CN105679879B - 一种提高太阳能电池效率的制冷涂层的制备方法 - Google Patents

一种提高太阳能电池效率的制冷涂层的制备方法 Download PDF

Info

Publication number
CN105679879B
CN105679879B CN201610018629.8A CN201610018629A CN105679879B CN 105679879 B CN105679879 B CN 105679879B CN 201610018629 A CN201610018629 A CN 201610018629A CN 105679879 B CN105679879 B CN 105679879B
Authority
CN
China
Prior art keywords
silicon chip
silicon
refrigeration coating
preparation
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610018629.8A
Other languages
English (en)
Other versions
CN105679879A (zh
Inventor
车春玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi Xinghuo Intellectual Property Service Co.,Ltd.
Original Assignee
Shandong Xinghuo Science Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Xinghuo Science Technology Institute filed Critical Shandong Xinghuo Science Technology Institute
Priority to CN201610018629.8A priority Critical patent/CN105679879B/zh
Publication of CN105679879A publication Critical patent/CN105679879A/zh
Application granted granted Critical
Publication of CN105679879B publication Critical patent/CN105679879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0284Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table comprising porous silicon as part of the active layer(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:包括以下步骤:将硅片表面进行清洗;将步骤(1)所得的硅片进行制绒;将步骤(2)所得的硅片制备多孔硅,多孔硅的孔径在0.5um‑10um,在硅片表面制作光子晶体制冷涂层;将步骤(3)所得的硅片上制作发射极、周边刻蚀、磷硅酸玻璃去除;将步骤(4)所得的硅片再依次进行沉淀氮化硅膜、高温退火、采用丝印正方面电极和背铝、烧结。其有益效果为:太阳能电池表面的多孔硅结构以及制冷涂层可有效降低太阳能电池的温度,提高工作状态下的发电效率。

