CN105668607B - 一种纳米片状硫化铜材料的制备方法 - Google Patents

一种纳米片状硫化铜材料的制备方法 Download PDF

Info

Publication number
CN105668607B
CN105668607B CN201610012867.8A CN201610012867A CN105668607B CN 105668607 B CN105668607 B CN 105668607B CN 201610012867 A CN201610012867 A CN 201610012867A CN 105668607 B CN105668607 B CN 105668607B
Authority
CN
China
Prior art keywords
sulphur
hydro
nano
preparation
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610012867.8A
Other languages
English (en)
Other versions
CN105668607A (zh
Inventor
李喜飞
李德军
董立天
颜波
鄯慧
范林林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN201610012867.8A priority Critical patent/CN105668607B/zh
Publication of CN105668607A publication Critical patent/CN105668607A/zh
Application granted granted Critical
Publication of CN105668607B publication Critical patent/CN105668607B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种由纳米片构成的花状硫化铜的制备方法,该方法的原材料是铜箔和硫磺,将铜箔超声清洗处理后与研磨后的硫磺粉末混合置于无水乙醇中,再加入氟化氨得到前驱体溶液,溶液水热处理后,用去离子水离心分离,得到黑色沉淀;产物烘干后得到厚度10nm左右的片状硫化铜。本发明方法具有反应条件温和,反应周期短、操作步骤简单、重复性好、使用原料少且毒性小、形貌可控以及分散性好等优点,本产品还开发了一种厚度可控的纳米片状硫化铜,通过简单的调节水热反应的温度、时间以及反应物的进一步有效的调控纳米片的厚度。

