CN1057333A - 具有改进稳定性的科氏质量流量计 - Google Patents

具有改进稳定性的科氏质量流量计 Download PDF

Info

Publication number
CN1057333A
CN1057333A CN 90109118 CN90109118A CN1057333A CN 1057333 A CN1057333 A CN 1057333A CN 90109118 CN90109118 CN 90109118 CN 90109118 A CN90109118 A CN 90109118A CN 1057333 A CN1057333 A CN 1057333A
Authority
CN
China
Prior art keywords
phase
flowmeter
waveform
mass flowmeter
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 90109118
Other languages
English (en)
Other versions
CN1058565C (zh
Inventor
唐纳德·里德·凯奇
詹姆斯·理查德·鲁埃斯奇
蒂莫西·J·坎宁安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1990/003284 external-priority patent/WO1990015310A1/en
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of CN1057333A publication Critical patent/CN1057333A/zh
Application granted granted Critical
Publication of CN1058565C publication Critical patent/CN1058565C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

一种最佳科氏质量流量计具有改进的、对由外界 干扰造成的激励的稳定性,其主要改进包括利用流通 管道的模态分极确定传感器装置的安装位置,以便把 第一同相位弯曲波形,第一不同相位弯曲波形,第一 不同相位扭转波形,第二不同相位扭转波形,第二不 同相位弯曲波形和第三不同相位弯曲波形之中的一 种或几种波形的外界激励的干扰减少到最小。