Description

一种提高太阳能电池效率的制冷涂层的制备方法
技术领域
本发明涉及太阳发电领域,具体涉及一种提高太阳能电池效率的制冷涂层的制备方法。
背景技术
随着工业发展以及人类活动的日趋活跃,人类对能源的消耗日趋增大,而地下非可再生资源日趋短缺,能源供需矛盾日益激化,能源问题已成为影响人类生存和发展的关键问题之一,与风力发电、海洋发电、生物智能发电等许多可再生能源相比,太阳能光伏发电具有清洁性、安全性、广泛性、无噪音、无污染、能量随处可得、无需消耗燃料、无机械传动部件、维护简单、可以无人值守、建设周期短、规模大小随意、并可与建筑相结合等诸多优点。太阳能电池是利用光生伏特效应将太阳能直接转化为电能的半导体器件,通过电池片间串联、封装、并联等形式组装成所需要的电压、电流和功率,目前广泛应用的是成本低廉发电效率表现好的晶体硅太阳能电池片。
晶体硅太阳能电池片组件在吸收太阳能发电的同时,也会产生热量,
温度对晶体硅太阳电池性能的影响:光伏组件温度较高时,工作效率下降,随着太阳能电池温度的增加,开路电压减小,在20-100℃范围,大约每升高1℃,每片电池的电压减小2mV;而光电流随温度的增加略有上升,大约每升高1℃每片电池的光电流增加千分之一,或0.03mA/℃*cm2;总的来说,温度升高太阳电池的功率下降,典型温度系数为-0.35%/℃,也就是说,如果太阳能电池温度每升高1℃,则功率减少0.35%。有效的降低工作状态下晶硅太阳能电池温度,是提高晶硅太阳能电池发电效率亟待解决的问题。
发明内容
为克服所述不足,本发明的目的在于提供一种提高太阳能电池效率的制冷涂层的制备方法,太阳能电池表面的多孔硅结构以及制冷涂层可有效降低太阳能电池的温度,提高工作状态下的发电效率。
本发明具有以下有益效果:一种提高太阳能电池效率的制冷涂料的制备方法,包括以下步骤:
(1)将硅片表面进行清洗;
(2)将步骤(1)所得的硅片进行制绒;
(3)将步骤(2)所得的硅片制备多孔硅,多孔硅的孔径在0.5um-10um,在硅片表面制作光子晶体制冷涂层;
(4)将步骤(3)所得的硅片上制作发射极、周边刻蚀、磷硅酸玻璃去除;
(5)将步骤(4)所得的硅片再依次进行沉淀氮化硅膜、高温退火、采用丝印正面电极和背铝、烧结。
进一步,步骤(1)至步骤(5)中的硅片设为P型掺杂单晶硅片。
进一步,步骤(3)中硅片制备多孔硅的结构采用电化学腐蚀法制备,全程由电脑程式自动控制电化学腐蚀平台,以硅片作为阳极,Pt作为阴极,腐蚀液为体积比为1:1的氢氟酸和酒精混合溶液,其中氢氟酸的浓度为25wt%-40wt%,阳极和阴极之间接通电流,电流密度为6mA/cm2-65mA/cm2,在温度-15℃-30℃,持续时间为0.1min-2min。
进一步,步骤(3)中硅片制备多孔硅的结构采用精密机械加工法制备。
进一步,步骤(3)中制备光子晶体制冷涂层采用垂直沉降自组装法将二氧化硅胶体微球制备成具有规则排布的三维光子晶体。
本发明的有益效果:在硅片表面形成的多孔硅实现较大的有效的中红外透过率,将电池片在工作过程中产生的热量能够有效的传出,同时在硅片表面的光子晶体制冷涂层,多孔硅的结构能够增大光子晶体制冷涂层的表面积,将太阳能发电过程中产生的热量以中红外线的方式辐射到周围空气中,起到降温的作用,有效提高太阳能电池的发电效率。
附图说明
图1为本发明的工艺流程图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
实施例1
根据图1所示的一种提高太阳能电池效率的制冷涂料的制备方法,包括以下步骤:
(1)将硅片表面进行清洗;
(2)将步骤(1)所得的硅片进行制绒;
(3)将步骤(2)所得的硅片制备多孔硅光子晶体结构;
(4)将步骤(3)所得的硅片上制作发射极、周边刻蚀、磷硅酸玻璃去除;
(5)将步骤(4)所得的硅片再依次进行沉淀氮化硅膜、高温退火、采用丝印正面电极和背铝、烧结。
进一步,步骤(1)至步骤(5)中的硅片设为P型掺杂单晶硅片。
进一步,步骤(3)中硅片制备多孔硅的结构采用电化学腐蚀法制备,全程由电脑程式自动控制电化学腐蚀平台,以硅片作为阳极,Pt作为阴极,腐蚀液为体积比为1:1的氢氟酸和酒精混合溶液,其中氢氟酸的浓度为25wt%-40wt%,阳极和阴极之间接通电流,电流密度为6mA/cm2-65mA/cm2,在温度-15℃-30℃,持续时间为0.1min-2min。
进一步,步骤(3)中制备光子晶体制冷涂层采用垂直沉降自组装法将二氧化硅胶体微球制备成具有规则排布的三维光子晶体。
实施例2
一种提高太阳能电池效率的制冷涂料的制备方法,包括以下步骤:
(1)将硅片表面进行清洗;
(2)将步骤(1)所得的硅片进行制绒;
(3)将步骤(2)所得的硅片制备多孔硅,多孔硅的孔径在0.5um-10um,在硅片表面制作光子晶体制冷涂层;
(4)将步骤(3)所得的硅片上制作发射极、周边刻蚀、磷硅酸玻璃去除;
(5)将步骤(4)所得的硅片再依次进行沉淀氮化硅膜、高温退火、采用丝印正面电极和背铝、烧结。
进一步,步骤(1)至步骤(5)中的硅片设为P型掺杂单晶硅片。
进一步,步骤(3)中硅片制备多孔硅的光子晶体结构采用精密机械加工法制备。
进一步,步骤(3)中制备光子晶体制冷涂层采用垂直沉降自组装法将二氧化硅胶体微球制备成具有规则排布的三维光子晶体。
本发明不局限于所述实施方式,任何人应得知在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。
本发明未详细描述的技术、形状、构造部分均为公知技术。

Claims (5)

