CN105675469A - 岩石全自动气体渗透率测试系统及测算方法 - Google Patents

岩石全自动气体渗透率测试系统及测算方法 Download PDF

Info

Publication number
CN105675469A
CN105675469A CN201610050808.XA CN201610050808A CN105675469A CN 105675469 A CN105675469 A CN 105675469A CN 201610050808 A CN201610050808 A CN 201610050808A CN 105675469 A CN105675469 A CN 105675469A
Authority
CN
China
Prior art keywords
pressure
gas
rock
valve
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610050808.XA
Other languages
English (en)
Other versions
CN105675469B (zh
Inventor
杨圣奇
徐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201610050808.XA priority Critical patent/CN105675469B/zh
Priority to PCT/CN2016/074814 priority patent/WO2017128479A1/zh
Publication of CN105675469A publication Critical patent/CN105675469A/zh
Priority to ZA2018/00361A priority patent/ZA201800361B/en
Application granted granted Critical
Publication of CN105675469B publication Critical patent/CN105675469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample

Abstract

一种岩石全自动气体渗透率测试系统及测算方法,属于岩石气体渗透率测试系统及方法。三轴岩心夹持装置内放置有待测岩心,所述待测岩心的环向通过围压加载系统加载有围压,所述待测岩心的轴向通过围压加载系统加载有轴压,所述待测岩心的左端通过渗流气体增压系统加载有气体渗流压,所述待测岩心的右端通过高/中/低出口气体流量计与大气连通,所述待测岩心渗透率通过数据采集、处理软件自动计算得出。能够独立调节岩样围压、轴压及气体渗流压力,采用该测试系统,能自动计算并储存高、中、低渗岩样气体渗透率稳定值。该岩石全自动气体渗透率测试系统及测算方法能精确合理分析围压、轴压及渗流压力对岩渗透率的影响规律。