Description

本申请是我们于1989年6月9日提交的美国专利申请(系列号364,032)的部分续展。
在有关测量流动物质质量流速的现有技术中,已知:通过振荡流动管道流动流体会诱导出科氏力(Coriolis  forces),该力会在基本上横交于流体流动方向和绕其发生振荡的轴线的这一方向上使管道扭转,还知道:这种科氏力的大小与流过管道的流体的质量流速和管道振荡时的角速度有关。
过去与致力于设计和制造科氏质量流速仪表方面有关的一个主要技术问题是必须精确测量或精密控制振荡流通管道的角速度,这样,可利用测量科氏力造成的作用计算出流过流通管道的流体的质量流速。即使流通管道的角速度能精确确定或控制,精密测量由科氏力引起的作用的大小会引起另一个严重问题。产生此问题的部分原因是由于产生的科氏力的大小,和其它力如惯性和阻尼相比,是很小的,所以,最终的科氏力引起的作用是很小的。另外,由于科氏力较小,故由外力如由例如邻接的机械或流体管道中的压力浪涌引起的振荡,引起的作用会造成对质量流速的错误的测定。这些如流通管道的不连续性,管道的不稳定安装,使用缺乏机械再现性弯曲特性的管道等等的误差源,常常完全掩盖了由产生的科氏力造成的作用,大大削弱了质量流量计的实际使用。
在几个美国专利(名称为“流量测量的方法及结构”、专利号为Re31450及公布日为1983年11月29日;名称为“质量流量测量方法及装置”、专利号为4422338及公布日期为1983年12月27日;以及,名称为“平行通道科氏质量流速计”、专利号为4491025及公布日期为1985年1月1日)中,已公开了机械结构和测量技术,还公开了其另一些优点,即(a)不必测量或控制科氏质量流速计的振荡流通管道的角速度的大小;(b)同时提供用于测量科氏力造成的作用所必需的灵敏度和精度;和(c)减小对许多在早期的试验性质量流量计中出现的误差的敏感度。公开于这些专利中的机械装置含有弯曲的连续流通管道,它们是对压力不灵敏的接头或管段,如波纹管,橡胶接头或其它压力变形部分。这些流通管道在它们的入口端和出口端处被牢固地安装,它们的弯曲部分悬伸出支架。例如,在按照前面提到的任一专利的流量计中,连通管被焊或铜焊到支架上,这样,它们以类似弹簧方式围绕某些轴线振荡,这些轴线基本上位于和流通管道的牢固安装点相邻接之处,或如在美国专利4491025中公开的,这些轴线基本上位于牢固连接撑杆装置的位置,其中撑杆用于在位于朝向安装点的位置上将两根或多根管道牢固夹紧。
按照这样构置流通管道,产生一种机械状态,即在流通情况下,与在振荡流通管道中产生的科氏力相对抗的力基本上为线性弹簧力。与线性弹簧力基本上相对抗的科氏力,使含有流动流体的振荡流通管道绕着某些轴线产生偏转或扭转,其中这些轴线的所在位置介于并等距离于那些流通管道的、可表现出科氏力的那些部分。偏斜量是产生的科氏力和相对于科氏力的线性弹簧力的大小的函数。此外,这些牢固安装的、连续流通管道设计得使它们的、绕着诸振荡轴线(基本位于机架或撑杆所在处)的共振频率不同于,最好是低于绕着另一些轴线的共振频率,相对于这些轴线科氏力发生作用。
在现有技术中公开了许多种特定形状的、牢固安装的弯曲流通管道。其中通常包括有U形管道,“为些管道的支管是会聚,发散或基本上歪斜的”(美国专利Re31450,第5列,第10至11行)。在现有技术中也公开有直的、牢固安装的流通管道,它们的一般工作原理和弯曲管道的相同。
如上所述,当流体流过流通管道时产生科氏力,同时这些管道被驱动至振荡。因此,在流动条件下,每根流通管道上的、被科氏力作用之一部分将发生偏斜(即扭转),并使其沿流通管道移动的方向领先于科氏力正在作用的、流通管道的另一部分而移动。由科氏力致偏斜的振荡流通管道的第一部分通过流通管道的振荡路线中的一预定点的时刻,与该管道的第二部分通过在那个路线中的相一致的预定点这一瞬间之间的时间或相位关系,是流过流通管道的流体的质量流速的函数。这个时间差值可用许多种传感器,包括光学传感器(在美国专利Re31450中有详细说明),电磁速度传感器(在美国专利4422338和4491025中详细介绍),或位置或加速度传感器(也公开于美国专利4422338)来测量。在美国专利4491025中描述了一种带有用于测量最佳时间差的传感器的平行路线双流通管道的实施例。该实施例提供了一种科氏质量流量计结构,它是按照一种较早在美国专利Re31450中描述过的调谐叉形方式(tuning  fork-like  manner)工作的。在美国专利Re  31450和4422338,以及在W089/00679上公布过的专利申请PCT/US88/02360上出现过关于用合成运动传感器信号以测定质量流量的方法和装置的详细讨论。
在上述流量计设计中,诸传感器通常放在沿流通管道的入口和出口部位的对称位置上,这可提供所需的灵敏度,以使诸选择传感器能进行测量,且使测得的质量流量的精度在±0.2%内。
利用美国专利Re31450,4422338和4491025中的一个或多个发明,已制作了大约100,000只科氏质量流量计,这些流量计已广泛在市场上得以利用。在这些流量计的商业使用上,在使用多种不同的流体制品测量质量流量方面的十年以上的经验表明:总的来说,最终用户对流量计性能的灵敏度和精度是满意的,但是要求改进其总的稳定性,包括零位稳定性,这样可减少工厂对这些流量计的维修,包括流量计的再校正。一般说,流量计的不稳定性来自于其对从外源到该流量计的不希望的机械能量的传递的敏感性。这些外力也能影响流量计的零位(即无流量时的测量值)稳定性。
虽然上述商用经验基本上表明在实际使用中无流通管道发生疲劳故障的问题,但是,利用减少疲劳故障的来源的方法逐渐改进管道的寿命,这将是进了一步。类似地,提供一种密封的压力密封壳体,可提高流量计对有有害物质及压力高达1000磅/平方英寸甚至更高的高压使用情况的适用性。即使当达到的额定压力和制造该壳体所作的支出情况相平衡,使用本申请中要描述的壳体,可使流量计的额定压力至少达到300磅/平方英寸(在流通管外径为约2至1/2英寸的情况)和150磅/平方英寸(对大尺寸流通管的情况)。
