CN105664906A - 一种ZnO反蛋白石结构光催化薄膜的制备方法 - Google Patents

一种ZnO反蛋白石结构光催化薄膜的制备方法 Download PDF

Info

Publication number
CN105664906A
CN105664906A CN201610046396.2A CN201610046396A CN105664906A CN 105664906 A CN105664906 A CN 105664906A CN 201610046396 A CN201610046396 A CN 201610046396A CN 105664906 A CN105664906 A CN 105664906A
Authority
CN
China
Prior art keywords
preparation
film
opal structure
microsphere
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610046396.2A
Other languages
English (en)
Inventor
刘志福
罗子芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201610046396.2A priority Critical patent/CN105664906A/zh
Publication of CN105664906A publication Critical patent/CN105664906A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/176Ultraviolet radiations, i.e. radiation having a wavelength of about 3nm to 400nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种ZnO反蛋白石结构光催化薄膜的制备方法。该方法首先以甲基丙烯酸甲酯、过硫酸铵为原料,制备聚甲基丙烯酸甲酯(PMMA)微球;然后将PMMA微球分散在水中,采用热蒸发自组装方式制备PMMA微球组装蛋白石薄膜;最后以PMMA微球组装蛋白石薄膜为模板,将硝酸锌水/乙醇溶液滴加到模板上,自然渗透后在室温中干燥,再经过高温煅烧,得到ZnO反蛋白石结构薄膜。本发明制备方法原料简单,制备周期较短,得到的蛋白石结构薄膜具有良好的光催化性能,可使亚甲基蓝在紫外光下完全降解,且利于回收,能反复使用,薄膜与基底之间有良好的结合力。