Description

岩石全自动气体渗透率测试系统及测算方法
技术领域
本发明有涉及一种岩石气体渗透率测试系统及方法,特别是一种岩石全自动气体渗透率测试系统及测算方法。
背景技术
渗透率表征了岩石空隙内流体的流动能力,是储层岩石的一个重要物性参数。
目前常规的岩石渗透率测试方法有液体测量法和气体测量法,两种方法都是基于Darcy定律。但气体测量法与液体测量法相比,动力粘度系数更小,相同条件下气体渗透率测试时间更短,因此多采用惰性气体作为岩石渗透率测试介质。
常用的渗透率测试方法主要为稳态法和压力脉冲法。压力脉冲法对压力表精度要求较高,测试时间长,而对于中高渗岩样来说,采用稳态法测试岩石渗透率时间较短,因此稳态法广泛用于石油工业渗透率测试。
致密岩石由于其结构致密,较低渗透压力作用下导致流体流动速率小,使得通过岩样的流量过小,普通岩石气体渗透率测试系统无法准确计量和测定气体流量,进而难以准确测得渗透率。另一方面,已有的岩石气体渗透率测试装置自动化程度较低,多靠人为读取压力表及流量计数据进而计算得到岩石渗透率,在耗费大量人力物力的同时,也影响了试验结果的客观性。此外,现有岩石气体渗透率测试装置不能提供三轴压缩应力,无法全面探究轴压、围压、静水压力及渗透压力对岩石渗透率的影响规律,这些都大大制约了稳态法在致密岩石介质渗流规律研究中的应用。
发明内容
发明目的,本发明的目的是要提供一种岩石全自动气体渗透率测试系统及测算方法,解决现有技术的测量压力范围小,试验周期长,测试精度差,测量结果客观性较低的问题。
技术方案,本发明的目的是这样实现的,岩石全自动气体渗透率测试系统包括:渗流气体增压系统、三轴岩心夹持装置、恒速恒压泵加压装置、高/中/低出口气体流量计及数据采集处理系统;
空压机与渗流气体增压系统连接,氮气瓶通过控制阀与渗流气体增压系统连接,渗流气体增压系统的输出通过缓冲容器同时与低压减压阀或高压减压阀连接,渗流气体增压系统、空压机,氮气瓶通过控制阀输出氮气,加压后的氮气稳压存入缓冲容器中,通过低压减压阀或高压减压阀调整至设定值;
低压减压阀和高压减压阀分别与第一连通阀和第二连通阀连接,在低压减压阀、高压减压阀和第一连通阀、第二连通阀之间连接有第一气体压力表与第二气体压力表,第一连通阀、第二连通阀输出端与三轴岩心夹持装置连接,在第一连通阀、第二连通阀和三轴岩心夹持装置之间连接有第一压力传感器,第一气体压力表与第二气体压力表实时显示压力值,通过开关或闭合连通阀与将气体压力输送至三轴岩心夹持装置内,输入的渗透气体压力由第一压力传感器实时传入数据采集处理系统;
三轴岩心夹持装置内放置有待测岩心;
恒速恒压泵能提供稳定的流体压力,恒速恒压泵通过围压阀与三轴岩心夹持装置相连通,在围压阀与三轴岩心夹持装置之间连接有第二压力传感器,恒速恒压泵为待测岩心施加围压,围压由第二压力传感器实时传入数据采集处理系统;
恒速恒压泵通过轴压阀与三轴岩心夹持装置相连通,在轴压阀与三轴岩心夹持装置之间连接有第三压力传感器;恒速恒压泵为待测岩心施加轴压,轴压由第三压力传感器实时传入数据采集处理系统;
三轴岩心夹持装置出口端通过第一气体流量计、第二气体流量计和第三气体流量计与大气相连通,三个气体流量计的量程不同,同时,三个气体流量计与数据采集、处理系统相连通;数据采集处理系统综合处理并储存岩心气体渗透压力、围压、轴压及出口气体流量。
所述的三轴岩心夹持装置内放置有待测岩心,待测岩心的环向通过围压加载系统加载有围压,待测岩心的轴向通过围压加载系统加载有轴压,待测岩心的左端通过渗流气体增压系统加载有气体渗流压,待测岩心的右端通过高/中/低出口气体流量计与大气连通,待测岩心渗透率通过数据采集、处理软件自动计算得出。
进一步完善上述技术方案,所述渗流气体增压系统包括:空压机、气源瓶、缓冲容器及气压调节装置,所述气源瓶提供惰性渗透气体,渗透气体通过所述空压机增压,岩心气体渗透压通过所述气压调节装置调整至设定值,气体增压系统通过气压调节装置与三轴岩心夹持装置的入口端相连,气体增压系统为三轴岩心夹持装置提供稳定渗透气压,气体增压系统最大气体输出压力为48MPa。
进一步完善上述技术方案,所述三轴岩心夹持装置内放有待测岩心,所述待测岩心大小满足国际岩石力学试验标准,三轴岩心夹持装置通过气体增压系统为待测岩心施加渗透气压,三轴岩心夹持装置通过恒速恒压泵加压系统为待测岩心施加恒定围压及轴压。
进一步完善上述技术方案,所述的恒速恒压泵通过围压阀为三轴岩心夹持装置提供稳定围压,进而为待测岩心施加恒定围压,恒速恒压泵通过轴压阀为三轴岩心夹持装置提供稳定轴压,进而为待测岩心施加恒定轴压;的恒速恒压泵加压系统压力输出范围为0~60MPa,亦即待测岩心所受轴压及围压范围为0~60MPa。
进一步完善上述技术方案,所述高/中/低出口气体流量计及数据采集处理系统,包括5sccm、100sccm和3000sccm三个不同测量精度气体流量计,能够同时满足低渗及高渗透率岩心渗透率测试要求;所述数据采集处理系统,采用window下VB自主编程开发,可实时采集测试并存储围压、轴压、测试气体渗流压力、气体流量值,并采用内置算法自动识别气体渗流稳定状态并计算所述测试岩心气体渗透率,同时可以和压力/体积控制器进行数据通信,集中控制围压及轴压。
岩石全自动气体渗透率测算方法,包括如下步骤:
(1)选取天然岩石,将岩心加工为符合国际岩石力学学会试验规程标准尺寸的待测岩心,测量并记录试样的直径和高度;
(2)将岩心用专用橡胶套装好后放入三轴岩心夹持装置内,旋紧三轴岩心夹持装置的气体进出口接触端,装好岩心的三轴岩心夹持装置密封性较好,气体进出口接触端与岩心接触紧密;
(3)打开岩石全自动气体渗透率测试系统,录入岩心尺寸及试验温度、标准大气压参数,开始岩心气体渗透测试;