本发明提供一种改进的质量流量计,它能明显提高整个稳定性,包括减小对外力的敏感性和提高零位稳定性,减小压力降特性和对流体压力的较好的耐受性。对于按照前面提到的诸专利中一个或多个而制造的科氏质量流量计作了许多设计上的改进,其结果使它们已经成功的特性和操作特点得以最佳发挥。
本发明涉及科氏质量流量计,它包括一或多根流通管道,这些管道被激励,以在含有在其中通过的流体的流通管道的共振频率而振荡。由一以前描述过的反馈系统使激励频率得以维持在该共振上,该反馈系统监测充满有流体的管道的共振特性的变化,这种变化是因流体密度改变而造成的流体质量变化的结果。这些科氏质量流量计的流通管道的安装使它绕着一基本位于安装点或撑杆所在处的振荡轴线发生振荡。振荡的共振频率与振荡轴线有关。流通管道也绕着一第二轴线变形(扭转),为响应因流过振荡流通管道的流体而造成的科氏力,流通管道围绕该第二轴线发生偏斜或扭转。后面提到的这根轴线与科氏力造成的偏斜有关,它基本上横交于振荡轴线。本发明提供的一种改进的流量计,其稳定性得以提高,其对外力干扰的敏感性也小了,其主要原因是传感器的设置得以最佳化,这将在后面详细说明。致使改进的流量计的整个稳定性改善的其他改进,包括至少减少四倍的传感器和激励器(the  driver)的质量。
在一最佳实施例中,提供了一种改进的U形流通管道结构设计,该结构具有两基本直的入口和出口支管,它们在工艺线集合管(Process  line  manifold)互相会聚,以及,在沿着管道长度上的两个对称位置弯曲,该两弯曲部由一基本直的中间部分所隔开。还设想的是:一些改进的U形流通管道将有会聚的入口和出口支管,它们由一连续弯曲的而不是直的中间部分所隔开,以及,另一些U形管道则按照流行的商用实施例将有基本上平行的入口和出口支管。在对称位置与每根流通管道连接着两运动传感器(motion  sensor),它两的定位要使对于它们监测和传递给流量计电子部分的信号的外部力的敏感性,比过去所知的商用质量流量计的敏感性明显减小。在一最佳实施例中,为实现此要求特将传感器设于介于但尽可能接近于在第二不同相位扭转波形(second  out  of  phase  twist  mode)的管道和第三不同相位弯曲波形的流管的每侧上的波节,以及,将激励器放在距这些传感器等距离之处。这些运动传感器加上它们的机座后的质量,以及激励器加上其机座后的质量,基本上小于以前商用的质量流量计的相应部分的质量。由于提供了具有一新颖的接管形套管的新颖的撑杆,使流通管道对疲劳故障的敏感性随意地减小了,上述撑杆用于限定每根流通管道绕其产生振荡的轴线,但是,也可交替使用传统的撑杆,在有些实施例中,省略了撑杆。在一实施例中,利用会聚的U形以提供一不带法兰的片形(wafer  configuration)集合管结构,用于和监控的工艺线相连接。提供了一特别密封的压力密封壳,该壳将流通管道,诸运动传感器,激励器和附带的电接头包容起来。本发明公开了这种壳体的几个实施例,其中图8,9所示的实施例是最可取的。
图1表示按本发明的一种最佳科氏质量流量计;
图1A表示出根据对图1实施例作模态分析后的诸运动传感器的定位情况;
图2表示一种随意的新颖撑杆结构;
图3表示一按本发明的最佳科氏质量流量计,它具有一片状集合管结构,该结构部分位于一如图4所示的壳体内;
图4表示一随意的高压力壳体结构;
图5A-7I表示振动台(shaker  table)稳定性测试结果;
图8表示另一个随意的高压壳体结构,该结构在经费开支和加工的方便性方面是最好的;
图9给出有关图8壳体结构的进一步细节;以及
图10A至11L表示在后面要描述到的进一步的测试结果。
在本发明的主要特点,即减小外部力对流量计稳定性的影响,是通过诸传感器和撑杆在一有限范围内的最佳布局而实现的。我们可发现:在频率范围为0到2000赫芝中,基本上有六种振动波形,它们的激励可能引起流量计稳定性的丧失。这六种波形为:(1)(低于激励频率的低频率的)第一同相弯曲波形;(2)第一不同相位弯曲波形,该波形相应于基本激励频率;除了激励频率是充有流体的直管的固有频率外(而模态分析(mode  analysis)是以空管进行的);(3)第一不同相位扭转(也称为挠曲或偏斜)波形;(4)第二不同相位扭转波形;(5)第二不同相位弯曲波形,以及(6)第三不同相位弯曲波形。实现诸传感器的最佳布局,是借助进行流管的模态分析得到的,按照六种波形中的每一种在那管上设置两个波节(node),以及根据流管的几何学、尺寸和材料,来确定那些最紧密地靠近放置诸传感器的波节点。例如,对于一如图1所示几何形状的流管,模态分析表明:诸传感器最佳地放置在流管的任一侧上的第二不同相位扭转波节与第三不同相位弯曲波节之间,且尽可能靠近这些波节的每一个。熟悉本领域的人员会明白:根据几何学和流管的其它特点,对于六个列举的波形的诸波节可彼此设置在不同处。在一些流管形状中,不同波形的两个或多个波节实际上会重合,使能将诸传感器设在重合的位置,由此提高流管灵敏度。作为一经验法则,本发明包括一发现,即,为提高流量计稳定性,可在管子的每一侧将诸传感器设置在尽可能靠近至少两个波节点之处,每个波节点是上述诸波形之中的一个不同波形的波节点,尤其是上述(3)和(6)表示的波形之中的一个不同波形的波节点。本发明还包括一个发现,即,波形(1),即第一同相弯曲波形的影响,可利用撑杆的布局得以减小或消除,其中撑杆的布局将波形(1)的谐波和波形(2)的谐波分开。