Description

一种ZnO反蛋白石结构光催化薄膜的制备方法
技术领域
本发明涉及一种ZnO反蛋白石结构光催化薄膜的制备方法,该方法在光子晶体、光催化降解有机污染物领域具有重要应用。
背景技术
基于反蛋白石结构的薄膜为光催化降解有机污染物提供了一种行之有效的新方法。利用这种反蛋白石结构的薄膜能有效提高光催化降有机污染物的效率。
基于反蛋白石结构的氧化锌薄膜为光催化降解有机污染物提供了一种新的途径,为发展高性能的光催化剂提供有用的信息。已发现的包括氧化锌在内的大多数光催化剂禁带宽度位于紫外区,只能吸收紫外光。然而提高催化剂对可见光的利用是提高催化效率的目前催化领域正在探索的问题。谢娟等在ActaPhys.-Chim.Sin.,2011,27(1):193-198中报道了利用胶体自组装法得到了粒径可控的蛋白石结构ZnO薄膜。所得的ZnO自组装薄膜具有可调控的可见光波段的光子带隙,实现ZnO在太阳光照射下光催化降解甲基橙溶液并取得良好的效果。3D反蛋白石结构是一种重复的面心立方的壳结构,相比于蛋白石结构的氧化锌薄膜,反蛋白石结构的氧化锌薄膜具有以下特点:同样具有可控的可见光波段的光子带隙;反蛋白石结构的氧化锌具有大量的有序的球形孔隙,由于其多孔特点,为吸附有机污染物提供很大的表面积,促进了物的运输提高了光捕获效率。此外,S.Meng在RSCAdv.,2013,3,17021.中报道了通过控制布拉格衍射光、多重散射和慢光子效应的光的传播,这种有序的3D反蛋白石结构能提供一个额外的光子效率以增加光和物质相互作用。以上作用说明3D反蛋白石结构作为催化剂有着一定的优势。
目前制备反蛋白石结构的方法有多种,包括垂直沉积法、电气化学法、化学气相沉积法等。垂直沉积法相较于电气化学法和化学沉积法有着操作简单、成本低廉等优点。
发明内容
为了克服现有技术的不足,本发明的目的在提供一种ZnO反蛋白石结构光催化薄膜的制备方法。其工艺简单,原料易得。本发明制备得到的反蛋白石结构的ZnO可用来提高光催化降解有机污染物效率。
本发明提供了一种ZnO反蛋白石结构光催化薄膜的制备方法,其是先以微乳液聚合法制备出聚甲基丙烯酸甲酯(PMMA)亚微米小球,再采用垂直沉积法自组装得到PMMA的薄膜,再以此为模板,制备出ZnO反蛋白石结构的薄膜。
本发明是这样实施的:先称量一定比例的甲基丙烯酸甲酯MMA、过硫酸铵水溶液置于容器中,采用微乳液聚合法进行反应,通过调节甲基丙烯酸甲酯与过硫酸铵的量的比例,得到不同粒径的PMMA亚微米小球,并将其分散到介电溶液中形成分散液;其次量取一定量的分散液于容器中,将玻璃片置于容器中,采用垂直沉积法制备得到PMMA小球自组装的蛋白石结构的薄膜;然后以此作为模板,将配置好的硝酸锌—水-乙醇溶液滴加到模板上进行渗透,常温干燥,再经过高温煅烧,得到ZnO反蛋白石结构薄膜。本发明的技术方案具体如下介绍。
一种ZnO反蛋白石结构光催化薄膜的制备方法,具体步骤如下:
(1)聚甲基丙烯酸甲酯PMMA微球的制备
以甲基丙烯酸甲酯MMA、过硫酸铵水溶液为起始原料,采用微乳液聚合法制备聚甲基丙烯酸甲酯PMMA微球;
(2)蛋白石结构薄膜的制备
先将聚甲基丙烯酸甲酯PMMA微球分散到高纯水中得到分散液,再将亲水处理后的玻璃片垂直置于容器中,通过垂直沉积法制得PMMA微球组装的薄膜,再在120~130℃温度下干燥30~40分钟,得到模板;
(3)反蛋白石结构氧化锌薄膜的制备
将硝酸锌、水和乙醇配成的溶液滴加到模板上进行渗透,常温干燥,然后在400~500℃温度下煅烧1~2h,再自然降至室温,得到ZnO反蛋白石结构光催化薄膜。
上述步骤(1)中,过硫酸铵水溶液的浓度为8-10wt%,甲基丙烯酸甲酯MMA与过硫酸铵水溶液的体积比为4:5~15:5。
上述步骤(1)中,微乳液聚合法中的反应温度为80~100℃,反应时间为2~3h。
上述步骤(1)中,得到的聚甲基丙烯酸甲酯PMMA微球的粒径为250~500nm。
上述步骤(2)中,聚甲基丙烯酸甲酯PMMA微球在高纯水的质量百分数为0.1%~2%。
上述步骤(2)中,玻璃片的亲水处理方法如下:先用丙酮超声10~20min,再用乙醇超声10~20min,之后用过氧化氢-硫酸溶液处理10-20min,优选的,过氧化氢和硫酸的体积比3:2.
上述步骤(2)中,垂直沉积法的温度为50~60℃,时间为2~3天。
上述步骤(3)中,硝酸锌和乙醇的质量体积比为0.5:3~3:3g/ml,乙醇和水的体积比为4:2-2:2。
上述步骤(3)中,以1~2℃/min的升温速率升到400~500℃。
本发明的有益效果在于:本发明制备方法原料简单,制备周期较短,得到的蛋白石结构薄膜具有良好的光催化性能,可使亚甲基蓝在紫外光下完全降解,且利于回收,能反复使用;此外薄膜与基底之间有良好的结合力,对研究光子晶体结构增强光催化降解有机污染物性能具有重要的参考价值。
附图说明
图1为不同放大倍数的PMMA胶体球自组装扫描电镜图。
图2为不同粒径PMMA胶体球组装薄膜的自组装数码照片图。
图3为不同放大倍数的ZnO反蛋白石结构的扫描电镜图。
图4为ZnO反蛋白石结构薄膜的XRD图。
图5为不同催化时间催化降解有机污染物(亚甲基蓝)的紫外-可见光谱图(a、暗吸附;b,10min;c,20min;d,30min;e,40min;f,50min;g,60min;h,70min;i,80min;j,90min;k,100min;l,110min;)。
图6为光催化降解有机污染物(亚甲基蓝)浓度比图。
具体实施方式
下面结合附图和实施例对本发明技术方案进行详细阐述。
实施例1
取甲基丙烯酸甲酯和10wt%过硫酸铵水溶液,其体积比为4:5,为起始原料,采用微乳液聚合法在80℃下反应3h,通入氮气,制备得到PMMMA(平均粒径为300nm)。按0.1%质量百分比将其分散到高纯水中得到分散液。取一定量分散液置于容器中,将进行过处理的玻璃片垂直置于容器中,通过垂直沉积法(温度50℃,时间3d)自组装得到PMMA亚微米小球的蛋白石结构薄膜,令其高温120℃干燥40min,以此薄膜作为模板。将溶有0.5g硝酸锌的100ml乙醇-水(体积比2:3)溶液滴加到模板上进行渗透,将其常温干燥,再经过高温400℃(升温速率为1℃/min,保温时间为2h,自然降温)煅烧,得到氧化锌的反蛋白石结构薄膜。图1是PMMA小球的不同放大倍数扫描电镜图。
实施例2
取甲基丙烯酸甲酯和10wt%过硫酸铵水溶液,其体积比为10:5,为起始原料,采用微乳液聚合法在90℃下反应2h,通入氮气,制备得到PMMMA(平均粒径为320nm)。按0.1%质量百分比将其分散到高纯水中得到分散液。取一定量分散液置于容器中,将进行过处理的玻璃片垂直置于容器中,通过垂直沉积法(温度60℃,时间2d)自组装得到PMMA亚微米小球的蛋白石结构薄膜,令其高温120℃干燥40min,以此薄膜作为模板。将溶有0.5g硝酸锌的100ml乙醇-水(体积比2:3)溶液滴加到模板上进行渗透,将其常温干燥,再经过高温500℃(升温速率为1℃/min,保温时间为2h,自然降温)煅烧,得到氧化锌的反蛋白石结构薄膜。图2是不同粒径PMMA胶体球自组装数码照片图;图3是不同放大倍数的ZnO反蛋白石结构的扫描电镜图。
实施例3
取甲基丙烯酸甲酯和10wt%过硫酸铵水溶液,其体积比为15:5,为起始原料,采用微乳液聚合法在90℃下反应2h,通入氮气,制备得到PMMMA(平均粒径为450nm)。按0.1%质量百分比将其分散到高纯水中得到分散液。取一定量分散液置于容器中,将进行过处理的玻璃片垂直置于容器中,通过垂直沉积法(温度50℃,时间3d)自组装得到PMMA亚微米小球的蛋白石结构薄膜,令其高温130℃干燥30min,以此薄膜作为模板。将溶有3g硝酸锌的100ml乙醇-水(体积比2:3)溶液滴加到模板上进行渗透,将其常温干燥,再经过高温450℃(升温速率为1℃/min,保温时间为2h,自然降温)煅烧,得到氧化锌的反蛋白石结构薄膜。图4是ZnO反蛋白石结构薄膜的XRD图。
应用实施例
测试条件:紫外光照射范围(30-800nm),亚甲基蓝浓度为5ppm,图5是催化降解有机污染物(亚甲基蓝)的紫外-可见光谱图,图中664nm处为亚甲基蓝的特征吸收峰,随着催化时间的延长,特征峰值逐渐降低,经过110min降解效率接近100%。说明有机物被有效降解;图6是光催化降解有机污染物(亚甲基蓝)浓度比图,随着时间的推移,亚甲基蓝浓度逐渐降低;同时从光催化降解有机污染物实验取样数码照片看,随着催化时间的推移,蓝色逐渐变淡,也说明浓度逐渐降低。

Claims (9)

1.一种ZnO反蛋白石结构光催化薄膜的制备方法,其特征在于,具体步骤如下:
(1)聚甲基丙烯酸甲酯PMMA微球的制备
以甲基丙烯酸甲酯MMA、过硫酸铵水溶液为起始原料,采用微乳液聚合法制备聚甲基丙烯酸甲酯PMMA微球;
(2)蛋白石结构薄膜的制备
先将聚甲基丙烯酸甲酯PMMA微球分散到高纯水中得到分散液,再将亲水处理后的玻璃片垂直置于容器中,通过垂直沉积法制得PMMA微球组装的薄膜,再在120~130℃温度下干燥30~40分钟,得到模板;
(3)反蛋白石结构氧化锌薄膜的制备
将硝酸锌、水和乙醇配成的溶液滴加到模板上进行渗透,常温干燥,然后在400~500℃温度下煅烧1~2h,再自然降至室温,得到ZnO反蛋白石结构光催化薄膜。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,过硫酸铵水溶液的浓度为8-10wt%,甲基丙烯酸甲酯MMA与过硫酸铵水溶液的体积比为4:5~15:5。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,微乳液聚合法中的反应温度为80~100℃,反应时间为2~3h。
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,得到的聚甲基丙烯酸甲酯PMMA微球的粒径为250~500nm。
5.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,聚甲基丙烯酸甲酯PMMA微球在高纯水的质量百分数为0.1%~2%。
6.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,玻璃片的亲水处理方法如下:先用丙酮超声10~20min,再用乙醇超声10~20min,之后用过氧化氢-硫酸溶液处理10-20min。
7.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,垂直沉积法的温度为50~60℃,时间为2~3天。
8.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,硝酸锌和乙醇的质量体积比为0.5:3~3:3g/ml,乙醇和水的体积比为4:2-2:2。
9.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,以1~2℃/min的升温速率升到400~500℃。
CN201610046396.2A 2016-01-24 2016-01-24 一种ZnO反蛋白石结构光催化薄膜的制备方法 Pending CN105664906A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610046396.2A CN105664906A (zh) 2016-01-24 2016-01-24 一种ZnO反蛋白石结构光催化薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610046396.2A CN105664906A (zh) 2016-01-24 2016-01-24 一种ZnO反蛋白石结构光催化薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN105664906A true CN105664906A (zh) 2016-06-15