(4)打开围压阀,按照试验方案,通过恒速恒压泵对岩心施加围压至设定值σ3,随后关闭围压阀,打开轴压阀,通过恒速恒压泵对岩心施加轴压至设定值σ1,此后,岩心所受轴压及围压均稳定保持在试验设定值;
(5)在渗透气体无泄漏的条件下,通过气体增压系统将气体压力增大,略超过试验设定最大值,并存储于缓冲容器中;
(6)根据试验气压范围,选择高压或低压减压阀调节氮气渗透压力;
(7)点击数据采集处理系统中操作界面上的“开始”按钮,系统自动监测气体出口端气体流量,自动识别岩石渗流稳定状态,并计算得到稳定后岩心气体渗透率后,系统自动保存渗透率测算结果并暂停;
(8)重复步骤(3)~(7),分别进行不同应力条件下岩心渗透率测试试验,记录试验结果;
(9)完成试验后,点击数据采集处理系统中操作界面上的“结束”按钮,并导出试验结果。
有益效果,由于采用了上述方案,该岩石全自动气体渗透率测试系统包括气体增压系统,极大增大了气体渗透压力测试范围,为低渗岩心石渗透率稳态法测试提供了基础,结合三个不同测量精度气体流量计,能够同时满足高渗透率岩石、低渗透率岩石及极低渗透率岩石的渗透率测试要求。系统内三轴岩心夹持装置,能同时为待测岩心施加稳定轴压及围压,可以满足岩石在三轴压力条件下渗透率特性研究及测试要求。系统由自主开发数据处理软件集中控制,同时自动识别气体渗流稳定状态并计算所述待测岩心气体渗透率。基于该岩石渗透率测试系统的岩石气体渗透率测算方法,自动化程度高,避免了人为操作带来的主观误差,测试精度高、范围广,克服了以往测量压力范围小,试验周期长,测试精度差,测量结果客观性较低等缺点。
岩石渗透率测算方法基于岩石全自动气体渗透率测试系统,操作简便,计算结果可靠,在每次进行气体渗透率试验时,只需要测量出岩心的基本参数(高度、直径),然后录入测试系统中,设定试验压力,系统便可自动计算并储存岩心气体渗透率。
附图说明
图1为本发明所述岩石全自动气体渗透率测试系统的结构示意图。
图2为本发明实施例红砂岩不同轴向偏应力作用下的气体渗透率图。
图1中,1、渗流气体增压系统;2、空压机;3、氮气瓶;4、控制阀;5、缓冲容器;6、低压减压阀;7、高压减压阀;8、第一气体压力表;9、第二压力表;10、第一连通阀;11、第二连通阀;12、第一压力传感器;13、三轴岩心夹持装置;14、待测岩心;15、恒速恒压泵;16、围压阀;17、第二压力传感器;18、轴压阀;19、第三压力传感器;20、第一气体流量计;21、第二气体流量计;22、第三气体流量计;23、数据采集处理系统。
具体实施方式
岩石全自动气体渗透率测试系统包括:渗流气体增压系统、三轴岩心夹持装置、恒速恒压泵加压装置、高/中/低出口气体流量计及数据采集处理系统;
空压机2与渗流气体增压系统1连接,氮气瓶3通过控制阀4与渗流气体增压系统1连接,渗流气体增压系统1的输出通过缓冲容器5同时与低压减压阀6或高压减压阀7连接,渗流气体增压系统1、空压机2,氮气瓶3通过控制阀4输出氮气,加压后的氮气稳压存入缓冲容器5中,通过低压减压阀6或高压减压阀7调整至设定值;
低压减压阀6和高压减压阀7分别与第一连通阀10和第二连通阀11连接,在低压减压阀6、高压减压阀7和第一连通阀10、第二连通阀11之间连接有第一气体压力表8与第二气体压力表9,第一连通阀10、第二连通阀11输出端与三轴岩心夹持装置13连接,在第一连通阀10、第二连通阀11和三轴岩心夹持装置13之间连接有第一压力传感器12,第一气体压力表8与第二气体压力表9实时显示压力值,通过开关或闭合连通阀10与11将气体压力输送至三轴岩心夹持装置13内,输入的渗透气体压力由第一压力传感器12实时传入数据采集处理系统23;
三轴岩心夹持装置13内放置有待测岩心14;
恒速恒压泵15能提供稳定的流体压力,恒速恒压泵15通过围压阀16与三轴岩心夹持装置13相连通,在围压阀16与三轴岩心夹持装置13之间连接有第二压力传感器17,恒速恒压泵15为待测岩心14施加围压,围压由第二压力传感器17实时传入数据采集处理系统23;
恒速恒压泵15通过轴压阀18与三轴岩心夹持装置13相连通,在轴压阀18与三轴岩心夹持装置13之间连接有第三压力传感器19;恒速恒压泵15为待测岩心14施加轴压,轴压由第三压力传感器19实时传入数据采集处理系统23;
三轴岩心夹持装置13出口端通过第一气体流量计20、第二气体流量计21和第三气体流量计22与大气相连通,三个气体流量计的量程不同,同时,三个气体流量计与数据采集、处理系统23相连通;数据采集、处理系统23综合处理并储存岩心气体渗透压力、围压、轴压及出口气体流量。
所述的三轴岩心夹持装置内放置有待测岩心14,所述待测岩心14的环向通过围压加载系统加载有围压,所述待测岩心的轴向通过围压加载系统加载有轴压,所述待测岩心14的左端通过渗流气体增压系统加载有气体渗流压,所述待测岩心14的右端通过高/中/低出口气体流量计与大气连通,所述待测岩石渗透率通过数据采集、处理软件自动计算得出。
进一步完善上述技术方案,所述渗流气体增压系统包括:空压机、气源瓶、缓冲容器及气压调节装置,所述气源瓶提供惰性渗透气体,渗透气体通过所述空压机增压,岩心气体渗透压通过所述气压调节装置调整至设定值,气体增压系统通过气压调节装置与三轴岩心夹持装置的入口端相连,气体增压系统为三轴岩心夹持装置提供稳定渗透气压,气体增压系统最大气体输出压力为48MPa。
进一步完善上述技术方案,所述三轴岩心夹持装置内放有待测岩心,所述待测岩心大小满足国际岩石力学试验标准,三轴岩心夹持装置通过气体增压系统为待测岩心施加渗透气压,三轴岩心夹持装置通过恒速恒压泵加压系统为待测岩心施加恒定围压及轴压。