图1表示了种最佳改进的U形和运动传感器定位和安装的科氏质量流量计的最佳实施例。如现今的商用流量计,流通管道112牢固安装于集合管(manifold)130的点131上。撑杆122牢固安装于流通管道112,从而当流通管道112由激励器114按调谐音叉方式激励时,限定了振荡轴线B'。当流动物质流经管道112时,科氏力(Coriolis  force)使管道绕着偏斜轴线A'偏斜。如图所示,分别从激励器114,运动传感器118和116来的电气连接器125,126和127被连接和支撑于托架128上,且使(连接时产生的)应力最小而稳定;或者,采用另一种方法,不用托架(如后面要讨论的)而采用固定到壳体上的印刷电路板。图1中所示的连接器为单线或带有埋线的带状挠性连接器,它们按照稳定的小应力半环形安装。设想可使用挠性接头,这在1986年5月22日申请的系列号为865,715的美国专利申请(现已放弃),及其续展申请(系列号272209,1988年11月17日申请,已放弃),和其续展申请(系列号337324,1989年7月10日申请)等中描述过。这种挠性连接器也具有一稳定而应力减小的半环形状。图1中,诸试验运动传感器116位于入口或出口支管(leg)117的端部,且恰在弯曲部之前的位置。诸运动传感器118位于根据本发明由模态分析确定的位置,这样有效地减小了外力的影响。在一商用流量计实施例中,只有移动传感器118,而取消了试验用于比较目的的诸移动传感器116。图1的流量计包括包容流通管道及其有关附件的壳体140,该壳体又固定了集合管130,但是,最好可使用如图4或图8所示和下面要描述的流量计壳体。
图1实施例的流量计能减小外力的作用,其结构的另一特点包括流通管道与它们的附件相平衡,以及应用减少质量的传感器和激励器组件。
在科氏质量流量计中,诸流通管道用作弹簧,其弹力主要地作用在入口和出口支管上。图1实施例的诸流通管道是改进的U形,它在入口和出口支管中没有因弯曲造成的永久变形。在加工过程中无弯曲,使在四个区域内无永久变形,在双管道流量计内,弹性力在该四个区域内起作用。其结果,如果使用了基本相同尺寸的类似材料,所有四个区域基本上显示出对弹性力的相同反映。这样就改善了流量计制造商去平衡流通管道的能力。当使用较轻质的磁铁和线圈,并减小它们的支座的尺寸,则可减少诸运动传感器和激励器的质量,这样,可进一步提高流通管道的平衡。
如现行的商用流量计,诸运动传感器和激励器包括一磁铁和一线圈。诸传感器为美国专利4422338中公开的那种类型的传感器,它们直线性跟踪管道振荡路线中的整个运动。在本发明图1实施例和其它实施例中,这些传感器和激励器的总重量,比起诸现行商用流量计实施例中的它们的总重量减少了至少约四倍,最好少了五至六倍或更多。当使用一具有模制销接头的轻量绕线架,并有50号线绕线圈,而又继续使用相同质量的磁铁,则可减轻质量。诸轻量传感器和激励器直接安装在诸流通管道上,这样可免去固定托架。例如有一和图1实施例中的尺寸和形状相同的实施例,其流管(flowtube)的外径约为0.25英寸,其中采用的轻量线圈的质量约300毫克。有些以前的线圈,用于尺寸相当的、按照美国专利Re31450,4422338和4491025制造、并具有基本上相同流管外径尺寸的诸质量流量计中,它们的质量约为963毫克。在按照图1的相同尺寸的流量计实施例中,质量流量计增加了总重约为3.9克的新的组合件(1只激励器线圈和2只传感器线圈,每个重300毫克,以及3块磁铁,每块重1克)。对照起来,在相比的以前的商用实施例中,质量流量计增加了22.2克的相应的组件(1激励器圈,2传感器线圈,1线圈托架,1磁铁托架和3磁铁)。
对于图1的实施例,曾进行了代表性的模态分析。根据分析的结果,在一具有如下面表1和图1A所示的尺寸和性质的流通管道上,可将第二不同相位扭转波形的波节和第三不同相位弯曲波形的波节予以定位。
表1
管道材料:316L不锈钢
管道长度:16英寸
管道外径:0.25英寸
管道壁厚:0.010英寸
入口支管:3英寸
出口支管:3英寸
中间管段:5英寸
弯曲部分半径:1.25英寸
在前述诸波形波节的中间的最终的传感器的位置,位于从弯曲部分的半径中心延伸的水平轴线相夹22.5°的位置上。
该最终的传感器的位置不仅在两个波节之间,而且在管道的每一侧尽可能趋近于两个波节的每一个。正如熟悉本领域的人员可理解的,利用对具有其它精密形状,尺寸和材料的诸流通管道作模态分析,就能确定所有上述诸波形的每个波节的位置,并且使最终传感器的位置的确定很快被优化。
在本发明的改进的流量计的一些实施例中,相对于由申请受让人制造的现行的商业上有供应的流量计来说,基本的激励频率(第一不同相位弯曲波形)得以提高,从而提高了其谐波数值。这样促使关于激励波形的单个谐波能和其它波形的谐波较好地分开。例如,在具有上述尺寸的图1实施例中,对于所有低于2000赫芝的频率情况,其它五种感兴趣的波形的调谐函数,每个与激励频率的调谐分开至少20赫芝。
在图1的实施例中,撑杆布局的作用是使第一用相位弯曲频率与基本激励频率分开,由此避免可能和第一同相位弯曲频率的激励作用。在与其余四种感兴趣的波形相应的频率上工作的外力的作用,由于具有平衡的流通管道结构而部分地减小了。此外,在该实施例中,将诸运动传感器放在介于但十分靠近于该两种波形诸波节之间的位置,这些波节恰好彼此靠近,这样,可减小第二不同相位扭转波形和第三不同相位弯曲波形的作用。可设想:通过模态分析考虑其尺寸,形状和材料,这样,可选择其它定位,以减小那些最影响任何特定管道的稳定性的波形的作用。
在改变流体压力从小于10磅/平方英寸至约1000磅/平立英寸的条件下,对由申请受让人制造的现行商用D型流量计和由其它人制作的现行商用科氏质量流量计的图1实施例进行测试,结果表明:当压力趋于100磅/平方英寸,激励频率和扭转频率发生了变化,这对质量流量测定的精度产生不好的影响。到此为止,可断定:当将流管壁厚增加约20%,并将流管组件封装在一专门设计的对流体压力不敏感的壳体内,就可减小高流体压力的作用(这在下面要阐述)。
例如,将一具有外径为0.230英寸的流管的图1所示的流量计实施例中的管壁厚度增加,从约0.010英寸增加到约0.012英寸,以减小因高流体压力造成的不稳定性。
图2表示一按照本发明的随意的撑杆结构。将一片金属(如316L或304L不锈钢)或其它适用材料冲压而形成每根撑杆122,使它具有两个带有从具有流通管道外径的孔(孔124)到大孔120乳头状突起的过渡部分121的套筒。这些撑杆可铜焊或焊接到诸流通管道上,以减小连接部位123处和管道绕其产生振荡的主要部位的应力集中。然而,利用现有技术中以前公开过的传统的撑杆,也并不离开本发明范围。