1.一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:包括以下步骤:
(1)将硅片表面进行清洗;
(2)将步骤(1)所得的硅片进行制绒;
(3)将步骤(2)所得的硅片制备多孔硅,多孔硅的孔径在0.5um-10um,在硅片的多孔硅表面制作光子晶体制冷涂层;
(4)将步骤(3)所得的硅片上制作发射极、周边刻蚀、磷硅酸玻璃去除;
(5)将步骤(4)所得的硅片再依次进行沉淀氮化硅膜、高温退火、采用丝印正面电极和背铝、烧结。
2.根据权利要求1所述的一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:步骤(1)至步骤(5)中的硅片设为P型掺杂单晶硅片。
3.根据权利要求1所述的一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:步骤(3)中硅片制备多孔硅的结构采用电化学腐蚀法制备,全程由电脑程式自动控制电化学腐蚀平台,以硅片作为阳极,Pt作为阴极,腐蚀液为体积比为1:1的氢氟酸和酒精混合溶液,其中氢氟酸的浓度为25wt%-40wt%,阳极和阴极之间接通电流,电流密度为6mA/cm2-65mA/cm2,在温度-15℃-30℃,持续时间为0.1min-2min。
4.根据权利要求1所述的一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:步骤(3)中硅片制备多孔硅的结构采用精密机械加工法制备。
5.根据权利要求1所述的一种提高太阳能电池效率的制冷涂料的制备方法,其特征在于:步骤(3)中制备光子晶体制冷涂层采用垂直沉降自组装法将二氧化硅胶体微球制备成具有规则排布的三维光子晶体。
CN201610018629.8A 2016-01-13 2016-01-13 一种提高太阳能电池效率的制冷涂层的制备方法 Active CN105679879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610018629.8A CN105679879B (zh) 2016-01-13 2016-01-13 一种提高太阳能电池效率的制冷涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610018629.8A CN105679879B (zh) 2016-01-13 2016-01-13 一种提高太阳能电池效率的制冷涂层的制备方法

Publications (2)

Publication Number Publication Date
CN105679879A CN105679879A (zh) 2016-06-15
CN105679879B true CN105679879B (zh) 2017-11-28

Family

ID=56300035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610018629.8A Active CN105679879B (zh) 2016-01-13 2016-01-13 一种提高太阳能电池效率的制冷涂层的制备方法

Country Status (1)

Country Link
CN (1) CN105679879B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404301A (zh) * 2008-10-24 2009-04-08 中国科学院电工研究所 一种具有多孔硅背反射层的晶体硅太阳电池
US20110155215A1 (en) * 2009-12-31 2011-06-30 Du Pont Apollo Limited Solar cell having a two dimensional photonic crystal
CN102593245B (zh) * 2012-02-13 2014-07-23 常州大学 一种高效低价晶体硅太阳电池的制备方法

Also Published As

Publication number Publication date
CN105679879A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN201112399Y (zh) 具有浓硼浓磷扩散结构的太阳能电池
CN101916787A (zh) 一种黑硅太阳能电池及其制备方法
TW201121066A (en) Bificial solar cell
CN103413858B (zh) 一种mwt晶体硅太阳能电池的制备方法
CN106169376A (zh) 一种太阳能电池‑电容器集成自充电单元制备方法
CN103489951A (zh) 双面黑晶硅高效太阳能电池
CN105655424A (zh) 全背场扩散n型硅基电池及其制备方法
CN103311323B (zh) 一种石墨烯/硅太阳电池及其制造方法
CN102709389B (zh) 一种双面背接触太阳能电池的制备方法
CN104716209A (zh) 基于硅基纳米线的太阳能电池及其制备方法
CN104362197B (zh) 一种立体采光式全固态太阳能电池及其制备方法
CN103227242A (zh) 一种具有背面电极点接触结构的太阳能电池的制备方法
CN210778615U (zh) 一种topcon钝化结构
CN105679879B (zh) 一种提高太阳能电池效率的制冷涂层的制备方法
CN104064623A (zh) 一种提升太阳电池转换效率的后处理方法
CN204885179U (zh) 一种抗lid黑硅太阳能高效电池
CN204741023U (zh) 一种新型柔性太阳能电池板
CN108682701A (zh) 太阳能电池及其制作工艺
CN104282777A (zh) 具掺杂碳化硅层的结晶硅太阳能电池及其制造方法
CN108183150A (zh) 一种异质结光伏电池及其制备方法
CN202633058U (zh) 一种电动汽车用纳米太阳能电池
CN102769072A (zh) N型晶硅太阳能电池及其制备方法
CN202049973U (zh) 一种选择性发射极晶体硅太阳电池
CN201402810Y (zh) 单晶硅高效聚光薄片太阳电池
CN103390688A (zh) 一种太阳能电池表面覆膜结构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201231

Address after: 276624 Room 608, 6th floor, Zhongxing business enterprise development center, Pingshang Town, Lingang Economic Development Zone, Linyi City, Shandong Province

Patentee after: Linyi Xinghuo Intellectual Property Service Co.,Ltd.

Address before: Building 11, industry university research base, No.2, North Qilihe Road, Licheng District, Jinan City, Shandong Province

Patentee before: XINGHUO SCIENCE AND TECHNOLOGY INSTITUTE

TR01 Transfer of patent right