进一步完善上述技术方案,所述的恒速恒压泵15通过围压阀16为三轴岩心夹持装置提供稳定围压,进而为待测岩心施加恒定围压,恒速恒压泵通过轴压阀为三轴岩心夹持装置提供稳定轴压,进而为待测岩心施加恒定轴压;的恒速恒压泵加压系统压力输出范围为0~60MPa,亦即待测岩心所受轴压及围压范围为0~60MPa。
进一步完善上述技术方案,所述高/中/低出口气体流量计及数据采集处理系统,包括5sccm、100sccm和3000sccm三个不同测量精度气体流量计,能够同时满足低渗及高渗透率岩心渗透率测试要求;所述数据采集、处理系统,采用window下VB自主编程开发,可实时采集测试并存储围压、轴压、测试气体渗流压力、气体流量值,并采用内置算法自动识别气体渗流稳定状态并计算所述待测岩心气体渗透率,同时可以和压力/体积控制器进行数据通信,集中控制围压及轴压。
岩石全自动气体渗透率测算方法,包括如下步骤:
(1)选取天然岩石,将天然岩石加工为符合国际岩石力学学会试验规程标准尺寸的待测岩心,测量并记录试样的直径和高度;
(2)将待测岩心用专用橡胶套装好后放入三轴岩心夹持装置内,旋紧三轴岩心夹持装置的气体进出口接触端,装好待测岩心的三轴岩心夹持装置密封性较好,气体进出口接触端与岩心接触紧密;
(3)打开岩石全自动气体渗透率测试系统,录入待测岩心尺寸及试验温度、标准大气压参数,开始待测岩心气体渗透测试;
(4)打开围压阀,按照试验方案,通过恒速恒压泵对岩心施加围压至设定值σ3,随后关闭围压阀,打开轴压阀,通过恒速恒压泵对岩心施加轴压至设定值σ1,此后,岩心所受轴压及围压均稳定保持在试验设定值;
(5)在渗透气体无泄漏的条件下,通过气体增压系统将气体压力增大,略超过试验设定最大值,并存储于缓冲容器中;
(6)根据试验气压范围,选择高压或低压减压阀调节氮气渗透压力;
(7)点击数据采集处理系统中操作面板上的“开始”按钮,系统自动监测气体出口端气体流量,自动识别岩石渗流稳定状态,并计算得到稳定后岩石气体渗透率后,系统自动保存渗透率测算结果并暂停;
(8)重复步骤(3)~(7),分别进行不同应力条件下岩石渗透率测试试验,记录试验结果;
(9)完成试验后,点击数据采集处理系统中操作面板中的“结束”按钮,并导出试验结果。
为了更清楚地说明本发明实施例中的技术方案,实施例中对附图作简单的介绍,显而易见的,附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:如图1所示,一种岩石全自动气体渗透率测试系统,包括渗流气体增压系统1、空压机2,氮气瓶3通过控制阀4输出氮气,加压后的氮气稳压存入缓冲容器5中,通过低压减压阀6或高压减压阀7调整至设定值,气体压力表8与9实时显示压力值,通过开关或闭合连通阀10与11将气体压力输送至三轴岩心夹持装置13内,输入的渗透气体压力由压力传感器12实时传入数据采集、处理系统23;三轴岩心夹持装置13内放置有待测岩心14;恒速恒压泵15能提供稳定的流体压力,恒速恒压泵15通过围压阀16与三轴岩心夹持装置13相连通,为待测岩心14施加围压,围压由压力传感器17实时传入数据采集、处理系统23,恒速恒压泵15通过轴压阀18与三轴岩心夹持装置13相连通,为待测岩心14施加轴压,轴压由压力传感器19实时传入数据采集、处理系统23;三轴岩心夹持装置13出口端通过三个不同量程的气体流量计20、21和22与大气相连通,同时,气体流量计20、21及22与数据采集、处理系统23相连通;数据采集、处理系统23综合处理并储存岩心气体渗透压力、围压、轴压及出口气体流量。
利用上述岩石全自动气体渗透率测试系统对红砂岩进行不同偏应力下气体渗透率测量的步骤如下:
(1)选取完整均一的红砂岩,按照国际岩石力学试验标准将岩样加工为直径为50mm长度为100mm的圆柱形,将加工后的试样干燥后测量并记录试样的直径和高度;
(2)将岩样用专用橡胶套装好后放入三轴岩心夹持装置内,旋紧三轴岩心夹持装置的气体进出口接触端,装好岩心的三轴岩心夹持装置密封性较好,气体进出口接触端与岩心接触紧密;
(3)打开岩石全自动气体渗透率测试系统,录入岩心尺寸及试验温度、标准大气压等参数,开始岩石气体渗透测试;
(4)打开围压阀,按照试验方案,通过恒速恒压泵对岩心施加围压至设定值σ3,随后关闭围压阀,打开轴压阀,通过恒速恒压泵对岩心施加轴压至设定值σ1,此后,岩心所受轴压及围压均稳定保持在试验设定值;
(5)打开控制阀4,通过气体增压系统将氮气压力增大至20MPa,并存储于缓冲容器中;
(6)根据试验气压范围,合理选择高压或低压减压阀调节氮气渗透压力,本次试验采用5MPa的气体渗透压力,因此选用高压减压阀将缓冲容器中的氮气压力调节并稳定至5MPa;
(7)点击数据采集处理系统中操作界面上的“开始”按钮,系统自动监测气体出口端气体流量,自动识别岩心渗流稳定状态,并计算得到稳定后岩心气体渗透率;
(8)重复步骤(4)~(7),分别进行静水压力为25.3MPa,轴向偏应力为17.69MPa、14.30MPa、10.56MPa、6.04MPa、2.27MPa、-1.78MPa、-5.73MPa、-9.47MPa和-13.64MPa条件下红砂岩渗透试验;
(9)完成试验后,点击数据采集处理系统中操作界面上的“结束”按钮,并导出试验结果;
(10)导出渗透率计算结果及相应应力状态,即可得到岩石试样在不同应力条件下的渗透率,通过该测算方法得到岩心试样在不同应力状态下的渗透率如表1所示。
表1红砂岩渗透试验加载方案
如上所述,尽管参照特定的实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制,在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (2)

1.一种岩石全自动气体渗透率测试系统,其特征在于,岩石全自动气体渗透率测试系统包括:渗流气体增压系统、三轴岩心夹持装置、恒速恒压泵加压装置、高/中/低出口气体流量计及数据采集处理系统;空压机与渗流气体增压系统连接,氮气瓶通过控制阀与渗流气体增压系统连接,渗流气体增压系统的输出通过缓冲容器同时与低压减压阀或高压减压阀连接;
低压减压阀和高压减压阀分别与第一连通阀和第二连通阀连接,在低压减压阀、高压减压阀和第一连通阀、第二连通阀之间连接有第一气体压力表与第二气体压力表,第一连通阀、第二连通阀输出端与三轴岩心夹持装置连接,在第一连通阀、第二连通阀和三轴岩心夹持装置之间连接有第一压力传感器;
三轴岩心夹持装置内放置有待测岩心;
恒速恒压泵能提供稳定的流体压力,恒速恒压泵通过围压阀与三轴岩心夹持装置相连通,在围压阀与三轴岩心夹持装置之间连接有第二压力传感器;
恒速恒压泵通过轴压阀与三轴岩心夹持装置相连通,在轴压阀与三轴岩心夹持装置之间连接有第三压力传感器;恒速恒压泵为待测岩心施加轴压,轴压由第三压力传感器实时传入数据采集处理系统;
三轴岩心夹持装置出口端通过第一气体流量计、第二气体流量计和第三气体流量计与大气相连通,三个气体流量计与数据采集处理系统相连通;
所述的三轴岩心夹持装置内放置有待测岩心,待测岩心的环向通过围压加载系统加载有围压,待测岩心的轴向通过围压加载系统加载有轴压,待测岩心的左端通过渗流气体增压系统加载有气体渗流压,待测岩心的右端通过高/中/低出口气体流量计与大气连通,待测岩心渗透率通过数据采集、处理软件自动计算得出。
2.一种岩石全自动气体渗透率测算方法,其特征在于,岩石全自动气体渗透率测算方法,包括如下步骤:
(1)选取天然岩石,将岩石加工为符合国际岩石力学学会试验规程的标准尺寸即待测岩心,测量并记录试样的直径和高度;
(2)将岩心用专用橡胶套装好后放入三轴岩心夹持装置内,旋紧三轴岩心夹持装置的气体进出口接触端,装好岩心的三轴岩心夹持装置密封性较好,气体进出口接触端与岩心接触紧密;
(3)打开岩石全自动气体渗透率测试系统,录入岩心尺寸及试验温度、标准大气压参数,开始岩心气体渗透测试;
(4)打开围压阀,按照试验方案,通过恒速恒压泵对岩心施加围压至设定值σ3,随后关闭围压阀,打开轴压阀,通过恒速恒压泵对岩心施加轴压至设定值σ1,此后,岩心所受轴压及围压均稳定保持在试验设定值;
(5)在渗透气体无泄漏的条件下,通过气体增压系统将气体压力增大,略超过试验设定最大值,并存储于缓冲容器中;
(6)根据试验气压范围,选择高压或低压减压阀调节氮气渗透压力;
(7)点击数据采集处理系统中操作界面中的“开始”按钮,系统自动监测气体出口端气体流量,自动识别岩心渗流稳定状态,并计算得到稳定后岩心气体渗透率后,系统自动保存渗透率测算结果并暂停;
(8)重复步骤(3)~(7),分别进行不同应力条件下岩心渗透率测试试验,记录试验结果;
(9)完成试验后,点击数据采集处理系统中操作界面上的“结束”按钮,并导出试验结果。
CN201610050808.XA 2016-01-25 2016-01-25 岩石全自动气体渗透率测试系统及测算方法 Active CN105675469B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610050808.XA CN105675469B (zh) 2016-01-25 2016-01-25 岩石全自动气体渗透率测试系统及测算方法
PCT/CN2016/074814 WO2017128479A1 (zh) 2016-01-25 2016-02-29 岩石全自动气体渗透率测试系统及测算方法
ZA2018/00361A ZA201800361B (en) 2016-01-25 2018-01-18 Fully-automated system for testing gas permeability of rock and estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610050808.XA CN105675469B (zh) 2016-01-25 2016-01-25 岩石全自动气体渗透率测试系统及测算方法

