CN105689450A - 一种大型直缝焊管三辊连续矫直装置及工艺方法 - Google Patents

一种大型直缝焊管三辊连续矫直装置及工艺方法 Download PDF

Info

Publication number
CN105689450A
CN105689450A CN201610053710.XA CN201610053710A CN105689450A CN 105689450 A CN105689450 A CN 105689450A CN 201610053710 A CN201610053710 A CN 201610053710A CN 105689450 A CN105689450 A CN 105689450A
Authority
CN
China
Prior art keywords
pipe fitting
roller
continuous straightening
pipe
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610053710.XA
Other languages
English (en)
Other versions
CN105689450B (zh
Inventor
赵军
王春鸽
翟瑞雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Yadu Pipeline Equipment Group Co ltd
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610053710.XA priority Critical patent/CN105689450B/zh
Publication of CN105689450A publication Critical patent/CN105689450A/zh
Application granted granted Critical
Publication of CN105689450B publication Critical patent/CN105689450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • B21D3/05Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers arranged on axes rectangular to the path of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Abstract

一种大型直缝焊管三辊连续矫直装置及工艺方法,两个下辊和一个上辊均为圆弧面,且圆弧半径大于管件半径。支承辊为圆柱形筒体,两个支承辊之间的距离相同,两个支承辊和两个下辊在同一条直线上。具体步骤如下:(1)得到管件矫直所需的理论弯矩M(x),(2)输入三辊连续矫直实时控制系统,(3)实现管件的一次性连续矫直。本发明通过测量管件的初始挠度曲线,获得了整根管件的最佳理论矫直弯矩及矫直载荷。通过实时控制系统控制上辊的载荷施加,提高了矫直精度。通过三辊组成的辊系可以一次、连续矫直管件,提高了生产效率。

Description

一种大型直缝焊管三辊连续矫直装置及工艺方法
技术领域本发明属于机械领域,涉及一种直缝焊管三辊连续矫直工艺方法。
背景技术大型直缝焊管广泛用于石油、天然气等的远距离运输,且多用于环境条件复杂的危险地段。在大型直缝焊管的实际生产过程中,受成形设备及模具整体直线度、焊接热应力等因素影响,成形后焊管的整体直线度并不满足行业要求,且其弯曲形式为单挠度的平面弯曲,需对其进行矫直处理。目前,大型直缝焊管多采用一次或多次三点式过弯矫直工艺进行修正,即将带有初始挠曲的焊管置于支距可调的两支点上,压点在最大挠曲处施以压力,使焊管反向弯曲后,压点上行,管件弹复,测量其直线度是否满足要求,若不满足,重复上述过程,直至满足要求。它的不足之处:1、现行矫直方法只针对焊管最大挠曲处,未考虑整体挠度分布,因此需要反复测量,多次矫直;2、实际生产依靠矫直工人的经验估计矫直行程,误差波动大、矫直精度差;3、过弯矫直工艺需多次移动管件,多次压制,使得矫直过程不连续、矫直效率低。
发明内容本发明要解决的技术问题是,提供一种高效、高精度的大型直缝焊管三辊连续矫直装置及工艺方法。
为解决上述技术问题,本发明方案的具体步骤如下:
1、将待矫管件置于辊道上,使其弯曲平面垂直于工作台面,对弯曲平面管件外母线进行等效测量,并通过曲线拟合获得待矫管件的挠度曲线函数表达式。然后根据管件材料性能参数和公式
K d = 4 σ 0 3 E I ( R 1 2 - R 2 2 ) 3 2 + πσ s 4 E 2 IR 2 ( DR 1 4 - ER 2 4 ) + σ 0 R 2 E I [ R 1 4 2 arcsin ( R 2 R 1 ) + R 2 2 ( 2 R 2 2 - R 1 2 ) R 1 2 - R 2 2 ] - - - ( 1 )
K ( x ) = { 4 σ 0 3 E I ( K ( x ) - K 0 ( x ) ) 3 [ ( K ( x ) - K 0 ( x ) ) 2 R 1 2 - ϵ s 2 ] 3 2 + π ( K ( x ) - K 0 ( x ) ) ( DR 1 4 - ER 2 4 ) 4 E I + σ 0 2 ( K ( x ) - K 0 ( x ) ) 3 E I ( 2 ϵ s 2 - [ ( K ( x ) - K 0 ( x ) ) R 1 ] 2 ) [ ( K ( x ) - K 0 ( x ) ) R 1 ] 2 - ϵ s 2 + ( E - D ) ( K ( x ) - K 0 ( x ) ) R 1 4 2 E I arcsin ( ϵ s ( K ( x ) - K 0 ( x ) ) R 1 ) | K 0 ( x ) | ≤ | K d ( x ) | ( E - D ) ( K ( x ) - K 0 ( x ) ) 2 E I [ R 1 4 arcsin ( ϵ s ( K ( x ) - K 0 ( x ) ) R 1 ) - R 2 4 arcsin ( ϵ s ( K ( x ) - K 0 ( x ) ) R 2 ) ] + 4 σ 0 3 E I ( K ( x ) - K 0 ( x ) ) 3 { [ ( K ( x ) - K 0 ( x ) ) 2 R 1 2 - ϵ s 2 ] 3 2 - [ ( K ( x ) - K 0 ( x ) ) 2 R 2 2 - ϵ s 2 ] 3 2 } + σ 0 ( 2 ϵ s 2 - [ ( K ( x ) - K 0 ( x ) ) R 0 ] 2 ) 2 E I ( K ( x ) - K 0 ( x ) ) 3 [ ( K ( x ) - K 0 ( x ) ) R 2 ] 2 - ϵ s 2 - σ 0 ( 2 ϵ s 2 - [ ( K ( x ) - K 0 ( x ) ) R 1 ] 2 ) 2 E I ( K ( x ) - K 0 ( x ) ) 3 [ ( K ( x ) - K 0 ( x ) ) R 1 ] 2 - ϵ s 2 + π ( K ( x ) - K 0 ( x ) ) ( DR 1 4 - ER 1 4 - ER 2 4 ) 4 E I | K 0 ( x ) | > | K d ( x ) | - - - ( 2 )
M(x)=K(x)EI(3)
得到管件矫直所需的理论弯矩M(x)。其中,Kd为管件截面弹塑性变形区域分界点位于管件内径边界时的初始曲率,K0(x)为初始曲率分布,f(x)为挠度曲线函数表达式;σ0为截距应力,σs为初始屈服应力,E为弹性模量,D为塑性剪切模量;I为管截面惯性矩,R1和R2分别为管件的外圆和内圆的半径;Kd(x)为塑性变形是否深入到管内径的分界曲率;K(x)为加载时曲率;εs为弹性极限应变。
2、根据理论矫直弯矩M(x)和两下辊间距L确定矫直载荷F(x),
F ( x ) = 4 M ( x ) L - - - ( 4 )
即得矫直所需的矫直载荷-位移关系曲线F-s,并输入三辊连续矫直实时控制系统;
3、将待矫管件置于大型直缝焊管三辊连续矫直装置上,两下辊同步转动,同时带动管件轴向移动,上辊按照一定规律对管件连续施压,直至管件全部通过辊系,实现管件的一次性连续矫直。
大型直缝焊管三辊连续矫直装置主要包括上辊、下辊和支承辊。两个下辊和一个上辊均为圆弧面,且圆弧半径大于管件半径。支承辊为圆柱形筒体,两个支承辊之间的距离相同,两个支承辊和两个下辊在同一条直线上。
本发明与现有技术相比具有以下优点:
1、现行的矫直工艺只针对管件弯曲最大处,并未考虑管件的整体挠度分布;本发明通过测量管件的初始挠度曲线,获得了整根管件的最佳理论矫直弯矩及矫直载荷。
2、现行的矫直工艺依靠技术工人的经验估计矫直行程;本发明通过实时控制系统控制上辊的载荷施加,提高了矫直精度。
3、现行的矫直工艺一般需多次模压达到矫直目的;本发明通过三辊组成的辊系可以一次、连续矫直管件,提高了生产效率。
附图说明
图1为本发明实例待矫管件初始挠度测量数据及拟合曲线图;
图2为本发明实施例待矫管件的初始曲率分布图;
图3为本发明实施例待矫管件的矫直弯矩图;
图4本发明实施例待矫管件的F-s关系曲线;
图5为本发明实施例的辊体结构图;
图6为本发明实施例连续矫直结构示意图。
图5、图6中:1.上辊、2.支承辊、3.下辊。
具体实施方式
大型直缝焊管三辊连续矫直装置主要包括上辊、下辊和支承辊。两个下辊和一个上辊均为圆弧面,且圆弧半径大于管件半径。支承辊为圆柱形筒体,两个支承辊之间的距离相同,两个支承辊和两个下辊在同一条直线上。
待矫大型直缝焊管的几何尺寸为外径457.2mm、壁厚为12.7mm、管长为12213mm,材料为A516Gr60,材料性能参数为E=200000MPa,D=1833.3MPa,σs=345MPa。
具体步骤如下:
(1)将管件置于辊道上,使其弯曲平面垂直于水平面,采用位于管件上方的激光位移传感器扫描管件外母线,得到的管件初始挠度分布数据,并采用八阶多项式对其进行拟合,得f(x)=p1x8+p2x7+p3x6+p4x5+p5x4+p6x3+p7x2+p8x+p9,其中p1=2.75×10-30,p2=-1.11×10-25,p3=1.835×10-21,p4=-1.528×10-17,p5=7.888×10-14,p6=-5.805×10-10,p7=2.51×10-6,p8=0.01055,p9=-0.1719,初始挠度测量数据及拟合挠度曲线见图1。
(2)借助Matlab数学软件,将拟合所得初始挠度曲线表达式带入式
K 0 ( x ) = f ′ ′ ( x ) [ 1 + ( f ′ ( x ) ) 2 ] 3 / 2
,得到待矫管件初始曲率分布,如图2所示;将其带入式(2)和式(3),即得管件理论矫直弯矩,如图3所示。
(3)两下辊辊距L=4000mm,将其与理论矫直弯矩数据带入公式(4),得到该管件矫直的F-s曲线,如图4所示,并将其输入三辊连续矫直实时控制系统。
(4)如图5、图6所示,将管件置于辊道上,仍旧保持其弯曲平面垂直于水平面。启动动力系统,两下辊4同步旋转,同时带动管件2轴向移动,上辊1按照实时控制系统设置中的F-s曲线对管件施加载荷,直至管件全部通过辊系,实现管件的一次性矫直。
(4)矫直完成后,测得其最大挠度为13mm,直线度为0.1%,满足美国APISpec5L行业标准提出的成品管最大挠度不得超过管长度0.2%的要求。

Claims (2)

1.一种大型直缝焊管三辊连续矫直装置,主要包括上辊、下辊和支承辊,其特征在于:两个下辊和一个上辊均为圆弧面,且圆弧半径大于管件半径,支承辊为圆柱形筒体,两个支承辊之间的距离相同,两个支承辊和两个下辊在同一条直线上。
2.一种大型直缝焊管三辊连续矫直装置及工艺方法,其特征在于:具体步骤,
(1)将待矫管件置于辊道上,使其弯曲平面垂直于工作台面,对弯曲平面管件外母线进行等效测量,并通过曲线拟合获得待矫管件的挠度曲线函数表达式,然后根据管件材料性能参数和公式
K d = 4 σ 0 3 E I ( R 1 2 - R 2 2 ) 3 2 + πσ s 4 E 2 IR 2 ( DR 1 4 - ER 2 4 ) + σ 0 R 2 E I [ R 1 4 2 arcsin ( R 2 R 1 ) + R 2 2 ( 2 R 2 2 - R 1 2 ) R 1 2 - R 2 2 ] - - - ( 1 )
M(x)=K(x)EI(3)
得到管件矫直所需的理论弯矩M(x),其中,Kd为管件截面弹塑性变形区域分界点位于管件内径边界时的初始曲率,K0(x)为初始曲率分布,f(x)为挠度曲线函数表达式;σ0为截距应力,σs为初始屈服应力,E为弹性模量,D为塑性剪切模量;I为管截面惯性矩,R1和R2分别为管件的外圆和内圆的半径;Kd(x)为塑性变形是否深入到管内径的分界曲率;K(x)为加载时曲率;εs为弹性极限应变,
(2)根据理论矫直弯矩M(x)和两下辊间距L确定矫直载荷F(x),
F ( x ) = 4 M ( x ) L - - - ( 4 )
即得矫直所需的矫直载荷-位移关系曲线F-s,并输入三辊连续矫直实时控制系统;
(3)将待矫管件置于大型直缝焊管三辊连续矫直装置上,两下辊同步转动,同时带动管件轴向移动,上辊按照一定规律对管件连续施压,直至管件全部通过辊系,实现管件的一次性连续矫直。
CN201610053710.XA 2016-01-27 2016-01-27 一种大型直缝焊管三辊连续矫直装置及工艺方法 Active CN105689450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610053710.XA CN105689450B (zh) 2016-01-27 2016-01-27 一种大型直缝焊管三辊连续矫直装置及工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610053710.XA CN105689450B (zh) 2016-01-27 2016-01-27 一种大型直缝焊管三辊连续矫直装置及工艺方法

Publications (2)

Publication Number Publication Date
CN105689450A true CN105689450A (zh) 2016-06-22
CN105689450B CN105689450B (zh) 2017-10-20

Family

ID=56229431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610053710.XA Active CN105689450B (zh) 2016-01-27 2016-01-27 一种大型直缝焊管三辊连续矫直装置及工艺方法

Country Status (1)

Country Link
CN (1) CN105689450B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247533A (zh) * 2016-08-08 2016-12-21 珠海格力电器股份有限公司 一种空调系统化霜的控制装置、控制方法及空调系统
CN111085802A (zh) * 2019-12-03 2020-05-01 海天塑机集团有限公司 一种机筒堵头多功能自动化焊接工作站
CN112845682A (zh) * 2021-01-28 2021-05-28 日照钢铁控股集团有限公司 一种控制h型钢腹板挠度的方法及其使用的矫直工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149018A (ja) * 1986-12-12 1988-06-21 Nippon Steel Corp 長柱体のロ−ラ−矯正加工法
JPH09248628A (ja) * 1996-03-14 1997-09-22 Hitachi Ltd 自動零調式ローラ矯正機
CN104324974A (zh) * 2014-08-28 2015-02-04 攀钢集团成都钢钒有限公司 钛合金无缝管的精整方法
CN204148302U (zh) * 2014-08-21 2015-02-11 湖州南浔中盛金属热处理有限公司 热处理钢管校直机
CN204657166U (zh) * 2015-04-07 2015-09-23 周秋芳 用于矫正多孔铝扁管的矫平矫直精轧机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149018A (ja) * 1986-12-12 1988-06-21 Nippon Steel Corp 長柱体のロ−ラ−矯正加工法
JPH09248628A (ja) * 1996-03-14 1997-09-22 Hitachi Ltd 自動零調式ローラ矯正機
CN204148302U (zh) * 2014-08-21 2015-02-11 湖州南浔中盛金属热处理有限公司 热处理钢管校直机
CN104324974A (zh) * 2014-08-28 2015-02-04 攀钢集团成都钢钒有限公司 钛合金无缝管的精整方法
CN204657166U (zh) * 2015-04-07 2015-09-23 周秋芳 用于矫正多孔铝扁管的矫平矫直精轧机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247533A (zh) * 2016-08-08 2016-12-21 珠海格力电器股份有限公司 一种空调系统化霜的控制装置、控制方法及空调系统
CN111085802A (zh) * 2019-12-03 2020-05-01 海天塑机集团有限公司 一种机筒堵头多功能自动化焊接工作站
CN111085802B (zh) * 2019-12-03 2024-05-17 海天塑机集团有限公司 一种机筒堵头多功能自动化焊接工作站
CN112845682A (zh) * 2021-01-28 2021-05-28 日照钢铁控股集团有限公司 一种控制h型钢腹板挠度的方法及其使用的矫直工具

Also Published As

Publication number Publication date
CN105689450B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Shinkin et al. Elastoplastic shaping of metal in an edge-bending press in the manufacture of large-diameter pipe
Guo et al. Simulation and experimental research of the free bending process of a spatial tube
CN101370603A (zh) 冲压成形装置及冲压成形方法
CN105689450A (zh) 一种大型直缝焊管三辊连续矫直装置及工艺方法
Xia et al. Numerical simulation and experimental research on the multi-pass neck-spinning of non-axisymmetric offset tube
Do et al. Identification of forming limit curve at fracture in incremental sheet forming
Weiss et al. Comparison of bending of automotive steels in roll forming and in a V-die
Lăzărescu Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending
Dang et al. Multi-stage incremental bending to form doubly curved metal plates based on bending limit diagram
Do et al. Incremental forming of 3D structured aluminum sheet
Ma et al. Research and verification on neutral layer offset of bar in two-roll straightening process
Dang et al. Incremental bending of three-dimensional free form metal plates using minimum energy principle and model-less control
Wen On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition
Zhao et al. A mechanical model of symmetrical three-roller setting round process: the static bending stage
CN102756017B (zh) 大型管件三点弯曲过弯矫直智能化控制方法
CN108704960A (zh) 一种对称式四辊卷板控制方法
Danckert Reduction of the residual stresses in a deep-drawn cup by modifying the draw die profile
Yang et al. A study on the optimization of joint mandrel shape for manufacturing long type elbow using push bending process
CN117057074A (zh) 一种获取管材自由弯曲最大弯曲半径的方法及系统
Kolikov et al. Optimization of the processes of forming and welding of large-diameter pipes with the help of mathematic simulation
Udayani et al. Optimization of Process Parameters of Metal Spinning using Response Surface Methodology
Chu et al. Numerical model establishment and verification of cold pilgering on cycle feed rate
Frohn et al. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)
Walentyński et al. Numerical stability analyses and preliminary experimental investigation of doubly corrugated steel arch panels
Shim et al. Improvement strategy for edge waviness in roll bending process of corrugated sheet metals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240606

Address after: 061000 liutan Industrial Zone, Mengcun Hui Autonomous County, Cangzhou City, Hebei Province

Patentee after: HEBEI YADU PIPELINE EQUIPMENT GROUP Co.,Ltd.

Country or region after: China

Address before: 066004 No. 438 west section of Hebei Avenue, seaport District, Hebei, Qinhuangdao

Patentee before: Yanshan University

Country or region before: China