却温度低于630℃时,其是过低的温度,C的扩散活动太低以至于不能充分扩散至奥氏体中,因而铁素体中C的浓度升高。因此,在最终材料中,铁素体和马氏体相之间C浓度梯度变为0.7或更高,或者其间Mn的浓度梯度变为0.8或更高,因此在延展性方面是不利的。也就是说,本发明的特征在于,将铁素体中C和Mn的浓度比控制为尽可能地低,从而促进铁素体软化并因此制造具有优异延展性的钢。相反,当第一次冷却温度大于670℃时,其在上述特征方面是不利的,但问题是冷却期间可能需要过快的冷却速率。
而且,优选将第一次冷却速率限制在2-8℃/s。这是因为当第一冷却速率小于2℃/s时,由于过低的冷却速率,导致这在生产力方面是有问题的,当第一次冷却速率高于8℃/s时,对C来说没有足够的时间扩散至奥氏体中。
随后,本发明中,第一次冷却后的钢板以3-10℃/s的平均冷却速率经受第二次冷却至Ms+20℃-Ms+50℃的温度范围。这里,Ms可由下面的等式4所定义。
[等式4]
Ms(℃)=539-423C-30.4Mn-12.1Cr-17.7Ni-7.5Mo
其中Ms是形成M相的理论温度。
根据本发明,当在穿过440-480℃(其是通常热浸镀锌槽中的温度范围)之前形成马氏体相时,最终马氏体相易于粗化,且不可能获得低屈强比。因此,本发明中,将第二次冷却温度限制在Ms+20℃-Ms+50℃,且在此温度条件下需要尽可能低的第二次冷却速率以抑制马氏体相的形成。当第二次冷却温度低于Ms+20℃时,可能形成马氏体相。相反,当第二次冷却温度高于Ms+50℃时,随后的冷却速率变得相当高,且在随后浸入槽中之前极有可能形成马氏体相。
同时,优选将第二次冷却速率限制在3-10℃/s。这是因为当第二次冷却速率小于3℃/s时,不能形成马氏体相,但在生产力方面是有问题的,且当第二次冷却速率高于10℃/s时,穿带速度(threading speed)整体增加,并可能由此产生例如板形弯曲等问题。
随后,本发明中,将第二次冷却后的钢板在440-480℃的温度范围内经受热浸镀锌处理,此后,以4℃/s或更高的平均冷却速率将其冷却至Ms-100℃或更低的温度。
本发明中,热浸镀锌处理可通过将第二次冷却后的钢板浸入通常温度范围为440-480℃的槽中来进行。虽然本发明不限制为这些具体的热浸镀锌条件,但优选将平均冷却速率设定为4-8℃/s,以该速率将第二次冷却后的钢板冷却至上述温度范围内的槽温度。通过将平均冷却速率控制为4-8℃/s,在钢板进入槽之前,钢板中不可能形成马氏体结构。特别是,当冷却速率低于4℃/s时,不能形成马氏体,但由于低生产力其是不适当的。相反,当冷却速率高于8℃/s时,晶粒内形成一些马氏体和贝氏体,由此增加屈服强度并恶化延展性。
随后,本发明中,将热浸镀锌后的钢板以4℃/s或更高的平均冷却速率冷却至Ms-100℃或更低的温度,使得在最终步骤中可制造出具有细马氏体的热浸镀锌钢板。在Ms-100℃以上的温度条件下,除非冷却速率非常高,否则不能得到细马氏体相,且钢板中可能发生板形缺陷。
因此,本发明中,以4℃/s或更高的平均冷却速率将热浸镀锌钢板冷却至Ms-100℃或更低的温度。当冷却速率低于4℃/s时,由于过低的冷却速率,导致在晶界或晶粒内不规则地形成马氏体,且晶粒间马氏体与晶粒内马氏体的形成比太低,从而不能制造出具有低屈强比的钢板并且也恶化了生产力。
同时,本发明中,上述热浸镀锌钢板可以在通常的热处理温度下经受随后的重新加热处理,然后以4℃/s或更高的平均冷却速率最终冷却至Ms-100℃或更低的温度,以制造合金化热浸镀锌钢板。其它条件与上述热浸镀锌钢板的情况相同。
在下文中,将通过实施例的方式详细描述本发明。
准备具有如下表1所示的组成成分的钢坯,此后使用如下表2所示的制造工艺制造热浸镀锌钢板。下表1中,使用本发明的钢1-2和4-5制造合金化热浸镀锌钢板(GA),并使用本发明的钢3和6制造热浸镀锌钢板(GA)。
评估如上制造的热浸镀锌钢板的性质,结果显示于下表3中。本发明旨在在没有平整轧制状态下,制造屈强比为0.57或更低的和空穴扩张比(HER)为80%或更高的钢板。
使用JIS标准在C的方向(in the C direction)对每个样品进行拉伸试验,在基于退火的钢板厚度的1/4t处分析基体结构,使用该结果获得微观结构分数。特别是,使用光学显微镜通过Lepelar蚀刻首次计算马氏体和贝氏体的面积比,然后,在使用SEM(放大率:×3,000)观察后,通过计数点工序(Count Point operation)精确计算其分数。