Publications (2)

Publication Number Publication Date
CN105675469A true CN105675469A (zh) 2016-06-15
CN105675469B CN105675469B (zh) 2018-03-06

Family

ID=56302601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610050808.XA Active CN105675469B (zh) 2016-01-25 2016-01-25 岩石全自动气体渗透率测试系统及测算方法

Country Status (3)

Country Link
CN (1) CN105675469B (zh)
WO (1) WO2017128479A1 (zh)
ZA (1) ZA201800361B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323842A (zh) * 2016-10-26 2017-01-11 中国科学院武汉岩土力学研究所 可测量致密岩石气体渗透率的真/假三轴试验的方法
CN106370579A (zh) * 2016-08-30 2017-02-01 海安华达石油仪器有限公司 一种气体渗透率测定仪
CN106442264A (zh) * 2016-10-14 2017-02-22 吉林大学 一种高温高压渗透率测试装置
CN106526079A (zh) * 2016-10-27 2017-03-22 中国石油大学(北京) 一种研究致密砂岩孔喉结构动态变化的方法
CN106644742A (zh) * 2017-02-28 2017-05-10 中国石油大学(华东) 一种岩心三轴试验装置
CN108181222A (zh) * 2017-12-21 2018-06-19 中国林业科学研究院木材工业研究所 一种木材气体渗透性分析测试方法
CN108195737A (zh) * 2017-12-21 2018-06-22 中国林业科学研究院木材工业研究所 一种木材气体渗透性分析测试装置
CN108613915A (zh) * 2018-07-16 2018-10-02 济南兰光机电技术有限公司 一种氧气透过率测试装置、系统及方法
CN108663298A (zh) * 2018-03-27 2018-10-16 西南石油大学 一种真三轴裂缝扩展模拟和渗透率测试一体化的实验装置和方法
CN108956419A (zh) * 2018-07-03 2018-12-07 武汉索克能源科技有限公司 一种在应力波脉冲作用下的岩心渗透率测试装置及方法
CN109030318A (zh) * 2018-09-11 2018-12-18 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109115669A (zh) * 2018-09-29 2019-01-01 中国矿业大学 一种长期自动测量岩石变渗透率的水循环测试装置及方法
CN109270117A (zh) * 2018-11-16 2019-01-25 中国矿业大学 一种裂隙试样渗流-传热过程中的数据测量装置与测量方法
CN109991144A (zh) * 2017-12-31 2019-07-09 中国人民解放军63653部队 环氧密封型气体渗透率测量装置
CN110068527A (zh) * 2019-04-26 2019-07-30 中国矿业大学 一种非平衡状态下煤岩渗透率自动连续测试装置及其方法
CN110595982A (zh) * 2019-10-15 2019-12-20 贵州大学 一种岩石气体各向异性渗透率的测试装置及计算方法
WO2020029497A1 (en) * 2018-08-06 2020-02-13 Xi'an University Of Science And Technology A seepage-creep and mechanical experimental system for coal and rock mass containing gas under triaxial loading in low-temperature environment
CN111929223A (zh) * 2020-09-24 2020-11-13 山东科技大学 气体在致密岩芯中渗流规律的快速准确测定装置和方法
CN111999183A (zh) * 2020-08-24 2020-11-27 中国石油化工股份有限公司 一种硬脆性泥页岩破裂实验装置及评价方法
CN112432881A (zh) * 2020-03-02 2021-03-02 辽宁工程技术大学 一种承载含瓦斯煤体中轴向固定点的气体孔隙压力监测装置
CN112444610A (zh) * 2019-08-27 2021-03-05 中国石油化工股份有限公司 岩心微裂缝实验方法
CN112730160A (zh) * 2021-01-22 2021-04-30 山东大学 一种低渗煤岩渗流演化规律瞬态测试系统
CN112834407A (zh) * 2021-01-09 2021-05-25 西安石油大学 一种测量岩心渗流力的装置及方法
CN114199739A (zh) * 2021-11-25 2022-03-18 中铁二十局集团第四工程有限公司 岩石化学腐蚀环境下co2三轴渗流测试系统及方法
CN114295528A (zh) * 2021-12-29 2022-04-08 西安建筑科技大学 一种研究非饱和土体气体渗透特性的实验系统及研究方法
CN114383992A (zh) * 2022-01-07 2022-04-22 核工业湖州勘测规划设计研究院股份有限公司 一种稀疏材料气体渗透率测量装置及方法
CN114383948A (zh) * 2021-12-07 2022-04-22 中国矿业大学 一种测量不同加载条件下岩心参数的装置和方法
CN110595982B (zh) * 2019-10-15 2024-04-19 贵州大学 一种岩石气体各向异性渗透率的测试装置及计算方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255700B (zh) * 2017-08-10 2023-03-24 河南理工大学 煤层气井排采过程煤粉产出模拟测试装置及其测试方法
CN107288632B (zh) * 2017-08-24 2023-03-10 河南理工大学 煤-岩储层排采产水来源及压降路径模拟装置与方法
CN108732015A (zh) * 2018-06-05 2018-11-02 四川大学 反映岩石长加载历时蠕变行为的测试方法
CN108922358B (zh) * 2018-09-20 2023-05-26 济南大学 一种探究越流系统中粘土阻滞作用的模拟装置及方法
CN108982142B (zh) * 2018-09-29 2023-12-05 吉林大学 高温高压条件下动态水岩相互作用实验装置与方法
CN109297806A (zh) * 2018-11-15 2019-02-01 贵州大学 一种具有径向轴向功能的半自动岩芯夹持器及其操作方法
CN109211972B (zh) * 2018-11-16 2023-10-27 中国矿业大学 裂隙试样渗流传热过程中水岩界面对流换热系数测量装置
CN109283118B (zh) * 2018-11-16 2023-11-14 中国矿业大学 裂隙表面粗糙度的表征方法和渗流试验系统及试验方法
CN109932272B (zh) * 2018-11-28 2024-03-22 中国华能集团有限公司 一种co2驱替实验系统及实验方法
CN109459313B (zh) * 2018-12-29 2023-09-01 四川大学 煤岩体的力学行为和渗流特性原位测试方法及系统
CN109765161A (zh) * 2019-01-25 2019-05-17 中国矿业大学 一种利用分流桶提供渗压及围压的渗透性测试方法及装置
CN109916798A (zh) * 2019-03-19 2019-06-21 吕梁学院 具有导流功能的渗流板及其试验清理方法
CN109813626B (zh) * 2019-03-28 2023-10-20 青岛理工大学 一种平行持载作用方向的混凝土吸水率测试装置
CN109991120B (zh) * 2019-05-09 2024-01-26 陕西省煤田地质集团有限公司 岩石覆压条件下等温吸附/解吸和驱替测试设备的测试方法
CN110207640B (zh) * 2019-05-31 2024-04-05 中国矿业大学 一种单裂隙微米级隙宽测量结构及其安装方法、测量方法
CN110082280B (zh) * 2019-06-17 2024-04-12 河南理工大学 不连续排采引起的煤层气产能变化模拟测试装置及方法
CN110296927A (zh) * 2019-07-18 2019-10-01 南京理工大学 一种可施加单向围压的岩石裂隙渗透率测试装置及方法
CN110837695B (zh) * 2019-10-24 2023-06-27 中国人民解放军63653部队 一种破碎花岗岩巷道围岩平均渗透率评估方法
CN110907334B (zh) * 2019-12-17 2022-06-03 中国石油大学(华东) 一种砾岩全直径岩心径向流油水相对渗透率测量装置及方法
CN110924907B (zh) * 2019-12-31 2023-12-08 西安石油大学 一种ct扫描用多段测压水气交替采油实验装置及方法
CN111271051B (zh) * 2020-02-14 2023-03-28 辽宁工程技术大学 一种三向加载矿井钻孔封孔效果模拟试验装置及方法
CN111474265A (zh) * 2020-04-29 2020-07-31 江苏拓创科研仪器有限公司 致密储层碳化水跨尺度传质测试系统
CN111707599B (zh) * 2020-07-14 2023-05-09 中国石油大学(华东) 一种基于ct原位实验的蒸汽驱或热水驱储层岩石孔隙结构特征精确表征装置和方法
CN112284901A (zh) * 2020-10-28 2021-01-29 贵州大学 一种假三轴岩石试验机及其使用方法
CN112284922B (zh) * 2020-11-11 2023-03-31 太原理工大学 一种煤岩体高温三轴流变及动静组合加载试验装置
CN114527048A (zh) * 2020-11-23 2022-05-24 中国石油天然气股份有限公司 岩心流动特性测试装置及方法
CN112595632A (zh) * 2020-11-25 2021-04-02 扬州华宝石油仪器有限公司 用于高温高压条件的岩石气体突破压力测定的检测系统
CN112540036B (zh) * 2020-11-30 2022-07-08 核工业北京化工冶金研究院 一种超声波和表面活性剂耦合增渗实验方法
CN112540035B (zh) * 2020-11-30 2022-10-14 核工业北京化工冶金研究院 一种低渗透砂岩铀矿超声波增渗实验方法
CN112630124A (zh) * 2020-12-17 2021-04-09 中国石油大学(北京) 耐高温岩芯夹持器及其岩芯脉冲衰减气体渗透率测试系统
CN112945827B (zh) * 2021-01-29 2023-06-30 中国石油天然气股份有限公司 岩石动态物性测量系统
CN113008700B (zh) * 2021-02-07 2023-01-24 山东科技大学 一种天然气水合物的力学特性测试方法
CN112986099B (zh) * 2021-03-30 2022-10-18 中国电建集团西北勘测设计研究院有限公司 一种超高水头渗透特性试验水头供水加压装置及操作方法
CN113188895B (zh) * 2021-05-21 2022-08-16 长沙理工大学 一种边坡岩石试验系统
CN113466089B (zh) * 2021-07-08 2022-01-28 东北石油大学 一种可智能压力控制的页岩岩心渗吸测定装置及方法
CN114017002B (zh) * 2021-11-03 2023-10-03 吉林大学 一种测试油页岩自生热原位转化油收率的装置及方法
CN114088747B (zh) * 2021-11-23 2023-06-20 西安石油大学 岩心夹持器
CN114062143B (zh) * 2021-11-30 2022-07-29 重庆大学 高压电脉冲原位增透含气储层两相渗流试验装置
CN114136863A (zh) * 2021-12-15 2022-03-04 石家庄铁道大学 砂岩铀矿渗透率测试装置
CN114279898B (zh) * 2021-12-24 2024-01-16 西安交通大学 一种覆压孔渗核素对流与弥散联测的实验系统及实验方法
CN114136864B (zh) * 2021-12-24 2023-12-08 国家能源集团宁夏煤业有限责任公司 煤岩渗透率的确定方法、存储介质和系统
CN114544461B (zh) * 2022-02-15 2023-11-21 中国矿业大学 一种超临界co2封存与损伤监测试验系统及方法
CN114737933A (zh) * 2022-05-10 2022-07-12 西南石油大学 一种模拟顶部注气重力驱的长岩心实验装置及方法
CN116105946A (zh) * 2023-04-12 2023-05-12 中国电建集团西北勘测设计研究院有限公司 一种钻孔高压压气试验装置及测试方法
CN116818598B (zh) * 2023-08-29 2023-11-17 中国地质调查局油气资源调查中心 一种天然气水合物岩心含气量测试装置
CN117147409B (zh) * 2023-09-01 2024-03-19 中国矿业大学 一种煤储层高温氮气注入改造物理模拟方法
CN117110172B (zh) * 2023-10-24 2024-01-19 中国矿业大学 一种气体渗流启动压力梯度测试装置及应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852714A (zh) * 2010-04-30 2010-10-06 中国石油大学(北京) 低速非线性渗流参数的测量系统和方法
CN102156087A (zh) * 2011-05-30 2011-08-17 西南石油大学 一种测试不同孔隙流体压力下岩石渗透率的装置及方法
CN104122181A (zh) * 2013-04-26 2014-10-29 中国石油天然气集团公司 入井液对储层渗透率损害评价装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543275B2 (en) * 2001-07-02 2003-04-08 Taiwan Semiconductor Manufacturing Co., Ltd Apparatus and method for testing air permeability of a fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852714A (zh) * 2010-04-30 2010-10-06 中国石油大学(北京) 低速非线性渗流参数的测量系统和方法
CN102156087A (zh) * 2011-05-30 2011-08-17 西南石油大学 一种测试不同孔隙流体压力下岩石渗透率的装置及方法
CN104122181A (zh) * 2013-04-26 2014-10-29 中国石油天然气集团公司 入井液对储层渗透率损害评价装置