Family

ID=56302346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610046396.2A Pending CN105664906A (zh) 2016-01-24 2016-01-24 一种ZnO反蛋白石结构光催化薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105664906A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381520A (zh) * 2016-08-29 2017-02-08 浙江理工大学 一种紫外辐照制备反蛋白石结构光子晶体的方法
CN106835281A (zh) * 2017-01-05 2017-06-13 南阳师范学院 一种钒酸钇三维反蛋白石光子晶体的制备方法
CN106835277A (zh) * 2017-01-05 2017-06-13 南阳师范学院 一种氧化锌反蛋白石光子晶体的制备及修饰方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487472A (zh) * 2013-09-10 2014-01-01 扬州大学 金属氧化物反蛋白石结构气敏元件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487472A (zh) * 2013-09-10 2014-01-01 扬州大学 金属氧化物反蛋白石结构气敏元件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUGANG MENG ET AL.: ""Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal"", 《RSC ADVANCES》 *
张辉等: ""过渡金属氧化物反蛋白石及其在光(电)化学中应用"", 《化学进展》 *
钱汉英等: "《塑料加工实用技术问答》", 31 July 2001 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381520A (zh) * 2016-08-29 2017-02-08 浙江理工大学 一种紫外辐照制备反蛋白石结构光子晶体的方法
CN106835281A (zh) * 2017-01-05 2017-06-13 南阳师范学院 一种钒酸钇三维反蛋白石光子晶体的制备方法
CN106835277A (zh) * 2017-01-05 2017-06-13 南阳师范学院 一种氧化锌反蛋白石光子晶体的制备及修饰方法

Similar Documents

Publication Publication Date Title
Yu et al. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review
Qiao et al. Facile formation of mesoporous BiVO4/Ag/AgCl heterostructured microspheres with enhanced visible-light photoactivity
Gonçalves et al. Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production
Tong et al. Nano‐photocatalytic materials: possibilities and challenges
Seadira et al. Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol
Kumar et al. Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures
Xie et al. Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity
Liang et al. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition
Huang et al. Ultrasound-assisted fabrication of hierarchical rodlike graphitic carbon nitride with fewer defects and enhanced visible-light photocatalytic activity
CN103657619B (zh) 一种尺寸可控的二氧化钛纳米片光催化材料的制备方法
Manwar et al. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation
Chuaicham et al. Importance of ZnTiO3 phase in ZnTi-mixed metal oxide photocatalysts derived from layered double hydroxide
Liu et al. Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis
Sarkar et al. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property
Rahul et al. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis
Lin et al. Cadmium sulfide 3D photonic crystal with hierarchically ordered macropores for highly efficient photocatalytic hydrogen generation
CN103143379A (zh) 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂的方法
CN106807430B (zh) 具有特殊包覆结构的g-C3N4@硅藻土复合光催化剂的制备方法
CN105664906A (zh) 一种ZnO反蛋白石结构光催化薄膜的制备方法
CN110575832A (zh) 银-二氧化钛-纳米金刚石复合光催化剂的制备方法及其应用
Neto et al. Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design
CN108906085A (zh) 一种Bi2S3/BiOBr复合光催化材料的制备方法及其应用
Zhao et al. Carbonized polymer dots/TiO 2 photonic crystal heterostructures with enhanced light harvesting and charge separation for efficient and stable photocatalysis
CN103878001A (zh) 一种氟硼共掺杂TiO2纳米片的制备方法及用途
Xue et al. Controlling self-assembly of cellulose nanocrystal to synergistically regulate (001) reactive facets and hierarchical pore structure of anatase nano-TiO2 for high photocatalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160615