CN105719966A - 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法 - Google Patents

一种在铝衬底上外延生长的AlGaN薄膜及其制备方法 Download PDF

Info

Publication number
CN105719966A
CN105719966A CN201610147664.XA CN201610147664A CN105719966A CN 105719966 A CN105719966 A CN 105719966A CN 201610147664 A CN201610147664 A CN 201610147664A CN 105719966 A CN105719966 A CN 105719966A
Authority
CN
China
Prior art keywords
substrate
algan
thin film
epitaxial
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610147664.XA
Other languages
English (en)
Other versions
CN105719966B (zh
Inventor
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Original Assignee
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heyuan Zhongtuo Photoelectric Technology Co Ltd filed Critical Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority to CN201610147664.XA priority Critical patent/CN105719966B/zh
Publication of CN105719966A publication Critical patent/CN105719966A/zh
Application granted granted Critical
Publication of CN105719966B publication Critical patent/CN105719966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种在铝衬底上外延生长的AlGaN薄膜及其制备方法,包括以下步骤:1)取Al衬底,在Al衬底表面退火处理;2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以Al(111)面为外延面,利用激光烧蚀GaN靶材外延生长AlGaN薄膜。该方法利用了Al(111)的优势:Al(111)衬底与AlGaN(0002)之间晶格失配较小,介于8.9%?11.4%,有利于AlGaN材料的形核和生长。该方法通过使Al衬底中的Al原子扩散到GaN的晶格中,可简单、高效地制备高质量的不同Al组分的AlGaN薄膜。生长的AlGaN薄膜可在紫外探测器、紫外LED等制造领域发挥重要的作用。

Description

一种在铝衬底上外延生长的AlGaN薄膜及其制备方法
技术领域
本发明涉及半导体薄膜领域,具体涉及一种在铝衬底上外延生长的AlGaN薄膜及其制备方法。
背景技术
AlGaN材料具有高温稳定性好、高的介质击穿强度、优异的机械强度、通过Al组分变化可实现禁带宽度从3.4到6.2eV可调,从而覆盖了波长从365-200nm的紫外波段,在紫外探测器、紫外LED及HEMTs器件方面具有重要的应用。
然而,目前在AlGaN材料制备中依然面临问题。首先,由于目前外延生长AlGaN的衬底通常与AlGaN之间晶格失配较大,导致外延生长的AlGaN材料具有很高的缺陷密度;其次,外延生长的衬底热导率低,不利于AlGaN器件的散热。再次,采用目前比较通用的外延技术金属有机物气相外延技术(MOCVD)外延生长高Al组分的AlGaN时,由于三甲基铝(TMAl)与NH3之间不可逆的预反应,导致Al原子难以进入晶格,导致外延生长薄膜的质量差;而采用分子束外延(MBE)生长AlGaN时,需要将Al坩埚维持在720℃以上,否则Al坩埚容易破裂;因此Al组分可控的AlGaN外延生长也比较困难。最后,对于AlGaN外延生长,Ga-N键能是2.2eV,而Al-N的键能是2.88eV,因此,Al原子比Ga原子具有更大的粘滞系数和更低的迁移率,难以进行二维生长,导致外延生长的AlGaN晶体质量较差。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种简单、高效地在铝衬底上外延生长AlGaN薄膜的方法。
为解决上述问题,本发明所采用的技术方案如下:
一种在铝衬底上外延生长的AlGaN薄膜的方法,包括以下步骤:
1)取Al衬底,在Al衬底表面进行退火处理;
2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以Al(111)面为外延面,利用激光烧蚀GaN靶材在Al衬底上外延生长AlGaN薄膜。
作为优选,步骤1)中,以Al(111)面偏(100)面方向0.2-0.5°为外延面。
作为优选,步骤1)中,所述表面退火处理方法为:在真空条件下,将衬底加热至550-600℃,烘烤20-30min,除去Al衬底表面残余的杂质。
作为优选,步骤2)中,晶体外延取向关系为:AlGaN的(0002)面平行于Al(111)面。
作为优选,步骤2)中,采用脉冲激光束沉积外延生长AlGaN薄膜。
作为优选,步骤2)中,工艺条件为:衬底温度为100-700℃。
作为优选,步骤2)中,工艺条件为:衬底温度为300-600℃。
作为优选,步骤2)中,工艺条件为:采用脉冲激光轰击高纯GaN靶材,同时通入N2等离子体,反应室压力为1-10mTorr、激光能量为200-250mJ,激光频率为10-40Hz,AlGaN薄膜生长厚度为200-300nm;
所述高纯GaN靶材的浓度不小于99.99%。
本发明的另一目的在于提供上述方法制备的AlGaN薄膜。
相比现有技术,本发明的有益效果在于:
本发明提供的方法利用了Al(111)的优势:Al(111)衬底与AlGaN(0002)之间晶格失配较小,介于8.9%-11.4%,有利于AlGaN材料的形核和生长。该方法通过Al衬底扩散于GaN的晶格,高效地制备高质量的AlGaN薄膜,而其它的衬底组分难以扩散至GaN的晶格。本发明提供的方法工艺简单,生长的AlGaN薄膜可在紫外探测器、紫外LED等制造领域发挥重要的作用。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
图1为在Al衬底上外延生长的AlGaN薄膜结构示意图;
图1中,11为Al衬底,12为AlGaN薄膜;
图2为AlGaN薄膜中Al组分随温度变化图谱;
图3为实施例1中AlGaN薄膜的显微镜图谱。
具体实施方式
本发明提供一种在铝衬底上外延生长AlGaN薄膜的方法,包括以下步骤:
1)取Al衬底,在Al衬底表面进行退火处理;
2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以Al(111)面为外延面,利用GaN靶材外延生长AlGaN薄膜。
该方法利用了Al(111)的优势:Al(111)衬底与AlGaN(0002)之间晶格失配较小,介于8.9%-11.4%,有利于AlGaN材料的形核和生长。该方法通过Al衬底扩散于GaN的晶格,高效地制备高质量的AlGaN薄膜,而其它的衬底组分则无法达到这种效果。生长的AlGaN薄膜可在紫外探测器、紫外LED等制造领域发挥重要的作用。
作为优选,步骤1)中,以Al(111)面偏(100)面方向0.2-0.5°为外延面,选取该角度为外延面能够提供形核台阶,有利于AlGaN薄膜形核和外延生长,使生成的AlGaN薄膜的晶体质量更佳。
优选地,步骤1)中,所述表面退火处理方法为:在真空条件下,将衬底加热至550-600℃,烘烤20-30min,除去Al衬底表面残余的杂质。经该表面退火处理后,Al衬底表面的有机物杂质得以有效去除,保证了Al衬底的纯度和最终AlGaN薄膜的晶体质量。
优选地,步骤2)中,晶体外延取向关系为:AlGaN的(0002)面平行于Al(111)面。采用其它晶体取向,由于晶格失配大,薄膜难以形核,生长的薄膜多为多晶薄膜,晶体质量比较差。
优选地,步骤2)中,采用脉冲激光束沉积外延生长AlGaN薄膜。相对于金属有机物气相外延技术,脉冲激光束沉积外延生长AlGaN薄膜晶体质量更优
作为优选,步骤2)中,工艺条件为:衬底温度为100-700℃。通过控制衬底温度,来控制Al原子进入GaN晶胞的量,从而控制了GaN晶胞中Ga原子被取代的量,而形成不同组分的AlGaN外延薄膜。
作为优选,步骤2)中,工艺条件为:采用脉冲激光轰击高纯GaN(99.99%)靶材,同时通入N2等离子体,反应室压力为1-10mTorr、激光能量为200-250mJ,激光频率为10-40Hz,AlGaN薄膜生长厚度为200-300nm。利用脉冲激光沉积技术(PLD)的优势,在外延生长过程中,Al衬底中的Al进入GaN的晶格,从而一步生成AlGaN薄膜。
实施例1
如图1所示,本实施例提供一种在铝衬底上外延生长的AlGaN薄膜及其制备方法,该方法得到的产品包括Al衬底11和外延生长在Al衬底上的AlGaN薄膜12。
一种在铝衬底上外延生长AlGaN薄膜的方法,包括以下步骤:
1)取Al衬底,在Al衬底表面进行退火处理:在真空条件下,将Al衬底加热至550℃,烘烤20min,除去Al衬底表面残余的杂质;
2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以(111)面偏(100)面方向0.2°为外延面,外延生长AlGaN薄膜;晶体外延取向关系为:AlGaN的(0002)面平行于Al(111)面;
采用PLD技术外延生长组分可控AlGaN薄膜,工艺条件为:选取7块Al衬底,温度分别控制为100、200、300、400、500、600和700℃,采用脉冲激光轰击高纯GaN(99.99%)靶材,同时通入N2等离子体,反应室压力为1mTorr、激光能量为200mJ,激光频率为10Hz,薄膜厚度均为200nm。
采用PLD在Al衬底上外延AlGaN薄膜。由于PLD烧蚀GaN靶材产生的等离子体具有较高的能量供其在Al衬底上迁移,因此,能在较低的温度下(25-400℃)实现外延生长。
采用PLD在Al衬底外延AlGaN薄膜,衬底温度处于100-700℃温程中的不同温度,则AlGaN薄膜中Al组分的含量不同,通过控制温度,即可在铝衬底上外延生长组分可控的AlGaN薄膜。所述AlGaN薄膜的组成为AlxGa1-xN,当衬底温度为100-700℃时,x=0.08-0.98。当衬底温度为300-600℃时,x=0.38-0.83。
图2是AlGaN薄膜中Al组分随温度变化图谱。通过测量,可以看出,随着温度变化,Al组分发生变化,并且变化关系如图2所示。这说明,我们在Al衬底上制备的AlGaN薄膜其组分具有良好的可控性。
图3为制备的AlGaN薄膜的显微镜图片。如图3所示,AlGaN薄膜表面平整光滑且无裂纹,说明外延生长的AlGaN薄膜具有很好的表面形貌。
实施例2
一种在铝衬底上外延生长AlGaN薄膜的方法,包括以下步骤:
1)取Al衬底,在Al衬底表面进行退火处理:在真空条件下,将衬底加热至600℃,烘烤30min,除去Al衬底表面残余的杂质;
2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以(111)面偏(100)面方向0.5°为外延面,外延生长AlGaN薄膜;晶体外延取向关系为:AlGaN的(0002)面平行于Al(111)面;而采用其他晶体取向,由于晶格失配大,薄膜难以形核,生长的薄膜多为多晶薄膜,晶体质量比较差;
采用PLD技术外延生长组分可控AlGaN薄膜,工艺条件为:衬底温度控制为100-700℃,采用脉冲激光轰击高纯GaN(99.99%)靶材,同时通入N2等离子体,反应室压力为10mTorr、激光能量为250mJ,激光频率为40Hz,薄膜厚度300nm。
本实施例制备的Al衬底上外延生长的AlGaN薄膜同样具有非常好的晶体质量和表面形貌。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

