CN105689711A - 一种电磁搅拌辅助激光快速成形镍基合金零件 - Google Patents

一种电磁搅拌辅助激光快速成形镍基合金零件 Download PDF

Info

Publication number
CN105689711A
CN105689711A CN201610079411.3A CN201610079411A CN105689711A CN 105689711 A CN105689711 A CN 105689711A CN 201610079411 A CN201610079411 A CN 201610079411A CN 105689711 A CN105689711 A CN 105689711A
Authority
CN
China
Prior art keywords
laser
nickel
powder
based alloy
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610079411.3A
Other languages
English (en)
Other versions
CN105689711B (zh
Inventor
王存山
于群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610079411.3A priority Critical patent/CN105689711B/zh
Publication of CN105689711A publication Critical patent/CN105689711A/zh
Application granted granted Critical
Publication of CN105689711B publication Critical patent/CN105689711B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明属于先进的增材制造领域,涉及一种电磁搅拌辅助激光快速成形镍基合金零件。其特征是将同轴送粉器喷嘴和电磁搅拌器集合在激光光头上,然后按照每层图形的扫描轨迹移动,进行镍基合金零件电磁搅拌辅助激光快速成形。本发明成形的零件组织细小均匀,无气孔和裂纹等内部缺陷,力学性能优异,适应材料种类多,成形尺寸无限制,且兼有自动化程度高、便于操作等特点,可满足航空航天、机械、汽车和军工等领域金属零件“近净成形”的需要。

Description

一种电磁搅拌辅助激光快速成形镍基合金零件
技术领域
本发明属于先进的增材制造领域,涉及一种电磁搅拌辅助激光快速成形镍基合金零件。
背景技术
激光快速成形是在激光熔覆技术和快速原型技术基础上发展起来的一种先进增材制造技术。可以在无需任何专有模具条件下直接快速制造出具有非平衡凝固组织特征的高性能复杂结构零件,这项技术摆脱了传统制造技术在制造可能性上的严格限制,并兼具高数字化、高柔性、高性能、和高精度等诸多优点。但同时也面临诸多技术挑战和科学问题亟待克服与解决。其中一个关键问题是如何有效地控制激光快速成形的凝固组织、质量、精度和性能,使其满足工程应用的实际需要。
激光快速成形是多因素通过非线性相互作用的复杂过程,各因素的变化都会对之产生影响,从而产生各种不稳定现象,其中一些因素和影响因受激光快速成形自身的工艺特性的制约而难以得到有效控制的。这突出体现在以下几个方面:(1)微观组织的不均性。从冶金学的观点看,激光快速成形实际上是一个微熔池定向凝固连续铸造过程,但熔池的尺寸更小、凝固速率更快、温度梯度更大,熔池存在的时间更短。这一特征虽有利于凝固组织的细化,但同时也导致凝固组织的生长形态、方向和尺寸沿沉积方向发生变化。特别是在反复热循环作用下,热积累效应的产生,将使凝固组织差异越趋明显。这种激光快速成形特有的凝固组织不均匀性将直接影响到金属零件的力学性能,且这种影响往往是无法通过后续热处理得到改善;(2)冶金缺陷。沉积层开裂和气孔等冶金缺陷是激光快速成形研究中最棘手的问题。也正是如此而拖延了由实验到应用的距离,并在很大程度上限制了这一技术的应用范围。虽然通过材料的优化和工艺参数的调整可在一定程度上缓解这些冶金缺陷的产生,但难以予以完全消除,特别是在各道次和层间搭接区这些冶金缺陷衍生的敏感区。这些冶金缺陷的存在将直接影响到成形体的致密性和力学性能的稳定性。正如前述,这些问题主要是由激光快速成形自身的工艺特征和目前技术条件限制所决定的,是无法通过调整激光快速成形工艺参数和后续处理来彻底解决的,必须辅以一些特殊的技术手段才行。
电磁搅拌技术是指利用电磁场产生的电磁力来搅拌正在凝固的液态金属,并控制其凝固和成形过程,进而达到改善内部质量的目的。激光快速成形实际上是一个微熔池定向凝固连续铸造过程,液态金属是电磁的良导体。因此在原理上电磁搅拌技术可应用于激光快速成形过程。而我们相关的电磁搅拌辅助激光快速成形镍基合金研究进一步证实了其有效性。研究结果表明,电磁力引起的激光熔池动量对流增强了熔体的热、质传输过程,使熔体温度分布更趋均匀,温度梯度减小,这不仅使激光熔池的固相率更趋一致,并在短时内增至特征固相分数,从而增加凝固组织的均匀性。此外,电磁搅拌还可以将柱状晶或树枝晶破碎,起到细化晶粒的作用,且当磁场强度高于某一阈值时,甚至可以获得细小等轴晶组织,这将有利于打破定向生长组织的结晶方向,提高成形体力学性能各相同性;电磁搅拌有利于液态金属中夹杂物或气泡的溢出,从而降低内部夹杂物气泡的含量,改善内部质量并提高纯净度;电磁搅拌的施加,不仅可通过增强熔池对流强度降低熔池的温度梯度,而且可利用其所产生的肌肤效应缓解已凝固区的冷却速率,从而降低沉积层的热应力,抑制裂纹的产生。这些作用对克服激光快速成形自身工艺缺陷、提高成形零件的质量有着重要的意义。
发明内容
本发明的目的是提供一种电磁搅拌辅助激光快速成形镍基合金零件的工艺,为激光快速成形零件组织结构的改善和内部质量的提高开辟一个新的技术途径。
本发明的技术解决方案是:
一种电磁搅拌辅助激光快速成形镍基合金零件,将同轴送粉器喷嘴和电磁搅拌器集合在激光光头上,然后按照每层图形的扫描轨迹移动,进行镍基合金零件电磁搅拌辅助激光快速成形。
具体方法操作步骤如下:
(1)采用金相砂纸和丙酮溶液分别对金属基板表面进行打磨和清洗,然后将其置于激光快速成形工作平台上;
(2)将同轴送粉喷嘴和电磁搅拌器连接至激光光头上,并利用数控系统将其移至起始加工位置;
(3)将成分为NibalCr8.0-17B3.0-3.5Si2.5-4.0C0.2-1.0Fe10-12、粒度介入30-180μm的镍基合金粉末置于同轴送粉器料桶内,然后开启送粉器启动电源,通过调节送粉器电流和氩气气体的流量获得预设的送粉率;
(4)开启电磁搅拌器开关,调节频率和磁场强度至预设值;
(5)依次开启送粉器启动开关和激光器关闸,在金属零件CAD三维实体模型切片数据驱动下,进行镍基合金零件电磁搅拌辅助激光快速成形。所采用的具体工艺参数为:激光功率1.5-3KW,扫描速度2-6mm/s,光斑直径2.0-6.0mm,搭接率10-40%,送粉率0.5-5.0g/min,送粉气体流量3.0-5.0L/min,磁场频率1-100Hz,磁场强度20-90mT。
本发明的效果和益处是,将电磁搅拌技术引入至激光快速成形过程中,可以有效地改善成形零件的组织结构,抑制气孔和开裂等内部缺陷的产生,提升成形零件的力学性能。
附图说明
图1不同磁场强度下激光快速成形镍基合金零件组织形貌。
图中:(a)B=0mT;(b)20=4.5mT;(c)B=40mT;(d)B=60mT;(e)B=80mT;
(f)B=90mT
图2磁场强度对激光快速成形镍基合金零件显微硬度的影响。
图3磁场强度对激光快速成形镍基合金零件摩擦系数的影响。
图4磁场强度对激光快速成形镍基合金零件磨痕宽度的影响。
具体实施方式
下面结合具体实施例,对本发明的技术方案进一步说明。
采用金相砂纸和丙酮溶液分别对306不锈钢基板表面进行打磨和清洗,然后将其置于激光快速成形加工机床上;
将同轴送粉喷嘴和电磁搅拌器连接至激光光头上,并利用数控系统将其移至起始加工位置;
将成分为Ni65.8Cr15B3.0Si3.5C0.7Fe12、粒度为45-180μm的镍基合金置于同轴送粉器料桶内,开启送粉器启动电源,将送粉率调至3.5g/min;
开启电磁搅拌器开关,将其频率调至50Hz,磁场强度调至10-90mT;
依次启动送粉器启动开关和激光器关闸,在尺寸为φ10mm×20mm圆柱形镍基合金零件CAD三维实体模型切片数据驱动下,进行镍基合金零件电磁搅拌辅助激光快速成形。所采用的具体工艺参数为:激光功率2.5KW,扫描速度4.0mm/s,光斑直径4.0mm,搭接率30%,送粉率3.5g/min,送粉气体流量3.5L/min。
利用扫描电镜对成形体的微观组织进行观察发现,随着施加磁场强度的增加,成形体内先共晶树枝晶的尺寸逐渐减小,且在磁场强度达90mT时,先共晶相的生长形态发生明显变化,其由树枝晶转变为等轴晶(图1)。这将有利于打破定向生长组织的结晶方向,提高成形体力学性能各相同性;
显微硬度测试表明,随着施加磁场强度的增加,成形体硬度呈现出逐渐增加变化趋势(从450HV提高到550HV),且与未施加磁场的成形体相比,硬度值得到不同程度的提升(图2);
摩擦磨损试验分析表明,随着施加磁场强度的增加,成形体的摩擦系数和磨痕宽度逐渐降低(图3和图4),其中摩擦系数由0.47降低到0.23,而磨痕宽度则有0.81mm减小到0.12mm。这意味着随着磁场强度的提高,有利于增加成形体的减摩性和耐磨性。

Claims (2)

1.一种电磁搅拌辅助激光快速成形镍基合金零件的工艺,其特征在于以下步骤:
(1)采用金相砂纸和丙酮溶液分别对金属基板表面进行打磨和清洗,然后将其置于激光快速成形工作平台上;
(2)将同轴送粉喷嘴和电磁搅拌器连接至激光头上,并利用数控系统将其移至起始零件加工位置;
(3)将成分为NibalCr8.0-17B3.0-3.5Si2.5-4.0C0.2-1.0Fe10-12、粒度为30-180μm的镍基合金粉末置于同轴送粉器料桶内;
(4)开启电磁搅拌器开关,调节电压和频率至预设值;
(5)依次启动送粉器开关和激光器关闸,在金属零件CAD三维实体模型切片数据驱动下,进行镍基合金零件电磁搅拌辅助激光快速成形。所采用的具体工艺参数为:激光功率1.5-3KW,扫描速度2-6mm/s,光斑直径2.0-6.0mm,搭接率10-40%,送粉率0.5-5.0g/min,送粉气体流量3.0-5.0L/min,磁场频率1-100Hz,磁场强度20-90mT。
2.根据权利要求1所述激光快速成形材料为镍基合金粉末,也可为铁基、钛基、钴基和铝基合金粉末。
CN201610079411.3A 2016-02-04 2016-02-04 一种电磁搅拌辅助激光快速成形镍基合金零件 Expired - Fee Related CN105689711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610079411.3A CN105689711B (zh) 2016-02-04 2016-02-04 一种电磁搅拌辅助激光快速成形镍基合金零件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610079411.3A CN105689711B (zh) 2016-02-04 2016-02-04 一种电磁搅拌辅助激光快速成形镍基合金零件

Publications (2)

Publication Number Publication Date
CN105689711A true CN105689711A (zh) 2016-06-22
CN105689711B CN105689711B (zh) 2018-01-26

Family

ID=56222237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610079411.3A Expired - Fee Related CN105689711B (zh) 2016-02-04 2016-02-04 一种电磁搅拌辅助激光快速成形镍基合金零件

Country Status (1)

Country Link
CN (1) CN105689711B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141185A (zh) * 2016-08-13 2016-11-23 中北大学 强磁场下选择性激光熔化slm成形缸
CN107803500A (zh) * 2017-10-31 2018-03-16 西安铂力特增材技术股份有限公司 一种粉床增材制造电磁感应减缓零件应力的装置及方法
CN108436083A (zh) * 2018-04-19 2018-08-24 南昌航空大学 一种激光增材制造镍基高温合金脆性相的控制方法及装置
CN111299578A (zh) * 2020-03-06 2020-06-19 大连理工大学 一种电磁辅助直接激光沉积镍基高温合金-钛合金功能梯度材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768672B2 (ja) * 2007-05-30 2011-09-07 株式会社日本製鋼所 組織安定性と高温強度に優れたNi基合金およびNi基合金材の製造方法
CN102703898A (zh) * 2012-07-03 2012-10-03 昆明理工大学 一种交变磁场细化激光熔覆层凝固组织的方法及其装置
CN203144514U (zh) * 2013-02-27 2013-08-21 沈阳航空航天大学 一种钛合金激光修复用永磁式电磁搅拌装置
CN103302292A (zh) * 2012-03-12 2013-09-18 中国科学院沈阳自动化研究所 一种激光直接成形钛合金零件工艺方法
CN103774136A (zh) * 2014-01-10 2014-05-07 沈阳航空航天大学 辅助钛合金激光沉积修复的线圈式电磁搅拌装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768672B2 (ja) * 2007-05-30 2011-09-07 株式会社日本製鋼所 組織安定性と高温強度に優れたNi基合金およびNi基合金材の製造方法
CN103302292A (zh) * 2012-03-12 2013-09-18 中国科学院沈阳自动化研究所 一种激光直接成形钛合金零件工艺方法
CN102703898A (zh) * 2012-07-03 2012-10-03 昆明理工大学 一种交变磁场细化激光熔覆层凝固组织的方法及其装置
CN203144514U (zh) * 2013-02-27 2013-08-21 沈阳航空航天大学 一种钛合金激光修复用永磁式电磁搅拌装置
CN103774136A (zh) * 2014-01-10 2014-05-07 沈阳航空航天大学 辅助钛合金激光沉积修复的线圈式电磁搅拌装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141185A (zh) * 2016-08-13 2016-11-23 中北大学 强磁场下选择性激光熔化slm成形缸
CN107803500A (zh) * 2017-10-31 2018-03-16 西安铂力特增材技术股份有限公司 一种粉床增材制造电磁感应减缓零件应力的装置及方法
CN108436083A (zh) * 2018-04-19 2018-08-24 南昌航空大学 一种激光增材制造镍基高温合金脆性相的控制方法及装置
CN111299578A (zh) * 2020-03-06 2020-06-19 大连理工大学 一种电磁辅助直接激光沉积镍基高温合金-钛合金功能梯度材料的方法
CN111299578B (zh) * 2020-03-06 2021-11-05 大连理工大学 一种电磁辅助直接激光沉积镍基高温合金-钛合金功能梯度材料的方法

Also Published As

Publication number Publication date
CN105689711B (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
Fu et al. Multi-scale defects in powder-based additively manufactured metals and alloys
Zhu et al. Recent research and development status of laser cladding: A review
Saboori et al. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition
Zhihao et al. Laser polishing of additive manufactured superalloy
Yang et al. Mechanical performance of 316 L stainless steel by hybrid directed energy deposition and thermal milling process
Bodziak et al. Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 C for 2 h
Casalino et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel
Wang et al. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition
Ji et al. Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing
Song et al. Rebuilding of metal components with laser cladding forming
CN103305828B (zh) 一种超声冲击强化激光熔覆层的装置的工作方法
CN105689711A (zh) 一种电磁搅拌辅助激光快速成形镍基合金零件
Ye et al. Study of hybrid additive manufacturing based on pulse laser wire depositing and milling
Murugan et al. A current state of metal additive manufacturing methods: A review
Li et al. Additive manufacturing of ultra-high strength steels: A review
Liu et al. High power laser powder bed fusion of AlSi10Mg alloy: Effect of layer thickness on defect, microstructure and mechanical property
CN112974845A (zh) 一种金属构件非连续式激光增材制造方法
Wen et al. Corrosion behavior of the S136 mold steel fabricated by selective laser melting
Brochu et al. Bulk nanostructure and amorphous metallic components using the electrospark welding process
Shao et al. Process maps and optimal processing windows based on three-dimensional morphological characteristics in laser directed energy deposition of Ni-based alloy
Xu et al. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel
CN104874793A (zh) 一种发动机缸盖气门座三维打印直接制造方法
Xing et al. Microstructure optimization and cracking control of additive manufactured bainite steel by gas metal arc welding technology
Islam et al. Investigation of microstructures, defects, and mechanical properties of titanium-zirconium-molybdenum alloy manufactured by wire arc additive manufacturing
Zhang et al. An approach to reduce stress and defects: a hybrid process of laser cladding deposition and shot peening

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180126

Termination date: 20210204