Description

一种纳米片状硫化铜材料的制备方法
技术领域
本发明属于无机功能纳米结构材料制造技术领域,具体涉及纳米片状硫化铜材料的制备方法。
背景技术
半导体材料是介于导体和半导体之间的材料,它的能隙约为1~3eV,因此只要给予适当条件的能量激发,或是改变其能隙之间间距,就可以改变半导体材料的导电性,正因为这种特性使得半导体材料在各个领域有着广泛的应用,如大部分的电子产品。硫化铜是一种间接带隙的P型的半导体材料,具有优异的光学、电学和催化性能,它在金属导电方面、非线性光学材料方面、太阳能电池接收器、光学过滤器、催化剂等方面有着很广阔的应用前景。近年来,纳米材料特别是由一维、二维纳米材料构筑的具有特殊形貌的纳米结构由于具有优异的光学、电学、催化等性能以及在纳米器件上的潜在应用,引起了科技工作者的广泛关注。纳米材料至少在一个方向上的尺寸会小于100nm,这是它具有优异的性质的主要原因,随着材料尺寸的不断减小,纳米材料还会表现出一些独特的性能,例如,量子尺寸效应、小尺寸效应、表面和界面效应、量子隧道效应等,这些性质使得纳米材料在环境保护、国防科技、纺织业、精细化工等多个领域有着重要的应用,目前,多技术和方法也被发展用来制备微纳米结构的CuS,如水热法,微波辐射法,超声化学合成法,磁控溅射法,化学气相沉积法以及模板法等经常被使用于硫化铜的制备过程,到目前为止,各种结构和形貌的硫化铜已经被合成出来了,比如:纳米片、纳米花、纳米棒、纳米线等以及由纳米片交错聚集而成的不同纳米结构自组装体系。但这些方法或存在工艺复杂、难以实现工业化生产,或存在产品粒子形貌尺寸难以精确控制、产品质量差,或存在产品纯度低、生产成本高等缺陷。因而,寻求一种合适的制备方法显得尤为重要,水热法由于成本比较低,所得产物的分散性比较好,并且产物的纯度比较高,目前受到了研究者的广泛关注。国内外采用固态单质铜和单质硫作为反应物,利用水热的方法制备纳米硫化铜的方法还未见文献报道。
发明内容
本发明所要解决的技术问题是,提供一种制备工艺简单、成本低廉、形貌可控、环境污染低的硫化铜纳米片的制备方法。
本发明的方法一次包括以下步骤:
a. 将原料铜箔和硫磺按照一定的比例溶于50ml无水乙醇中,然后加入调整形貌的试剂。
b. 将上述混合物取40ml置于50ml的水热反应釜中,置于水热炉中40~180℃进行6h~20h的水热反应;
c. 水热反应结束后,将所得产物经离心分离后,分别用去离子水和无水乙醇反复洗涤,最后在60℃的烘箱中烘干12h得到最终产物。
所述的调整形貌的试剂为氟化氨。
优选的步骤a中,铜箔和硫磺的质量比为1:0.5~3以及氟化氨的质量为0.01~0.1g。步骤b中水热反应的时长是10~18h。
本发明的关键点在反应物铜箔和硫磺的质量比、水热反应时长和调整形貌剂的用量。经过实验分析发现铜箔和硫磺的质量比过大或过小会导致反应所制得的硫化铜纳米片的厚度较大;随着时长的逐渐增长,发现硫化铜纳米片的厚度逐渐减小,但超过14h后就会出现厚度增加的趋势;形貌调整剂氟化氨的用量直接导致合成样品是否成片。
本发明公开的纳米片状硫化铜材料的制备方法与现有技术相比所具有的积极效果在于:
本发明采用简单的水热合成法,引入形貌调整试剂以及简单的原料,简化
了制备工艺,降低了反应成本,并使得硫化铜的形貌可以控制,降低环境污染
程度,实现了绿色合成。
附图说明:
图1为本发明实施例八制得的硫化铜纳米片的XRD谱图;
图2为本发明实施例一制得的硫化铜纳米片微观形貌图(SEM);
图3为本发明实施例二制得的硫化铜纳米片微观形貌图(SEM);
图4为本发明实施例三制得的硫化铜纳米片微观形貌图(SEM);
图5为本发明实施例四制得的硫化铜纳米片微观形貌图(SEM);
图6为本发明实施例五制得的硫化铜纳米片微观形貌图(SEM);
图7为本发明实施例六制得的硫化铜纳米片微观形貌图(SEM);
图8为本发明实施例七制得的硫化铜纳米片微观形貌图(SEM);
图9为本发明实施例八制得的硫化铜纳米片微观形貌图(SEM)。
具体实施方式
下面结合实施例说明本发明,这里所述实施例的方案,不限制本发明,本领域的专业人员按照本发明的精神可以对其进行改进和变化,所述的这些改进和变化都应视为在本发明的范围内,本发明的范围和实质由权利要求来限定。其中铜箔、氟化氨、硫磺和所需试剂药品均为市售。
实施例1:
第一步:将原料铜箔和硫磺质量分别为9.8mg,5mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.05g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行8h的水热反应;
第三步:水热反应结束后,将所得产物经离心分离后,分别用去离子水和无水乙醇反复洗涤,最后在60℃的烘箱中烘干12h得到最终产物。
实施例2:
第一步:将原料铜箔和硫磺质量分别为9.8mg,7.5mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.09g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行10h的水热反应;第三步:同实施例一第三步。
实施例3:
第一步:将原料铜箔和硫磺质量分别为9.8mg,10mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.07g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行10h的水热反应;第三步:同实施例一第三步。
实施例4:
第一步:将原料铜箔和硫磺质量分别为9.8mg,15mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.09g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中100℃进行10h的水热反应;
第三步:同实施例一第三步。
实施例5:
第一步:将原料铜箔和硫磺质量分别为9.8mg,20mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.09g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中150℃进行10h的水热反应;
第三步:同实施例一第三步。
实施例6:
第一步:将原料铜箔和硫磺质量分别为9.8mg,7.5mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.04g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行8h的水热反应;
第三步:同实施例一第三步。
实施例7:
第一步:将原料铜箔和硫磺质量分别为9.8mg,7.5mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.06g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行12h的水热反应;
第三步:同实施例一第三步。
实施例8:
第一步:将原料铜箔和硫磺质量分别为9.8mg,7.5mg溶于25ml无水乙醇中,然后加入调整形貌的试剂0.09g氟化氨。
第二步:将上述混合物置于50ml的水热反应釜中,置于水热炉中60℃进行14h的水热反应;
第三步:同实施例一第三步。
结论: 9.8mg铜箔,7.5mg硫磺以及0.09g氟化氨溶于25ml无水乙醇中,在50ml的水热反应釜中,60℃进行14h的水热反应所获得的产物形貌最均匀。
实施例9
本发明制备的纳米片状硫化铜材料实际使用情况。
在染料工业中,排放的废水对环境造成了严重的污染,并且其中许多染料分子都是致癌物质。目前,人们常用的方法为生物化学方法,但是这些方法对染料分子的降解率比较低。随着光催化氧化技术的发展,许多科研工作者开始研究光催化氧化对亚甲基蓝、甲基橙、刚果红和罗丹明等染料分子的降解。我们的研究结果表明, 利用CuS的光催化氧化性能,我们可以降解大部分的染料分子生成为无害物质,达到处理染料废水的目的。而在我们在实验室环境下测试研究表明,CuS对光催化H2O2氧化分解亚甲基蓝染料具有良好的催化活性,经240min之后亚甲基蓝的脱色率高达94.77%,明显高于相应的块体材料
结论:随着工业迅速发展、经济的快速发展和自然资源利用过度,环境污染问题越来越严重。以半导体为基础的光催化材料近年来得到了迅速的发展。经验就发现,同一种催化剂,因形貌的差异,导致不同材料比表面积不同,机构状态不同,吸附污染物的性能也不同,最终使得不同形貌的同种材料的光催化活性差异很大。本发明利用化学方法成功合成了厚度较小的纳米片状硫化铜材料,并进行了一系列的研究,结果表明:本产品纳米片组成的多孔结构,使其具有较高的孔隙率,比表面积比较大,因此具有较强的光催化活性,较高的降解率。且合成方法简单、 成本比较低、所得产物的分散性比较好,产物的纯度比较高且对环境无污染,随着光催化越来越受人们的重视,有理由相信在不久的将来本发明将在工业领域得到广泛的应用。

Claims (2)

1.一种纳米片组装成的球状硫化铜材料的制备方法,其特征在于按如下步骤进行:
(1)以铜箔和硫磺作为原料,无水乙醇作为溶剂,然后加入调整形貌剂氟化氨,用量为0.01~0.1g;所述的铜箔与硫磺的质量比1:0.5-3;
(2)将上述混合物置于50ml的水热反应釜中,于40-180℃反应10~18h;
(3)将所得产物取出,经离心分离后,用去离子水反复洗涤,最后在烘箱中60℃干燥12h得到最终产物。
2.权利要求1所述的制备方法,其中采用9.8mg铜箔,7.5mg硫磺以及0.09g氟化氨溶于25ml无水乙醇中,在50ml的水热反应釜中,60℃进行14h的水热反应所获得的产物形貌最均匀。
CN201610012867.8A 2016-01-11 2016-01-11 一种纳米片状硫化铜材料的制备方法 Expired - Fee Related CN105668607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610012867.8A CN105668607B (zh) 2016-01-11 2016-01-11 一种纳米片状硫化铜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610012867.8A CN105668607B (zh) 2016-01-11 2016-01-11 一种纳米片状硫化铜材料的制备方法

Publications (2)

Publication Number Publication Date
CN105668607A CN105668607A (zh) 2016-06-15
CN105668607B true CN105668607B (zh) 2018-02-06

Family

ID=56299733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610012867.8A Expired - Fee Related CN105668607B (zh) 2016-01-11 2016-01-11 一种纳米片状硫化铜材料的制备方法