1.一种在铝衬底上外延生长AlGaN薄膜的方法,其特征在于,包括以下步骤:
1)取Al衬底,在Al衬底表面进行退火处理;
2)外延生长AlGaN薄膜:将步骤1)处理后的Al衬底,以Al(111)面为外延面,利用激光烧蚀GaN靶材在Al衬底上外延生长AlGaN薄膜。
2.如权利要求1所述的方法,其特征在于,步骤1)中,以Al(111)面偏(100)面方向0.2-0.5°为外延面。
3.如权利要求1所述的方法,其特征在于,步骤1)中,所述表面退火处理方法为:在真空条件下,将Al衬底加热至550-600℃,烘烤20-30min,除去Al衬底表面残余的杂质。
4.如权利要求1所述的方法,其特征在于,步骤2)中,晶体外延取向关系为:AlGaN的(0002)面平行于Al(111)面。
5.如权利要求1所述的方法,其特征在于,步骤2)中,采用脉冲激光束沉积外延生长AlGaN薄膜。
6.如权利要求1所述的方法,其特征在于,步骤2)中,工艺条件为:衬底温度为100-700℃。
7.如权利要求1所述的方法,其特征在于,步骤2)中,工艺条件为:衬底温度为300-600℃。
8.如权利要求6或7所述的方法,其特征在于,步骤2)中,工艺条件为:采用脉冲激光轰击高纯GaN靶材,同时通入N2等离子体,反应室压力为1-10mTorr、激光能量为200-250mJ,激光频率为10-40Hz,AlGaN薄膜生长厚度为200-300nm;
所述高纯GaN靶材的浓度不小于99.99%。
9.由权利要求1-8任一项所述的方法制备的AlGaN薄膜。
CN201610147664.XA 2016-03-15 2016-03-15 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法 Active CN105719966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610147664.XA CN105719966B (zh) 2016-03-15 2016-03-15 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610147664.XA CN105719966B (zh) 2016-03-15 2016-03-15 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105719966A true CN105719966A (zh) 2016-06-29
CN105719966B CN105719966B (zh) 2018-11-20

Family

ID=56157777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610147664.XA Active CN105719966B (zh) 2016-03-15 2016-03-15 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105719966B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400183A (zh) * 2018-02-28 2018-08-14 华南理工大学 一种Si衬底上AlGaN基金属-半导体-金属型紫外探测器及其制备方法
CN111739791A (zh) * 2020-08-25 2020-10-02 中电化合物半导体有限公司 一种氮化镓材料的外延结构及制备方法
CN112760602A (zh) * 2020-12-14 2021-05-07 北京北方华创微电子装备有限公司 金属氮化物薄膜沉积方法
CN114525579A (zh) * 2021-12-28 2022-05-24 中国科学院宁波材料技术与工程研究所 一种单晶薄膜的制备方法以及单晶超导约瑟夫森结的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218207B1 (en) * 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
CN101111945A (zh) * 2005-01-27 2008-01-23 罗姆股份有限公司 氮化物半导体元件和氮化物半导体结晶层的生长方法
CN103996610A (zh) * 2014-05-30 2014-08-20 广州市众拓光电科技有限公司 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218207B1 (en) * 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
CN101111945A (zh) * 2005-01-27 2008-01-23 罗姆股份有限公司 氮化物半导体元件和氮化物半导体结晶层的生长方法
CN103996610A (zh) * 2014-05-30 2014-08-20 广州市众拓光电科技有限公司 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400183A (zh) * 2018-02-28 2018-08-14 华南理工大学 一种Si衬底上AlGaN基金属-半导体-金属型紫外探测器及其制备方法
CN111739791A (zh) * 2020-08-25 2020-10-02 中电化合物半导体有限公司 一种氮化镓材料的外延结构及制备方法
CN112760602A (zh) * 2020-12-14 2021-05-07 北京北方华创微电子装备有限公司 金属氮化物薄膜沉积方法
CN114525579A (zh) * 2021-12-28 2022-05-24 中国科学院宁波材料技术与工程研究所 一种单晶薄膜的制备方法以及单晶超导约瑟夫森结的制备方法
CN114525579B (zh) * 2021-12-28 2024-01-09 中国科学院宁波材料技术与工程研究所 一种单晶薄膜的制备方法以及单晶超导约瑟夫森结的制备方法

Also Published As

Publication number Publication date
CN105719966B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN105719966A (zh) 一种在铝衬底上外延生长的AlGaN薄膜及其制备方法
JP6450675B2 (ja) 多層基板構造を形成する方法
CN105861987A (zh) 基于六方氮化硼和磁控溅射氮化铝的氮化镓生长方法
Wei et al. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
Kangawa et al. Novel solution growth method of bulk AlN using Al and Li3N solid sources
JP2018512744A (ja) Ibadテクスチャ加工基板上のエピタキシャル六方晶材料
Junaid et al. Liquid-target reactive magnetron sputter epitaxy of High quality GaN (0001̄) nanorods on Si (111)
Li et al. Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates
Chen et al. Pulsed laser deposition and characteristics of epitaxial non-polar m-plane ZnO1-xSx alloy films
Park et al. Domain matching epitaxy of GaN films on a novel langasite substrate: an in-plane epitaxial relationship analysis
Fan et al. High quality A1N with a thin interlayer grown on a sapphire substrate by plasma-assisted molecular beam epitaxy
Maslov et al. Deposition of β-Ga 2 O 3 layers by sublimation on sapphire substrates of different orientations
Eom et al. Fabrication of AlN nano-structures using polarity control by high temperature metalorganic chemical vapor deposition
Chen et al. Effect of substrate temperature on structural and optical properties of InN epilayer grown on GaN template
Ramazanov et al. Structural properties of the epitaxial (SiC) 1− x (AlN) x solid solution films fabricated by magnetron sputtering of SiC-Al composite targets
Yamaguchi et al. Application of droplet elimination process by radical-beam irradiation to InGaN growth and fabrication of InN/InGaN periodic structure
Averett et al. Epitaxial overgrowth of GaN nanocolumns
Yun et al. MOCVD epitaxy of InAlN on different templates
Mokhov et al. Sublimation growth of bulk AlN crystals on SiC seeds
JP6271390B2 (ja) 窒化物半導体結晶成長方法
An et al. Growth and optical properties of gallium nitride film on glass substrates
Bessolov et al. Aluminum nitride on silicon: Role of silicon carbide interlayer and chloride vapor-phase epitaxy technology
Lu et al. High quality GaN film overgrown on GaN nanorods array template by HVPE
Çörekçi et al. Surface morphology of Al0. 3Ga0. 7N/Al2O3-high electron mobility transistor structure
Liu et al. Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant