CN105688947A - 一种一维连续的Te-Pd核壳纳米线的制备方法 - Google Patents

一种一维连续的Te-Pd核壳纳米线的制备方法 Download PDF

Info

Publication number
CN105688947A
CN105688947A CN201610149489.8A CN201610149489A CN105688947A CN 105688947 A CN105688947 A CN 105688947A CN 201610149489 A CN201610149489 A CN 201610149489A CN 105688947 A CN105688947 A CN 105688947A
Authority
CN
China
Prior art keywords
core
shell
tellurium
nanowires
dimensional continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610149489.8A
Other languages
English (en)
Inventor
王騊
王晟
欧阳申珅
彭美灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610149489.8A priority Critical patent/CN105688947A/zh
Publication of CN105688947A publication Critical patent/CN105688947A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种Te-Pd核壳纳米线的制备方法,具体涉及一种一维连续的Te-Pd核壳纳米线的制备方法,包括以下步骤:1)按质量份数,称取5-10份的碲细纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:(1-10)的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应4-6小时,即得Te-Pd核壳纳米线成品。本发明通过在碲细纳米线表面负载一层铂纳米粒子,形成核壳结构,然后经过离心洗涤、干燥即得成品,微观状态下Te-Pd核壳纳米线相互交织在一起;本发明制备过程简单,条件易于控制,且制备出的一维连续的Te-Pd核壳纳米线材料活性面积大,催化活性高。

Description

一种一维连续的Te-Pd核壳纳米线的制备方法
技术领域
本发明涉及一种Te-Pd核壳纳米线的制备方法,具体涉及一种一维连续的Te-Pd核壳纳米线的制备方法。
背景技术
贵金属催化剂由于其无可替代的催化活性和选择性,在炼油、石油化工和有机合成中占有极其重要的地位。贵金属钯具有优异的催化性能,钯催化剂在石油化学工业中的应用广泛。在很多有机合成反应中,钯是优良的催化剂,或是催化剂的重要组分之一。然而催化活性低,且催化剂难以分离回收和重复使用这些因素严重影响了钯催化剂的应用。开发高活性、高选择性的钯催化剂也是研究热点。钯催化剂结构,不仅决定其催化活性,而且决定其在反应结束后是否可通过简单的过滤实现催化剂的回收利用。钯基核壳纳米材料通过对钯催化剂中组分的改进,可提高催化剂的活性及选择性。
发明内容
本发明的目的在于提供一种一维连续的Te-Pd核壳纳米线的制备方法,该方法通过光催化法在碲细纳米线的表面负载一层钯纳米粒子。随后经过干燥后,即可得到了尺寸均一,直径约5纳米的一维连续Te-Pd核壳纳米线。
为实现上述目的,本发明采用的技术方案是:一种一维连续的Te-Pd核壳纳米线的制备方法,包括以下步骤:
1)按质量份数,称取5-10份的碲细纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:(1-10)的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应4-6小时,即得Te-Pd核壳纳米线成品。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过在碲细纳米线表面负载一层铂纳米粒子,形成核壳结构。然后经过离心洗涤、干燥即可得到一维连续的Te-Pd核壳纳米线。微观状态下Te-Pd核壳纳米线相互交织在一起;
2.本发明制备出一维连续的Te-Pd核壳纳米线材料活性面积大,催化活性高;
3.本发明制备过程简单,条件易于控制,便于规模生产。
附图说明
图1是本发明的Te-Pd核壳纳米线放大11万倍的扫描电镜图。
图2是本发明的Te-Pd核壳纳米线放大20万倍的透射电镜图。
具体实施方式
下面结合实施例对本发明做进一步阐述,而不是要以此对本发明进行限制。
实施例1:
一种一维连续的Te-Pd核壳纳米线的制备方法,包括以下步骤:
1)按质量份数,称取5份的碲细纳米线加入到含有25份无水乙醇的烧杯中,磁力搅拌30分钟使得分散均匀;
2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:9的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应4小时,如此,便制备出尺寸均一、直径为5纳米的一维连续的Te-Pd核壳纳米线。
实施例2:
一种一维连续的Te-Pd核壳纳米线的制备方法,包括以下步骤:
1)按质量份数,称取8份的碲细纳米线加入到含有35份无水乙醇的烧杯中,磁力搅拌40分钟使得分散均匀;
2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:6的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应5小时,即得Te-Pd核壳纳米线成品。
实施例3:
一种一维连续的Te-Pd核壳纳米线的制备方法,包括以下步骤:
1)按质量份数,称取10份的碲细纳米线加入到含有50份无水乙醇的烧杯中,磁力搅拌50分钟使得分散均匀;
2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:5的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应6小时,即得Te-Pd核壳纳米线成品。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (1)

1.一种一维连续的Te-Pd核壳纳米线的制备方法,其特征在于包括以下步骤:
1)按质量份数,称取5-10份的碲细纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)取步骤1)中的分散溶液,以碲、钯原子摩尔比为3:(1-10)的比例加入四氯钯酸钠Na2PdCl4,分散到乙醇和超纯水各50%的混合溶液中,N2曝气,紫外光源下照射反应4-6小时,即得Te-Pd核壳纳米线成品。
CN201610149489.8A 2016-03-16 2016-03-16 一种一维连续的Te-Pd核壳纳米线的制备方法 Pending CN105688947A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610149489.8A CN105688947A (zh) 2016-03-16 2016-03-16 一种一维连续的Te-Pd核壳纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610149489.8A CN105688947A (zh) 2016-03-16 2016-03-16 一种一维连续的Te-Pd核壳纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN105688947A true CN105688947A (zh) 2016-06-22

Family

ID=56221532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610149489.8A Pending CN105688947A (zh) 2016-03-16 2016-03-16 一种一维连续的Te-Pd核壳纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN105688947A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221685A1 (en) * 2002-10-30 2004-11-11 In-Bum Jeong Method for manufacturing nano-scaled copper powder by wet reduction process
CN103433058A (zh) * 2013-09-02 2013-12-11 山东大学 Au-Cu/TiO2-NBs 双金属纳米结构整体式催化剂、制备方法及其应用
CN104549263A (zh) * 2015-01-28 2015-04-29 福州大学 一种Pd/铌酸纳米片催化剂及其制备方法和应用
CN104959626A (zh) * 2015-06-30 2015-10-07 厦门大学 一种合金包裹铜纳米线制备多功能核壳纳米材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221685A1 (en) * 2002-10-30 2004-11-11 In-Bum Jeong Method for manufacturing nano-scaled copper powder by wet reduction process
CN103433058A (zh) * 2013-09-02 2013-12-11 山东大学 Au-Cu/TiO2-NBs 双金属纳米结构整体式催化剂、制备方法及其应用
CN104549263A (zh) * 2015-01-28 2015-04-29 福州大学 一种Pd/铌酸纳米片催化剂及其制备方法和应用
CN104959626A (zh) * 2015-06-30 2015-10-07 厦门大学 一种合金包裹铜纳米线制备多功能核壳纳米材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAOJUN GUO等: "Novel Te/Pt Hybrid Nanowire with Nanoporous Surface: A Catalytically Active Nanoelectrocatalyst", 《J. PHYS. CHEM. C》 *
刘阳 等: "紫外光原位还原法制备Pt/TiO2及其光催化性能研究", 《浙江理工大学学报》 *
洪小杰: "一维基核壳异质结构纳米热电材料的制备及结构控制", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
US10661265B2 (en) Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
Wu et al. A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance
Zhang et al. Porous carbon supports: Recent advances with various morphologies and compositions
Yang et al. Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes
Guerra et al. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C–C coupling chemistry
CN103007932B (zh) 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法
RU2520874C2 (ru) Способ изготовления металл-углерод содержащих тел
Wang et al. Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores
Gama-Lara et al. Synthesis, Characterization, and Catalytic Activity of Platinum Nanoparticles on Bovine‐Bone Powder: A Novel Support
Silva et al. Magnetically recoverable AuPd nanoparticles prepared by a coordination capture method as a reusable catalyst for green oxidation of benzyl alcohol
Nongwe et al. Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde
CN107774246A (zh) 一种中空介孔硅纳米胶囊核内负载钯催化剂的制备方法及其应用
CN113522279A (zh) 一种用于十二氢乙基咔唑放氢的金钯催化剂及其制备方法
CN113731408A (zh) MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
Chen et al. Green assembly of high-density and small-sized silver nanoparticles on lignosulfonate-phenolic resin spheres: Focusing on multifunction of lignosulfonate
Shen et al. Highly dispersed silver nanoparticles confined in a nitrogen-containing covalent organic framework for 4-nitrophenol reduction
Long et al. Distinctive size effects of Pt nanoparticles immobilized on Fe 3 O 4@ PPy used as an efficient recyclable catalyst for benzylic alcohol aerobic oxidation and hydrogenation reduction of nitroaromatics
CN105688947A (zh) 一种一维连续的Te-Pd核壳纳米线的制备方法
CN110064752B (zh) 一种介孔金属铂纳米球的制备方法
WO2010110447A1 (ja) メソポーラスシリカ担持金クラスターとこれを用いる触媒およびこれの製造方法
CN107597195B (zh) 一种石墨烯-杯芳烃-Fe3O4的制备及其高效催化降解亚甲基蓝的应用
WO2021043858A1 (en) Materials comprising carbon-embedded cobalt nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
CN108295843B (zh) 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用
Amaratunga et al. Preparation and photocatalytic activity of TiO2 nanocomposites coated with monolayer-protected gold clusters
Higgins et al. X-ray synthesis of noble metal nanoparticles onto 2D and 3D graphene oxide supports

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622

RJ01 Rejection of invention patent application after publication