图3表示一最佳的如图1的科氏流量计,带有生产流水线装接过程的部件分解图。取代现有技术中典型的带法兰的集合管,特提供了一新颖的板状无法兰结构件230,其端部232能在制造工艺线或其它商用工艺线中,借助穿过法兰孔238和靠螺母235固定就位的螺纹连接杆234被螺栓固定在两现成的法兰之间。
图4示出了一种形式的壳体、它能减小压力作用。这种结构形式能用来包容整个流通管道和传感器连接部件。它包括一直径足够大的管子350,以包容诸流通管道312,激励器,运动传感器及其有关的电线连接部分(未画出)。该管子被弯成流通管道的形状。然后,将此管子沿其纵向切成基本上相等的两半,再将流通管道312随同有关的激励器,运动传感器和接线一起装入其中一半部管子内,另一半部管子盖装到上述组合件上,并沿两条纵向缝隙将它们焊合起来,再在接头处将它们焊到集合管上。这样,就做成了一只压力密封壳,它适用于含有有害流体的使用场合,并能经受住至少300磅/平方英寸直至500磅/平方英寸甚至更高值的数量级的高压力。对于有些实施例,可用一印刷电路板连接于壳体的里面,再用挠性连接件从激励器和诸运动传感器接到电路板上。一接线箱再连接于壳体,通过电线连接于电路板,电线可穿过壳体顶部的密闭接头。接线箱再与电子处理来自传感器的信号的装置相连接,以给出质量流量读数,以及需要时可读出流体密度读数。
便于壳体加工的另一种壳体表示于图8,其中一段表示于图9。这种形状的壳体是用诸半圆横载面的模压钢板另件制成,见图9所示(只表示了图8中的板件2或4),这些钢板件互相焊接后形成壳体。具体用于图1的实施例情况时,该壳体由十块如图8所示标有1-10字样的另件组成,这十个另件以下面方式组合起来:
五个零件(图8中标号为1,2,3,4和5)组成壳体的一半,即在组合时盖上流管的一半外周面,这五个另件焊于包括流管的入口和出口集口管的支架上。印刷电路板(在任一图中均未表示出)固定于壳体上且尽可能位于靠近流管上的诸传感器的拾取线圈(pick-off  coil)部分的位置,而拾取线圈接线端依靠上面提到的类型的含有弯曲部的电线或单独的半环形电线和这些印刷电路板相连接。然后,电线沿着壳体送到壳体的中央直段(即段3,它包容了图1的直的流通管道管段12),在此设置有供流量计电子装置的接线馈入装置。该馈入装置(图8,9未表示出)包括直接连接诸电线的诸柱,或可包括连接诸电线的第三印刷电路板,该板连接于馈入装置柱,再接到一位于壳体的中间段的段3上的接线箱(未表示出)。接线完成后,壳体的其余5个另件(图8中未表示出,该图是壳体的俯视图)一个挨一个地焊到支架和前面所说的组合的和焊合的部分上,焊接时最好用自动焊。这后五个另件组成壳体的又一半。这些另件之间的焊缝如图8中的粗实线所示。此外,诸焊接是沿着壳体的内、外周的缝线(未表示出)焊的,而且,这两条焊缝分别在由流管和支架组成的外罩的内、外,把壳体的顶部和底部的两半部相连。
壳体实施例只表示图4和8两种,熟悉本领域的技术人员懂得:很容易制作类似的壳体,以适用于任何大小和弯曲形或直管形科氏质量流量计,以及,根据所涉及的准确形状,图8和9实施例的制作可有利地选择其它数目的模压(异型)钢半圆周另件。如已清楚表明的,只要不脱离本发明基本原理,熟悉本技术领域的人员很容易设计出其它接线布局。
振动台试验是用来测试在振荡流通管道及其有关附件时,外界振动力和作业流水线噪声的影响。在工厂设备运转期间,这种外力是经常出现的。图5A至5F表示了用振动台对一种现行商用的MicroMotion股份有限公司D25型科氏质量流量计的试验结果。图6A至6F是对一种现行商用的Micro  Motion股份有限公司D40型流量计的类似试验的测试结果。D25型的流通管道的内径为0.172英寸,D40型的为0.230英寸。图7A至7I是对类似于图1流量计的那种科氏质量流量计所做的类似试验的实验测试结果。
在图5A至7I中的每一个图中,X轴是通过流量计法兰的轴线(即平行于振荡轴线B'-B'),Y轴是平行于诸流通管道所在的平面(即平行于变形轴线A'-A')。Z轴垂直于诸流通管道所在的平面。所有试验有关参数概述于表2中:
表2
图号  全刻度  垂直刻度  电子部分  垂直刻度占全  运动
流量  频率扫描  的输出  刻度的百分比  轴线
(1bm/分钟)  (赫芝)  (毫安)  (%)
5A  1.04  4.20  10  Z
5B  10.4  4.20  100  Z
5C  -  15-2000  -  -  Z
5D  1.04  4.20  10  X
5E  10.4  4.20  100  X
5F  -  15-2000  -  -  X
6A  1.04  4.20  10  Z
6B  10.4  4.20  100  Z
6C  -  15-2000  -  -  Z
6D  1.04  4.20  10  X
6E  10.4  4.20  100  X
6F  -  15-2000  -  -  X
7A  1.04  4.20  10  X
7B  10.4  4.20  100  X
7C  -  15-2000  -  -  X
7D  1.04  4.20  10  Z
7E  10.4  4.20  100  Z
7F  -  15-2000  -  -  Z
7G  1.04  4.20  10  Y
7H  10.4  4.20  100  Y
7I  -  15-2000  -  -  Y
这些振动台试验是对不带壳体的完整的质量流量计进行的。表示在图5A至7I的长条图记录纸上的输出,是响应于相应的外部振动的运动传感器的读数。每组图表中表示的顺序是流量计对于线性频率斜坡(ramp)(范围从15赫芝到2千赫),及此后在随机频率上的输入振动的响应(见图5C,5F,6C,7C,7F,7I)。频率斜坡产生在10分钟时间段内,随机振动产生于约5分钟时间段内。图5A,5B,5D,5E,6A和6B,其每一图表示在激励上述讨论的D25和D40型流量计运动的六种波形的谐波时的各种频率的外部振动的影响。
图7A至7F表示出对于由本发明图1实施例所示的流量计,绕着X和Z轴(与图5A和5F中的轴线相同)的外部振动造成的激励的敏感性情况,以及,各图的刻度是相同的。图7G至7I是按照Y轴得出的。(随机振动首先在图7D-7F中产生)。需知:最佳流量计表明在激励运动的六种波形的谐波时,可显著地减小外部振动的影响。这样,最佳结构设计表示出流量计与外力作用有效地相隔离。
另外,进行测试以测量外部振动对零位稳定性的影响。这种测试提供了在无流量时的时间差(△t)测量稳定性,即称为跳动(jitter)试验的结果。一频率计数器用来在对电子学(信号)的求均值或滤波之前直接测量加减计数器的脉冲宽度。试验是在振动台上利用在沿X、Y和Z方向上的一个加速度范围内的随机频率输入进行的。结果表明:对于D25和D40型流量计来说,随着加速度的提高,外部振动的影响导致脉冲宽度从平均值成倍或几倍地发散(扩展)。对于每根轴线,这样的发散在最佳的流量计已得以明显减小了。这样,如振动试验情况,跳动试验表明:最佳的流量计结构设计有效地将流量计隔离开外作用力的影响。
图10A-10G所包含的,是用借助一如图1的结构设计的流量计实施例获得的进一步数据描绘的图表。如本人公开的,该流量计具有传统的撑杆和一比相当尺寸的现行商用流量计的流管厚20%的流管,按照本发明的要求,试验中所用的诸传感器置于介于并尽可能靠近上述的波形(4)和(5)的诸波节之间的位置。在测试时,该流量计实施例的流管被一图8,9所示类型的壳体盖住一半(即管子的圆周的一半),在壳体的外面附装有一接线箱(图中未表示出),电线穿过壳体送至该接线箱。接线箱按习惯连接于另一箱子(称为“遥控流量传送器”或“RFT”),该箱子包含有流量计电子部分,并具有质量流量和密度值的读数板,从此箱子可收集到图10A-10D中的数据。该流量计实施例的流管壁的内径约0.206英寸。
图10A和10B每个表示利用质量流量为0-45磅/分钟的水所测试的,精度与流量之间的校正曲线。图10A和图10B的不同点在于:图10A表示的是用质量流量为约(3-4)磅/分钟情况下开始测得的诸点绘制的一条“22点”校正曲线;图10B是一条“45点”校正曲线,其中收集了更多的数据点,尤其是质量流量低于5磅/分钟(从约0.5磅/分钟流量开始)情况的数据点。
图10B还表示了质量流量为0至约45磅/分钟时的流体线压力降数据。图10A和10B结合起来后表明:在公布的精度值±0.2%之内,本发明流量计实施例的情况良好,上述此精度值范围是申请人的受让方,即Micro  Motion股份有限公司的现行商用流量计的特征指标。图10B也展示了该流量计实施例具有被认可的流体线压力降性能。
图10C和10D分别是质量流量和密度的模拟偏移值,对于0至约2000磅/平方英寸水压的流体压力的图表。在每种情况,在为由Micro  Motion股份有限公司出售的D系列商用质量流量计测得的平均经验标准偏差值曲线上,有一对比曲线。在图10C中,流量模拟偏移和流量标准差的各数据点是用“秒”单位表示的。在图10D中,密度模拟偏移和密度标准偏差则用“克/立方厘米”单位表示。在此两种情况,诸数据表明:在测得的标准偏差数据内,本发明的流量计的性能良好。
图10E,10F和10G是以与图5A至7I中的数据获得类似的方法,获得的振动台测试数据的图表,但表示为振动台频率(赫芝)对模拟输出(即质量流量)扰乱(秒)的曲线,而图5A至7I是以振动台频率(赫芝)对运动传感器读数(秒)的长条图表的再现品。此外,图10E,图10F和10G中的数据是在具有半壳附件的流量计组合件上收集的,该组合件和图10A-10D数据所用的流量计组合件相同。为比较起见,在图11A-11L中还表示了两种均无壳体附件的不同的D25型流道管道装置的类似曲线。在每种情况中,X,Y和Z轴线按上述已作出的定义,振动台垂直刻度频率扫描是从15至200赫芝,遥控频率传送器的量程间距为5克/秒,其校正因素为1,从该传送器可获得模拟输出读据。其它有关参数概述于表3:
表3
图号  振动台的  运动  装置
扫描  轴线
10E  对数符号  X  本发明的实施例
10F  对数符号  Y  本发明的实施例
10G  对数符号  Z  本发明的实施例
11A  线性的  X  D25型装置1
11B  对数符号  X  D25型装置1
11C  线性的  Y  D25型装置1
11D  对数符号  Y  D25型装置1
11E  线性的  Z  D25型装置1
11F  对数符号  Z  D25型装置1
11G  线性的  X  D25型装置2
11H  对数符号  X  D25型装置2
11I  线性的  Y  D25型装置2
11J  对数符号  Y  D25型装置2
11K  线性的  Y  D25型装置2
11L  对数符号  Y  D25型装置2
振动台的线性扫描在移经每100赫芝振动间隔时所用的时间相同,即,例如15至115赫芝扫描的时间和例如从1000至1100赫芝所用的时间相同。在对数符号扫描中,在低频如15-400赫芝情况,耗用的时间间隔放长了,而在高频情况下耗用的时间间隔则缩短(或加速)了。可看到,对数扫描清晰地指出一些频率,在该些频率,在现行的商用D型流量计中,外部激励引起谐波扰乱。图10E,10F和10G表明本发明的流量计对这种影响的敏感性,明显小于D25流通管道的。
尽管表示出复式流通管道质量流量计的最佳实施例,可设想:本文所述的发明也能用一种科氏质量流量计加以实施,该种流量计只有一流通管道,它或连接于一构件如板簧或一虚设(dummy)管道,以与流通管道组成一调谐音叉,或在单根流通管道质量很小时将其安装于一有较大质量的底座上。
虽然出于举例目的而将上面的讨论集中于流通管道的尺寸和形状上面,对于熟悉本领域的普通技术人员来说,完全可以在本文所述的本发明的实际实施中作出许多改变和改进,而使这种变化和改进不离开由下面权利要求所限定的本发明的范围。

Claims (10)

1、一种用于流动物质的质量流量计,其中质量流动速率是根据至少一种测得的科氏力(Coriolis force)的作用确定的,该流量计包括:一支架;至少一弯曲的连续流通管道,它无对压力敏感的接头或管段,且以其入口端和出口端牢固安装于所述支架;激励装置,用于振荡所述管道;传感器装置,它包括一对位于每个所述管道上的传感器,用于监测所述管道的运动,而流动物质在振荡条件下流过其中,并且产生和发送出有关所述运动的信号;以及信号处理装置,它探测所述信号和将信号转变为质量流量值,
其改进包括将诸传感器设置在一由模态分析确定的位置上的布局,这布局最适宜于把由第一同相位弯曲波形,第一不同相位弯曲波形,第一不同相位扭转波形,第二不同相位扭转波形,第二不同相位弯曲波形和第三不同相位弯曲波形之中的一种或多种波形的激励所引起的流量计稳定性的丧失减少到最小。
2、如权利要求1所述的质量流量计,其特征在于,其中弯曲的连续流通管道有一基本直的入口支管和一基本直的出口支管,它们彼此相对会聚在支架上,且靠至少一连续的弯曲部分相对于支架而连接。
3、如权利要求2所述的质量流量计,其特征在于,其中入口支管和出口支管靠一基本上直的部分相对于支架而连接,该基本直的部分在任一端弯曲,以汇合于每一个基本直的支管部分。
4、如权利要求2和3中的每一个所述的质量流量计,其特征在于,其中所述一对传感器中每只设置在每根流通管道的相应的入口侧和出口侧上,且位于第二不同相位扭转波形和第二不同相位弯曲波形的波节之间。
5、如权利要求1所述的质量流量计,它具有至少两根流通管道,它两靠撑杆被一起夹紧在沿着与支架间隔开的入口和出口支管某些点上,所述夹紧点根据模态分析确定其位置,这些点能使第一同相位弯曲波形和第一不同相位弯曲波形的谐波和频率之间最佳地分开,这样,能把第一同相位弯曲波形对流量计稳定性的影响减少到最小。
6、如权利要求5所述的质量流量计,其特征在于,其中弯曲的连续流通管道有一基本上直的入口支管和一基本上直的出口支管,它们彼此相对地会聚在支架上,且靠至少一连续弯曲部分相对于支架而连接。
7、如权利要求5所述的质量流量计,其特征在于,其中诸撑杆构成如图2所示的乳头状突起的固定套筒。
8、如权利要求2或3中任一所述的质量流量计,它具有至少两流通管道,其特征在于,支架包括一无法兰的入口和出口增压室(plenum),它包括两个分开的流通室(flow  chamber),其中一个室用于在入口侧使流体分离,另一个用于在出口侧使流体重新合成。
9、如权利要求1所述的质量流量计,其特征在于,它还包括一几何形状与所述流通管道基本相同的密闭壳体,它包容所有的所述管道,所述传感器装置和所述激励器,并焊接于所述支架上。
10、如权利要求2或3中任一所述的质量流量计,其特征在于,它还包括一几何形状与所述流通管道基本相同的密闭壳体,它包容所有的所述管道,所述传感器装置和所述激励器,并焊接于所述支架上。
CN90109118A 1990-06-08 1990-11-13 科氏质量流量计 Expired - Lifetime CN1058565C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USPCT/US90/03284 1990-06-08
PCT/US1990/003284 WO1990015310A1 (en) 1989-06-09 1990-06-08 Improved stability coriolis mass flow meter
USPCT/US90/03,284 1990-06-08