同时,为了获得钢板基材基体结构内铁素体和马氏体中的C和Mn浓度比,使用聚焦离子束(FIB)系统,从镀层表面至钢基材内1/4t处进行溅射切割(sputtering cut),而不产生结构损伤。随后,使用TEM,通过能谱(EDS)分析中的线和点扫描来定量评估每个相中C和Mn的浓度比。
在下表2所示的条件下制备具有下表1所示的组成的钢,此后确认其性能。如本发明所期望的材料性能,目的是在没有平整轧制的状态下获得0.57或更小的屈强比和80%或更高的空穴扩张比(HER)。
使用JIS标准在C的方向对每个样品进行拉伸试验,在基于退火的钢板厚度的1/4t处使用光学显微镜获得微观结构分数。通过Lepelar蚀刻观察M相和B相。使用光学显微镜通过Lepelar蚀刻首次计算马氏体和贝氏体的面积比,然后,在使用SEM(放大率:×3,000)观察后,通过计数点工序精确计算其分数。
为了获得结构中铁素体和马氏体中的C和Mn浓度比,使用聚焦离子束(FIB)系统,从镀层表面至钢基材内1/4t处进行溅射切割,而不产生结构损伤。通过研磨在样品中产生10mm的孔,然后使用锥形钻孔机将样品从底部向上推,直至发生表面开裂(surfacecracking),并通过计算开裂前的初始孔径比获得空穴扩张比。
下表3中,屈强比(7)是平整轧制之前测量的值。
[表1]
[表2]
[表3]
在表3中,
①是结构中的马氏体(M)分数(%),
②是结构中的贝氏体(B)分数(%),
③是铁素体晶界(包括晶界三相点)中的平均粒径为5μm或更小的马氏体(M)占据的比例(%),
④是在基于钢板基材的厚度(t)的1/4t处,铁素体相中C浓度(a)与马氏体相中C含量(b)之比,
⑤是在基于钢板基材的厚度(t)的1/4t处,铁素体相中C浓度(c)与马氏体相中C含量(d)之比例,
⑥是基于整个面积,铁素体相中被平均晶粒大小为7μm或更大的铁素体晶粒占据的比,以及
⑦是屈强比(YS/TS)。
如表1和2所示,可以看出,满足本发明提出的钢组分和制造条件的本发明实施例1-7展现出450-650MPa的抗拉强度和0.57或更小的屈强比,在并且本发明抗拉强度范围内得到80%或更高的空穴扩张比。
图1显示在距钢基材表面10μm深度内和整个厚度的1/4t处的C和Mn浓度比,其使用TEM通过在线分析使用计数点秒(CPS)方法进行分析。可以看出,与1/4t点相比,表层处C和Mn的浓度比显著降低。
图2显示使用SEM对认为在包含钢基材表层和中心部分的10μm深度内的表层的微观结构观察,可以看出,表层中的铁素体是粗糙的,且特别是,晶粒间马氏体相显著减少。
相反,在钢组分落入本发明范围内,但制造条件不在本发明范围内的情况下(比较例1-5),或钢组分不在本发明范围内的情况下(比较例6-8),钢基材表层中C与Mn的浓度比高于在1/4t处的C与Mn的浓度比,或者表层内马氏体相中C与Mn的浓度比高于在1/4t处马氏体相中C与Mn的浓度比。因此,很难预计钢板基材的表层中的软化,且不能得到本发明所需的机械性能。在这些钢的情况下,预计在形成期间导致更大的潜在缺陷例如破裂。
特别是,在本发明钢板4的比较例1的情况下,退火温度很低,从而双相温度区内奥氏体的分数降低。因此,在最终结构中,马氏体的分数降低,并因此屈强比增加,从而存在的问题是延伸率最终降低。
在本发明钢板5的比较例2的情况下,退火温度太高,并因此降低铁素体晶界(包括三相点)中的平均粒径为5μm或更小的马氏体(M)相占据的比例(%),导致延伸率降低。因此,本发明钢板5的比较例2对本发明是不适当的。
比较例1和2不满足本发明的组分范围,虽然添加Cr用于提高淬透性。因此,铁素体晶界(包括三相点)中的马氏体相占据的比例(%)降低,且与目标相比,延伸率最终是不足的。
如上所述,根据本发明的示例性实施方案,可以提供热浸镀锌钢板和合金化热浸镀锌钢板,其能够获得优异的强度和延展性性能,且其适用于需要高加工性的汽车覆盖件。
虽然上文中已经示出并描述了示例性实施方案,但在不偏离所附权利要求所限定的本发明的范围下可以作出修改和变化,这对本领域技术人员而言是显而易见的。

Claims (10)

1.一种热浸镀锌钢板,其中热浸镀锌层形成在钢板基材表面上,所述热浸镀锌钢板具有优异的拉伸性能,其中
所述钢板基材:
以wt%计,含有0.02-0.08%的碳;1.3-2.1%的锰;0.3%或更少的硅,不包括0%;1.0%或更少的铬,不包括0%;0.1%或更少的磷,不包括0%;0.01%或更少的硫,不包括0%;0.01%或更少的氮,不包括0%;0.02-0.06%的酸溶铝;0.2%或更少的钼,不包括0%;0.003%或更少的硼,不包括0%;余量是铁和其它不可避免的杂质;
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据包括晶界三相点的铁素体晶界空间;以及
在基于钢板厚度t的1/4t处,铁素体相中C浓度a与马氏体相中C浓度b之比,即a/b是0.7或更小,且铁素体相中Mn浓度c与马氏体相中Mn浓度d之比,即c/d为0.8或更小,
[等式1]
B%={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积,
[等式2]
M%={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,所述马氏体的平均粒径为5μm或更小。
2.根据权利要求1所述的热浸镀锌钢板,其中在所述钢板基材中,所述铁素体相的平均晶粒大小为4μm或更大,在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积为10%或更高。
3.一种合金化热浸镀锌钢板,其中合金化热浸镀锌层形成在钢板基材表面上,所述合金化热浸镀锌钢板具有优异的拉伸性能,其中
所述钢板基材:
以wt%计,含有0.02-0.08%的碳;1.3-2.1%的锰;0.3%或更少的硅,不包括0%;1.0%或更少的铬,不包括0%;0.1%或更少的磷,不包括0%;0.01%或更少的硫,不包括0%;0.01%或更少的氮,不包括0%;0.02-0.06%的酸溶铝;0.2%或更少的钼,不包括0%;0.003%或更少的硼,不包括0%;余量是铁和其它不可避免的杂质;
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据包括晶界三相点的铁素体晶界空间;以及
在基于所述钢板厚度t的1/4t处,铁素体相中C浓度a与马氏体相中C浓度b之比,即a/b是0.7或更小,且铁素体相中Mn浓度c与马氏体相中Mn浓度d之比,即c/d为0.8或更小,
[等式1]
B%={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积,
[等式2]
M%={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,所述马氏体的平均粒径为5μm或更小。
4.根据权利要求3所述的合金化热浸镀锌钢板,其中在所述钢板基材中,所述铁素体相的平均晶粒大小为4μm或更大,在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积为10%或更高。
5.一种制造具有优异拉伸性能的热浸镀锌钢板的方法,所述方法包括:
准备具有权利要求1所述的组成成分的钢坯,然后重新加热所述钢坯;
在Ar3+50℃-950℃的温度范围内对重新加热后的钢坯进行终热轧,此后将终热轧后的钢板在450-700℃下收卷;
对收卷的热轧钢板以40-80%的压下率进行冷轧,此后在760-850℃的温度范围内对冷轧后的钢板进行连续退火;
对连续退火后的钢板以2-8℃/s的平均冷却速率进行第一次冷却至630-670℃的温度范围;此后对第一次冷却后的钢板以3-10℃/s的平均冷却速率进行第二次冷却到Ms+20℃至Ms+50℃的温度范围;以及
在440-480℃的温度范围内对第二次冷却后的钢板进行热浸镀锌,此后将热浸镀锌后的钢板以4℃/s或更高的平均冷却速率冷却至Ms-100℃或更低。
6.根据权利要求5所述的方法,其中所述热浸镀锌钢板的钢板基材:
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据包括晶界三相点的铁素体晶界空间;以及
在基于所述钢板厚度t的1/4t处,铁素体相中C浓度a与马氏体相中C浓度b之比,即a/b是0.7或更小,且铁素体相中Mn浓度c与马氏体相中Mn浓度d之比,即c/d为0.8或更小,
[等式1]
B%={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积,
[等式2]
M%={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,所述马氏体的平均粒径为5μm或更小。
7.根据权利要求5所述的方法,其中在所述热浸镀锌钢板的钢板基材中,所述铁素体相的平均晶粒大小为4μm或更大,且在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积为10%或更高。
8.一种制造具有优异拉伸性能的合金化热浸镀锌钢板的方法,所述方法包括:
准备具有权利要求1所述的组成成分的钢坯,然后重新加热所述钢坯;
在Ar3+50℃-950℃的温度范围内对重新加热后的钢坯进行终热轧,此后将终热轧后的钢板在450-700℃下收卷;
对收卷的热轧钢板以40-80%的压下率进行冷轧,此后进行连续退火,其中,对冷轧后的钢板以2℃/s或更小的平均加热速率进行第二次加热至760-850℃的温度范围;
对连续退火后的钢板以2-8℃/s的平均冷却速率进行第一次冷却至630-670℃的温度范围;此后对第一次冷却后的钢板以3-10℃/s的平均冷却速率进行第二次冷却至Ms+20℃-Ms+50℃的温度范围;以及
在440-480℃的温度范围内对第二次冷却后的钢板进行热浸镀锌,此后对热浸镀锌后的钢板进行合金化热处理,随后将合金化热处理后的钢板以4℃/s或更高的平均冷却速率冷却至Ms-100℃或更低。
9.根据权利要求8所述的方法,其中所述合金化热浸镀锌钢板的钢板基材:
具有包含90%或更多的铁素体以及余量是马氏体和如等式1所定义的3%或更少的贝氏体的微观结构;
含有如等式2所定义的90%或更高百分含量的马氏体,所述马氏体的平均粒径为5μm或更小且占据包括晶界三相点的铁素体晶界空间;以及
在基于所述钢板厚度t的1/4t处,铁素体相中C浓度a与马氏体相中C浓度b之比,即a/b是0.7或更小,且铁素体相中Mn浓度c与马氏体相中Mn浓度d之比,即c/d为0.8或更小,
[等式1]
B%={BA/(MA+BA)}×100,
其中,BA是被贝氏体占据的面积,且MA是被马氏体占据的面积,
[等式2]
M%={Mgb/(Mgb+Min)}×100,
其中,Mgb是铁素体晶界中马氏体的量,Min是铁素体晶粒内马氏体的量,所述马氏体的平均粒径为5μm或更小。
10.根据权利要求8所述的方法,其中在所述合金化热浸镀锌钢板的钢板基材中,所述铁素体相的平均晶粒大小为4μm或更大,且在整个铁素体相中被平均晶粒大小为7μm或更大的铁素体相占据的面积为10%或更高。
CN201510988508.1A 2014-12-24 2015-12-24 具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法 Active CN105734411B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0187935 2014-12-24
KR1020140187935A KR101657822B1 (ko) 2014-12-24 2014-12-24 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN105734411A CN105734411A (zh) 2016-07-06
CN105734411B true CN105734411B (zh) 2017-09-22

Family

ID=56163509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510988508.1A Active CN105734411B (zh) 2014-12-24 2015-12-24 具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法

Country Status (3)

Country Link
US (2) US9708684B2 (zh)
KR (1) KR101657822B1 (zh)
CN (1) CN105734411B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657822B1 (ko) * 2014-12-24 2016-09-20 주식회사 포스코 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법
KR101786377B1 (ko) * 2016-08-22 2017-10-18 주식회사 포스코 내골링성, 성형성 및 실러 접착성이 우수한 용융 아연도금 강판 및 그 제조방법
KR101797401B1 (ko) 2016-12-07 2017-11-13 주식회사 포스코 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
KR101889181B1 (ko) * 2016-12-19 2018-08-16 주식회사 포스코 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
MX2019012243A (es) * 2017-04-21 2019-11-28 Nippon Steel Corp Lamina de acero galvanizada por inmersion en caliente de alta resistencia y metodo de produccion de la misma.
KR102020412B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법
KR102020411B1 (ko) 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
KR102031452B1 (ko) 2017-12-24 2019-10-11 주식회사 포스코 소부경화성 및 도금밀착성이 우수한 냉연강판, 용융 아연계 도금강판 및 그 제조방법
KR102064962B1 (ko) 2017-12-24 2020-02-11 주식회사 포스코 소부경화성 및 내식성이 우수한 냉연강판, 용융 아연계 도금강판 및 그 제조방법
WO2020067752A1 (ko) * 2018-09-28 2020-04-02 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
CN111471948B (zh) * 2020-04-15 2020-10-23 湖南省美程陶瓷科技有限公司 一种微波磁控管用陶瓷绝缘环的金属化方法
EP4269631A1 (en) * 2020-12-24 2023-11-01 JFE Steel Corporation Steel sheet and method for producing same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2398126A1 (en) 2000-11-28 2002-06-06 Saiji Matsuoka High-strength dual-phase steel sheets and high-strength dual-phase plated steel sheets as well as method of producing the same
DE60231756D1 (de) * 2002-12-26 2009-05-07 Nippon Steel Corp Mit zinklegierungsschmelze überzogenes stahlblech mit sehr guter verarbeitbarkeit und hoher festigkeit sowie herstellungsverfahren dafür
JP4165272B2 (ja) 2003-03-27 2008-10-15 Jfeスチール株式会社 疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP4308689B2 (ja) 2004-03-16 2009-08-05 Jfeスチール株式会社 加工性の良好な高強度鋼およびその製造方法
WO2006118423A1 (en) * 2005-05-03 2006-11-09 Posco Cold rolled steel sheet having superior formability , process for producing the same
KR101027285B1 (ko) * 2008-05-29 2011-04-06 주식회사 포스코 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리경화형 부재 및 이들의 제조방법
EP2530180B1 (en) 2010-01-29 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for manufacturing the steel sheet
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5765116B2 (ja) * 2010-09-29 2015-08-19 Jfeスチール株式会社 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
PL2738274T3 (pl) * 2011-07-27 2019-05-31 Nippon Steel & Sumitomo Metal Corp Blacha stalowa cienka walcowana na zimno o dużej wytrzymałości z doskonałą zdolnością do wywijania kołnierza i podatnością na precyzyjne przebijanie oraz sposób jej wytwarzania
MX2014004042A (es) * 2011-10-06 2014-04-30 Nippon Steel & Sumitomo Metal Corp Placa de acero y metodo para producir la misma.
TWI468534B (zh) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
JP6377745B2 (ja) * 2013-08-14 2018-08-22 ポスコPosco 超高強度鋼板及びその製造方法
KR101561008B1 (ko) * 2014-12-19 2015-10-16 주식회사 포스코 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
KR101657822B1 (ko) * 2014-12-24 2016-09-20 주식회사 포스코 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법

Also Published As

Publication number Publication date
US10526679B2 (en) 2020-01-07
US9708684B2 (en) 2017-07-18
US20160186282A1 (en) 2016-06-30
US20170283902A1 (en) 2017-10-05
KR20160078571A (ko) 2016-07-05
KR101657822B1 (ko) 2016-09-20
CN105734411A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105734411B (zh) 具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6052471B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6237900B2 (ja) 高強度冷延薄鋼板およびその製造方法
JP5858032B2 (ja) 高強度鋼板およびその製造方法
JP4730056B2 (ja) 伸びフランジ成形性に優れた高強度冷延鋼板の製造方法
TWI458839B (zh) 加工性和材質安定性優異之高強度鋼板及其製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP4998756B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US9340859B2 (en) Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
JP2019506523A (ja) 耐水素遅れ破壊特性、耐剥離性、及び溶接性に優れた熱間成形用アルミニウム−鉄合金めっき鋼板、並びにそれを用いた熱間成形部材
US20110036465A1 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
JP6248207B2 (ja) 穴広げ性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及びその製造方法
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
JP6388056B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
WO2011090180A1 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4696870B2 (ja) 高強度鋼板及びその製造方法
JP5835624B2 (ja) 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
CN107849668B (zh) 具有优良抗时效性能和烘烤硬化性的热浸镀锌钢板和合金化热浸镀锌钢板及其生产方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR102245332B1 (ko) 고강도 강판 및 그 제조 방법
WO2021230079A1 (ja) 鋼板、部材及びそれらの製造方法
JP2012219328A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2023554400A (ja) 被覆鋼板及び高強度プレス硬化鋼部品並びにその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Seoul, South Kerean

Patentee after: POSCO Holdings Co.,Ltd.

Address before: Gyeongbuk, South Korea

Patentee before: POSCO

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230526

Address after: Gyeongbuk, South Korea

Patentee after: POSCO Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: POSCO Holdings Co.,Ltd.