Country Status (1)

Country Link
CN (1) CN105668607B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658119B (zh) * 2018-05-21 2020-07-31 南京工业大学 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN114195181B (zh) * 2021-11-26 2023-08-01 长沙理工大学 一种微米级硫化铜纳米片的制备方法及硫化铜纳米片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792173A (zh) * 2010-02-08 2010-08-04 许昌学院 一种低温下控制合成片状CuxSy纳米晶光电薄膜的化学方法
CN102133534A (zh) * 2011-03-11 2011-07-27 许昌学院 具有三维骨架结构的CuS催化剂的制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381994B (zh) * 2008-03-21 2013-01-11 Tatung Co 多孔狀硫化銅奈微米空心球體及其製備方法
JP5669265B2 (ja) * 2011-06-06 2015-02-12 独立行政法人物質・材料研究機構 多孔性硫化銅、その製造方法およびその用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792173A (zh) * 2010-02-08 2010-08-04 许昌学院 一种低温下控制合成片状CuxSy纳米晶光电薄膜的化学方法
CN102133534A (zh) * 2011-03-11 2011-07-27 许昌学院 具有三维骨架结构的CuS催化剂的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Morphological control in solvothermal synthesis of copper sulphides on copper foil;S.Gorai等;《Materials Research Bulletin》;20060707;第42卷;第345-353页 *
硫化铜纳米晶体材料的研究进展;裴立宅等;《铜业工程》;20101231(第2期);第39-43页 *

Also Published As

Publication number Publication date
CN105668607A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Tan et al. Construction of Bi2O2CO3/Ti3C2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
Wang et al. Ferroelectric BaTiO3@ ZnO heterostructure nanofibers with enhanced pyroelectrically-driven-catalysis
Hou et al. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance
Pudukudy et al. Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity
Samsudin et al. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water
Liu et al. Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities
Wang et al. Enhanced visible-light responsive photocatalytic activity of Bi 25 FeO 40/Bi 2 Fe 4 O 9 composites and mechanism investigation
Liu et al. Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances
CN107020142B (zh) 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法
CN102580739B (zh) 一种石墨烯/钼酸银复合可见光催化剂及其制备方法
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN106902890B (zh) 一种Cu-BTC/钒酸铋/SWCNTs三元异质结构光催化剂及制备方法和应用
Bing et al. Hierarchically porous BiOBr/ZnAl1. 8Fe0. 2O4 and its excellent adsorption and photocatalysis activity
Sumathi et al. Fabrication of hexagonal disc shaped nanoparticles g-C3N4/NiO heterostructured nanocomposites for efficient visible light photocatalytic performance
Arumugam et al. Solvent effects on the properties of Bi 2 S 3 nanoparticles: Photocatalytic application
Wang et al. Construction of N-doped g-C3N4/NH2-MIL-125 (Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study
Pradhan et al. Fabrication of the mesoporous Fe@ MnO2NPs–MCM-41 nanocomposite: an efficient photocatalyst for rapid degradation of phenolic compounds
Chen et al. Study on carbon quantum dots/BiFeO 3 heterostructures and their enhanced photocatalytic activities under visible light irradiation
Li et al. Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO 4 under a broad-spectrum irradiation
Liu et al. Cu/C or Cu2O/C composites: selective synthesis, characterization, and applications in water treatment
Zhao et al. Synthesis of carbon-doped nanosheets m-BiVO 4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property
Lei et al. Fabrication and catalytic mechanism study of CeO2-Fe2O3-ZnO mixed oxides on double surfaces of polyimide substrate using ion-exchange technique
Fan et al. Preparation of g-C3N4/MoS2 composite material and its visible light catalytic performance
CN103157495A (zh) 一种Au/BiOBr0.2I0.8可见光催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180206

CF01 Termination of patent right due to non-payment of annual fee