Publications (2)

Publication Number Publication Date
CN1057333A true CN1057333A (zh) 1991-12-25
CN1058565C CN1058565C (zh) 2000-11-15

Family

ID=22220909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90109118A Expired - Lifetime CN1058565C (zh) 1990-06-08 1990-11-13 科氏质量流量计

Country Status (1)

Country Link
CN (1) CN1058565C (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397047C (zh) * 1998-05-29 2008-06-25 株式会社奥巴尔 科里奥利质量流量计
CN101625249A (zh) * 2008-07-09 2010-01-13 株式会社其恩斯 流量计
CN1701291B (zh) * 2001-11-26 2010-05-12 美国艾默生电气公司 高纯度科氏质量流量控制器
CN101084416B (zh) * 2004-11-04 2010-06-16 恩德斯+豪斯流量技术股份有限公司 振动型测量变送器
CN101260802B (zh) * 2008-04-22 2011-12-14 天津大学 油、气、水三相油井连续计量装置及其测量方法
CN102661765A (zh) * 2012-06-01 2012-09-12 大连福佳·大化石油化工有限公司 一种分流测量大口径管道的计量方法
CN101424557B (zh) * 1998-08-05 2012-12-12 微动公司 估计流经振动管道的材料的过程参数的方法和装置
CN103697957A (zh) * 2012-09-27 2014-04-02 克洛纳有限公司 科里奥利质量流量测量仪
CN104541135A (zh) * 2012-08-21 2015-04-22 高准公司 具有改进的量表零位的科里奥利流量计和方法
CN108692778A (zh) * 2017-04-03 2018-10-23 株式会社压电 科里奥利式质量流量计
CN111795729A (zh) * 2019-04-08 2020-10-20 高准有限公司 流量计的壳体和包括该壳体的流量计

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491025A (en) * 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4733569A (en) * 1985-12-16 1988-03-29 K-Flow Division Of Kane Steel Co., Inc. Mass flow meter
JPH0749981B2 (ja) * 1987-11-20 1995-05-31 トキコ株式会社 振動式測定装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397047C (zh) * 1998-05-29 2008-06-25 株式会社奥巴尔 科里奥利质量流量计
CN101424557B (zh) * 1998-08-05 2012-12-12 微动公司 估计流经振动管道的材料的过程参数的方法和装置
CN1701291B (zh) * 2001-11-26 2010-05-12 美国艾默生电气公司 高纯度科氏质量流量控制器
CN101084416B (zh) * 2004-11-04 2010-06-16 恩德斯+豪斯流量技术股份有限公司 振动型测量变送器
CN101260802B (zh) * 2008-04-22 2011-12-14 天津大学 油、气、水三相油井连续计量装置及其测量方法
CN101625249B (zh) * 2008-07-09 2013-01-02 株式会社其恩斯 流量计
CN101625249A (zh) * 2008-07-09 2010-01-13 株式会社其恩斯 流量计
CN102661765B (zh) * 2012-06-01 2014-03-12 大连福佳·大化石油化工有限公司 一种分流测量大口径管道的计量方法
CN102661765A (zh) * 2012-06-01 2012-09-12 大连福佳·大化石油化工有限公司 一种分流测量大口径管道的计量方法
CN104541135A (zh) * 2012-08-21 2015-04-22 高准公司 具有改进的量表零位的科里奥利流量计和方法
CN104541135B (zh) * 2012-08-21 2018-04-20 高准公司 具有改进的量表零位的科里奥利流量计和方法
CN103697957A (zh) * 2012-09-27 2014-04-02 克洛纳有限公司 科里奥利质量流量测量仪
CN103697957B (zh) * 2012-09-27 2018-05-18 克洛纳有限公司 科里奥利质量流量测量仪
CN108692778A (zh) * 2017-04-03 2018-10-23 株式会社压电 科里奥利式质量流量计
CN108692778B (zh) * 2017-04-03 2021-10-08 株式会社压电 科里奥利式质量流量计
CN111795729A (zh) * 2019-04-08 2020-10-20 高准有限公司 流量计的壳体和包括该壳体的流量计

Also Published As

Publication number Publication date
CN1058565C (zh) 2000-11-15

Similar Documents

Publication Publication Date Title
AU625788B2 (en) Improved stability coriolis mass flow meter
CN1058565C (zh) 科氏质量流量计
CN100335866C (zh) 振动式仪用互感器
CN103119405B (zh) 具有振动型测量传感器的测量系统
US5996225A (en) Method for manufacturing a dual loop coriolis effect mass flowmeter
US8381600B2 (en) Measuring system having a measuring transducer of vibrating-type
US9546890B2 (en) Measuring transducer of vibration-type as well as measuring system formed therewith
CN100565127C (zh) 振动传感器
CN104541135B (zh) 具有改进的量表零位的科里奥利流量计和方法
JPH07239261A (ja) 質量流量測定装置
CN1199032C (zh) 用于科里奥利流量计的平衡杆
CN1942742A (zh) 用于力平衡的方法和设备
CN103124898B (zh) 包括阻尼计量部件的振动计
CN101080614A (zh) 振动型测量变送器
MXPA06014651A (es) Contrapesos de derivacion para eliminar el efecto de densidad en flujo.
CN1028903C (zh) 对密度不敏感的科里奥利质量流速计
CN1890537A (zh) 科里奥利质量流量测量仪表
CN101360976B (zh) 振动型测量变换器
CN101568808B (zh) 振动型测量变换器
US9593973B2 (en) Measuring transducer of vibration-type as well as measuring system formed therwith
CN107110752A (zh) 测量流体密度的方法
CN102686986B (zh) 具有振动型测量变换器的测量系统
USRE36376E (en) Stability coriolis mass flow meter
RU2680107C1 (ru) Расходомер
CN101573595B (zh) 振动型测量变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20101113

Granted publication date: 20001115