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370579A (zh) * 2016-08-30 2017-02-01 海安华达石油仪器有限公司 一种气体渗透率测定仪
CN106442264A (zh) * 2016-10-14 2017-02-22 吉林大学 一种高温高压渗透率测试装置
CN106323842A (zh) * 2016-10-26 2017-01-11 中国科学院武汉岩土力学研究所 可测量致密岩石气体渗透率的真/假三轴试验的方法
CN106526079A (zh) * 2016-10-27 2017-03-22 中国石油大学(北京) 一种研究致密砂岩孔喉结构动态变化的方法
CN106644742B (zh) * 2017-02-28 2023-05-26 中国石油大学(华东) 一种岩心三轴试验装置
CN106644742A (zh) * 2017-02-28 2017-05-10 中国石油大学(华东) 一种岩心三轴试验装置
CN108195737A (zh) * 2017-12-21 2018-06-22 中国林业科学研究院木材工业研究所 一种木材气体渗透性分析测试装置
CN108181222A (zh) * 2017-12-21 2018-06-19 中国林业科学研究院木材工业研究所 一种木材气体渗透性分析测试方法
CN109991144A (zh) * 2017-12-31 2019-07-09 中国人民解放军63653部队 环氧密封型气体渗透率测量装置
CN108663298A (zh) * 2018-03-27 2018-10-16 西南石油大学 一种真三轴裂缝扩展模拟和渗透率测试一体化的实验装置和方法
CN108956419A (zh) * 2018-07-03 2018-12-07 武汉索克能源科技有限公司 一种在应力波脉冲作用下的岩心渗透率测试装置及方法
CN108613915A (zh) * 2018-07-16 2018-10-02 济南兰光机电技术有限公司 一种氧气透过率测试装置、系统及方法
WO2020029497A1 (en) * 2018-08-06 2020-02-13 Xi'an University Of Science And Technology A seepage-creep and mechanical experimental system for coal and rock mass containing gas under triaxial loading in low-temperature environment
CN109030318B (zh) * 2018-09-11 2024-04-02 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109030318A (zh) * 2018-09-11 2018-12-18 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109115669A (zh) * 2018-09-29 2019-01-01 中国矿业大学 一种长期自动测量岩石变渗透率的水循环测试装置及方法
CN109115669B (zh) * 2018-09-29 2023-06-16 中国矿业大学 一种长期自动测量岩石变渗透率的水循环测试装置及方法
CN109270117A (zh) * 2018-11-16 2019-01-25 中国矿业大学 一种裂隙试样渗流-传热过程中的数据测量装置与测量方法
CN109270117B (zh) * 2018-11-16 2023-10-27 中国矿业大学 一种裂隙试样渗流-传热过程中的数据测量装置与测量方法
CN110068527A (zh) * 2019-04-26 2019-07-30 中国矿业大学 一种非平衡状态下煤岩渗透率自动连续测试装置及其方法
CN112444610A (zh) * 2019-08-27 2021-03-05 中国石油化工股份有限公司 岩心微裂缝实验方法
CN110595982A (zh) * 2019-10-15 2019-12-20 贵州大学 一种岩石气体各向异性渗透率的测试装置及计算方法
CN110595982B (zh) * 2019-10-15 2024-04-19 贵州大学 一种岩石气体各向异性渗透率的测试装置及计算方法
CN112432881A (zh) * 2020-03-02 2021-03-02 辽宁工程技术大学 一种承载含瓦斯煤体中轴向固定点的气体孔隙压力监测装置
CN111999183A (zh) * 2020-08-24 2020-11-27 中国石油化工股份有限公司 一种硬脆性泥页岩破裂实验装置及评价方法
CN111929223B (zh) * 2020-09-24 2022-11-18 山东科技大学 气体在致密岩芯中渗流规律的快速准确测定装置和方法
CN111929223A (zh) * 2020-09-24 2020-11-13 山东科技大学 气体在致密岩芯中渗流规律的快速准确测定装置和方法
CN112834407B (zh) * 2021-01-09 2023-07-21 西安石油大学 一种测量岩心渗流力的装置及方法
CN112834407A (zh) * 2021-01-09 2021-05-25 西安石油大学 一种测量岩心渗流力的装置及方法
CN112730160A (zh) * 2021-01-22 2021-04-30 山东大学 一种低渗煤岩渗流演化规律瞬态测试系统
CN114199739A (zh) * 2021-11-25 2022-03-18 中铁二十局集团第四工程有限公司 岩石化学腐蚀环境下co2三轴渗流测试系统及方法
CN114199739B (zh) * 2021-11-25 2024-03-29 中铁二十局集团第四工程有限公司 岩石化学腐蚀环境下co2三轴渗流测试系统及方法
CN114383948A (zh) * 2021-12-07 2022-04-22 中国矿业大学 一种测量不同加载条件下岩心参数的装置和方法
CN114383948B (zh) * 2021-12-07 2023-09-08 中国矿业大学 一种测量不同加载条件下岩心参数的装置和方法
CN114295528A (zh) * 2021-12-29 2022-04-08 西安建筑科技大学 一种研究非饱和土体气体渗透特性的实验系统及研究方法
CN114383992A (zh) * 2022-01-07 2022-04-22 核工业湖州勘测规划设计研究院股份有限公司 一种稀疏材料气体渗透率测量装置及方法

Also Published As

Publication number Publication date
CN105675469B (zh) 2018-03-06
WO2017128479A1 (zh) 2017-08-03
ZA201800361B (en) 2018-12-19

Similar Documents

Publication Publication Date Title
CN105675469A (zh) 岩石全自动气体渗透率测试系统及测算方法
CN110296921B (zh) 储层条件下稳态法页岩气体渗透率的测试装置及测试方法
CN103257089B (zh) 压力脉冲测量装置测量基质和裂缝渗透率的方法
CN104596905B (zh) 一种测定岩石破裂过程中渗透率的装置及其方法
CN104374683B (zh) 一种岩心孔隙压缩系数测试装置及其测试方法
CN101408493B (zh) 材料吸附量-变形-渗透系数测量的方法及装置
CN109001243B (zh) 一种采用低场核磁共振评价煤的动态水锁效应的方法与装置
CN106872328A (zh) 一种低渗透岩心孔隙度和渗透率的测试装置及测试方法
CN206920290U (zh) 一种低渗透致密砂岩应力敏感系数测量装置
CN110793901B (zh) 考虑束缚水的高温高压气藏渗透率流速敏感性测试方法
CN103226089B (zh) 一种页岩气体渗透率测定方法
CN109975140A (zh) 超临界二氧化碳脉冲致裂与渗透率测试一体化的实验装置及方法
CN203630018U (zh) 低渗透岩石渗透率非稳态测定装置
CN109470616B (zh) 岩石多功能渗流测试系统
CN110208164B (zh) 一种致密岩心渗透率测量装置及测量方法
CN104713812A (zh) 一种基于岩心气测渗透率测量装置的校正方法
CN112505085B (zh) 基于核磁共振的孔隙度有效应力系数测定方法
CN113866069A (zh) 一种页岩岩心渗透率实验装置和方法
Wang et al. Seepage law and permeability calculation of coal gas based on Klinkenberg effect
CN104713894B (zh) 核磁高压等温吸附装置
CN109813645A (zh) 一种低渗岩矿岩心柱塞的径向渗透率测量系统及方法
CN115046897A (zh) 基质-裂缝间非稳态传质效率及形状因子确定方法及装置
CN113624654B (zh) 岩石孔隙度测量装置及方法
CN110927359B (zh) 一种低渗透多孔介质取心过程中损失气含量实验测试装置及方法
CN110865010B (zh) 一种岩石流变加载条件下多气体渗流测试装置及测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant