CN105664885A - 利用pH调节的磁性金属-有机骨架材料去除染料的方法 - Google Patents

利用pH调节的磁性金属-有机骨架材料去除染料的方法 Download PDF

Info

Publication number
CN105664885A
CN105664885A CN201610214621.9A CN201610214621A CN105664885A CN 105664885 A CN105664885 A CN 105664885A CN 201610214621 A CN201610214621 A CN 201610214621A CN 105664885 A CN105664885 A CN 105664885A
Authority
CN
China
Prior art keywords
organic framework
framework material
magnetic
magnetic metal
dyestuff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610214621.9A
Other languages
English (en)
Other versions
CN105664885B (zh
Inventor
陈立钢
刘浩驰
孙晓琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN201610214621.9A priority Critical patent/CN105664885B/zh
Publication of CN105664885A publication Critical patent/CN105664885A/zh
Application granted granted Critical
Publication of CN105664885B publication Critical patent/CN105664885B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

利用pH调节的磁性金属-有机骨架材料去除染料的方法,它涉及一种去除水体中染料的方法。本发明目的是要解决现有染料吸附剂不易回收、吸附量低,吸附染料种类单一的问题。方法:采用共沉淀法制备Fe3O4,然后将其表面进行改性,生成硅烷化的磁性SiO2,并与金属-有机骨架材料进行结合,其中金属-有机骨架材料由铝和氨基对苯二甲酸构建而成;通过调节pH值,使得制备的磁性金属-有机骨架材料作为一种新型的吸附剂,可以吸附不同种类的染料。本发明不仅制备工艺简单,而且所制备的磁性金属-有机骨架材料具有比表面积大、吸附容量高、可磁分离再生利用等优点。

Description

利用pH调节的磁性金属-有机骨架材料去除染料的方法
技术领域
本发明涉及一种去除水体中染料的方法。
背景技术
现代工业生产每天都会排出大量包含各种类型的染料废水。目前,染料废水的处理方法主要有物理法、吸附法和生物法等,其中生物法降解缓慢,物理法不能彻底降解污染物。相比之下,吸附法具有成本低、处理量大、操作简便、选择性高和通用性好等独特优点,在小规模染料废水处理领域具有一定的优势。
金属-有机骨架也称多孔配位聚合物,是由金属离子或簇和有机配体通过配位作用自组装形成的网状骨架材料。与传统的吸附剂材料相比,金属-有机骨架材料的优势在于其有机配体种类繁多,可形成不同的结构类型,孔径大小可调控,较大的比表面积,以及特殊的金属中心(饱和或不饱和金属位点)。CN104497055A公布了一种金属-有机骨架材料的制备方法,并将其应用于亚甲基蓝的吸附,但所制备的吸附剂存在不易回收,容易造成二次污染等问题。CN104030389B公布了一种首先制备出金属-有机骨架材料,然后再将金属-有机骨架材料与铁盐、还原剂等进行二次水热反应,从而制备出磁性金属-有机骨架材料的方法,并应用于水中染料的去除。虽然该专利成功制备出能够吸附染料的磁性金属-有机骨架材料,但是由于Fe3O4沉淀到金属-有机骨架材料表面,导致材料的部分孔道堵塞,从而比表面积变小,通过羧基的吸附也使得材料的吸附量不是非常理想。本发明在合成材料的过程中,首先制备了具有超顺磁性的Fe3O4,然后在Fe3O4表面包覆SiO2壳层,制备出磁性SiO2,最后在磁性SiO2表面原位合成出磁性金属-有机骨架材料,所合成的材料孔道不会发生变化,并充分考虑了吸附剂的zeta电位、化学吸附能力和磁性能,克服了原有吸附剂存在的缺陷。首先,本吸附剂具有较强的稳定性,将磁性金属-有机骨架材料进行氨基化修饰,使得其与有机染料的结合更为容易,从而进一步增强对有机染料的吸附能力。其次,将金属-有机骨架材料与Fe3O4结合,大大缩短了分离时间,易于回收处理。最后,本材料具有广泛的应用性,通过pH的调节,可以吸附不同种类的有机染料,不再局限于单一染料的去除,具有更强的适用性。
发明内容
本发明目的是要解决现有染料吸附剂不易回收、吸附量低,吸附染料种类单一的问题,而提供利用pH调节的磁性金属-有机骨架材料去除染料的方法。
一种磁性金属-有机骨架材料的制备方法,具体是按以下步骤完成的:
一、采用化学共沉淀法制备Fe3O4:在N2的保护下,将FeCl2·4H2O和FeCl3·6H2O溶解于蒸馏水中,在磁力搅拌的作用下充分混合;将上述溶液加热到80℃~90℃,逐滴加入NH3·H2O,在400rmp~600rmp的转速条件下,反应1h~2h;反应完成后,通过磁铁分离,并用蒸馏水反复洗涤至溶液呈中性,最后真空干燥得到Fe3O4;步骤一中所述的FeCl2·4H2O与FeCl3·6H2O的摩尔比为1:(1.9~2);步骤一中所述的FeCl2·4H2O与NH3·H2O的摩尔比为1:(8~9);
二、磁性SiO2的制备:取步骤一中制得的Fe3O4置于三口瓶中,依次加入体积分数为20%~50%的乙醇水溶液,NH3·H2O和正硅酸四乙酯,在30℃~40℃,转速为200rmp~300rmp的条件下反应20h~40h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗产物至溶液呈中性,真空干燥后得到磁性SiO2;步骤二中所述的Fe3O4的质量与体积分数为20%~50%的乙醇水溶液的体积比为(0.2g~2g):100mL;步骤二中所述的NH3·H2O与体积分数为20%~50%的乙醇水溶液的体积比为(2~4):100;步骤二中所述的正硅酸四乙酯与体积分数为20%~50%的乙醇水溶液的体积比为(3~5):100;
三、磁性SiO2的硅烷偶联化:将步骤二制得的磁性SiO2置于三口瓶中,向其中加入蒸馏水和3-氨基丙基三乙氧基硅烷,并将三口瓶置于55℃~65℃水浴锅中,在转速为200rpm~300rpm的条件下反应5h~6h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗至溶液呈中性,真空干燥后得到硅烷偶联化的磁性SiO2;步骤三中所述的磁性SiO2的质量与蒸馏水的体积比为1g:(100mL~200mL);步骤三中所述的磁性SiO2的质量与3-氨基丙基三乙氧基硅烷的体积比为1g:(1mL~5mL);
四、磁性金属-有机骨架材料的制备:将2-氨基对苯二甲酸和AlCl3·6H2O分别溶于N,N-二甲基甲酰胺中;然后将2-氨基对苯二甲酸溶液逐滴加入到AlCl3·6H2O溶液中,并将步骤三制得的硅烷偶联化的磁性SiO2加入到混合物中,超声30min~60min,将其移入到反应釜中,110℃~130℃加热反应9h~11h;反应完成后,利用磁铁分离产物,用N,N-二甲基甲酰胺、蒸馏水分别洗涤2~4次;将产物放入甲醇中活化,温度为80℃~90℃,活化10h~12h,用以除去磁性金属-有机骨架材料孔道中残余的N,N-二甲基甲酰胺和2-氨基对苯二甲酸;分别用乙醇、蒸馏水依次洗涤2~4次,然后在温度为50℃~70℃下对产物进行真空干燥10h~15h,即得到磁性金属-有机骨架材料;步骤四中所述的2-氨基对苯二甲酸的质量与N,N-二甲基甲酰胺的体积比为(1.5g~2.0g):100mL;步骤四中所述的AlCl3·6H2O的质量与N,N-二甲基甲酰胺的体积比为(1.2g~1.5g):100mL。
上述磁性金属-有机骨架材料在去除染料中的应用,具体是按照以下步骤进行:调节含有染料的待处理水体的pH,其中调节阳离子染料时,pH调节范围是10~11;调节阴离子染料时,pH调节范围是3~10;然后向水体中加入磁性金属-有机骨架材料,在搅拌速度为300rpm~500rpm下搅拌2min~150min,利用磁铁进行磁性分离,即完成待处理水体的去除分离染料过程,得到处理后水体;所述的磁性金属-有机骨架材料的质量与待处理水体的体积比为1g:(3L~5L)。
上述染料为阴阳离子染料,其中阴离子染料为偶氮荧光桃红、甲基橙、胭脂红或日落黄,阳离子染料为维多利亚蓝B、孔雀石绿、亚甲基蓝或罗丹明B。
本发明优点:1、本发明制备得到的磁性金属-有机骨架材料具备磁性材料的超顺磁性,其饱和磁化强度可达15emu·g-1~20emu·g-1,无需离心、过滤等手段,利用磁分离即可实现水中污染物快速的分离,且去除染料所需时间较短,30min内即可完成去除,可作为一种性能优异的吸附剂用于环境水中染料的吸附去除;2、本发明在材料的制备过程中,金属-有机骨架材料的孔道结构没有发生变化,使得制备得到的最终产物磁性金属-有机骨架材料,仍然保留较大的比表面积,为250.0m2·g-1~300.0m2·g-1,且对该材料进行氨基化的修饰,使得其对阴阳离子染料的吸附量进一步增大,且该材料可以重复使用5次以上;3、本发明制备得到的磁性金属-有机骨架材料在应用过程中,在静电作用、π-π共轭作用,疏水作用等影响下,通过pH的调节,可以在不同条件下吸附不同种类的染料,制备的磁性金属-有机骨架材料的等电点为10,当pH在3-10之间时,材料表面呈现正电性,对阴离子染料有较好的吸附效果,当pH大于10时,材料表面呈现负电性,对阳离子染料有较好的吸附效果;例如当pH=3时,阴离子染料偶氮荧光桃红的去除率可以达到95%以上,当pH=11时,阳离子染料维多利亚蓝B的去除率可以达到95%以上。
附图说明
图1是实施例1制备得到的磁性金属-有机骨架材料的扫描电镜图;由图1可以看出,该材料粒径均一;
图2是实施例1制备得到的磁性金属-有机骨架材料的X射线衍射图;由图2可知,该材料具有良好的晶型结构;
图3是实施例1制备得到的磁性金属-有机骨架材料的磁滞回线;通过图3可知磁性金属-有机骨架材料的饱和磁场强度为18.73emu·g-1,说明该种材料具有良好的磁响应性,且表现出较好的超顺磁性,故在外加磁场的作用下可实现快速的分离;
图4是实施例1制备得到的磁性金属-有机骨架材料的氮气吸附-脱附等温线;由图4可知,通过吸附数据计算得到磁性金属-有机骨架材料的比表面积为285.61m2·g-1
图5是实施例1制备的磁性金属-有机骨架材料对阴离子染料偶氮荧光桃红的动力学吸附曲线;采用紫外可见分光光度计检测处理后水体,检测波长为531nm,根据公式计算Qt,其中Qt为磁性金属-有机骨架材料在不同时间对偶氮荧光桃红的吸附量,C0为偶氮荧光桃红的初始浓度,Ce为偶氮荧光桃红的平衡浓度,V为样品溶液的体积,m为磁性金属-有机骨架材料的质量,经计算可得吸附5min、10min、30min、60min、90min、120min和150min后的Qt分别为28.40mg·g-1,51.28mg·g-1,53.12mg·g-1,53.44mg·g-1,53.6mg·g-1,54.16mg·g-1和54.40mg·g-1;以Qt为纵坐标、以时间t为横坐标绘制成动力学吸附曲线,通过Origin7.5作图软件进行作图,结果如图5所示;通过图5可以得知本实验合成的磁性金属-有机骨架材料对偶氮荧光桃红的吸附动力学较快,在10min内即可达到吸附平衡;
图6是实施例1制备的磁性金属-有机骨架材料吸附阴离子染料偶氮荧光桃红的二级动力学拟合曲线;根据动力学二级方程对图6中的吸附动力学数据进行拟合,其中,Qt表示磁性金属-有机骨架材料对偶氮荧光桃红在不同时间的吸附量,Q2cal表示动力学二级反应方程的理论吸附量,k2表示动力学二级反应速率常数,t表示时间;以t/Qt为纵坐标、以时间t为横坐标,通过Origin7.5作图软件进行拟合,结果如图6所示,得到二级动力学拟合曲线的线性方程的相关系数R2为0.9995,因此可知本发明利用磁性金属-有机骨架材料去除水体中染料偶氮荧光桃红的方法符合二级动力学拟合结果;
图7是实施例1制备的磁性金属-有机骨架材料在不同pH条件下对阴离子染料偶氮荧光桃红吸附能力的研究;以去除率为纵坐标、pH为横坐标,通过Origin7.5作图软件进行作图,结果如图7所示,当pH=3时,材料对偶氮荧光桃红的去除效果较好,去除率为95.1%;
图8是实施例1制备的磁性金属-有机骨架材料对阳离子染料维多利亚蓝B的动力学吸附曲线;采用紫外可见分光光度计检测处理后水体,检测波长为614nm,根据公式计算Qt,其中Qt为磁性金属-有机骨架材料在不同时间对维多利亚蓝B的吸附量,C0为维多利亚蓝B的初始浓度,Ce为维多利亚蓝B的平衡浓度,V为样品溶液的体积,m为磁性金属-有机骨架材料的质量,经计算可得吸附5min、10min、30min、60min、90min、120min和150min后的Qt分别为31.68mg·g-1,46.56mg·g-1,58.52mg·g-1,59.88mg·g-1,60.04mg·g-1,60.08mg·g-1和60.4mg·g-1;以Qt为纵坐标、以时间t为横坐标绘制成动力学吸附曲线图,通过Origin7.5作图软件进行作图,结果如图8所示,通过图8可以得知本实验合成的磁性金属-有机骨架材料对维多利亚蓝B的吸附动力学较快,在30min内即可达到吸附平衡;
图9是实施例1制备的磁性金属-有机骨架材料吸附阳离子染料维多利亚蓝B的二级动力学拟合曲线;根据动力学二级方程对图9中的吸附动力学数据进行拟合,其中,Qt表示磁性金属—有机骨架材料对维多利亚蓝B在不同时间的吸附量,Q2cal表示动力学二级反应方程的理论吸附量,k2表示动力学二级反应速率常数,t表示时间;以t/Qt为纵坐标、以时间t为横坐标,通过Origin7.5作图软件进行拟合,结果如图9所示,得到二级动力学拟合曲线的线性方程的相关系数R2为0.9996,因此可知本发明利用磁性金属-有机骨架材料去除水体中染料维多利亚蓝B的方法符合二级动力学拟合结果;
图10是实施例1制备的磁性金属—有机骨架材料在不同pH条件下阳离子染料维多利亚蓝B吸附能力的研究;以吸附率为纵坐标、pH为横坐标,通过Origin7.5作图软件进行作图,结果如图10所示,当pH=11时,材料对维多利亚蓝B的去除效果较好,去除率为95.6%。
具体实施方式
实施例1:
本实施方式是磁性金属-有机骨架材料的制备,包括如下步骤:
一、采用化学共沉淀法制备Fe3O4:在N2的保护下,将0.01molFeCl2·4H2O和0.02molFeCl3·6H2O溶解于100mL蒸馏水中,在磁力搅拌的作用下充分混合;将上述溶液加热到80℃,逐滴加入0.08molNH3·H2O,在500rpm的转速条件下,反应1h;反应完成后,通过磁铁分离,并用蒸馏水反复洗涤至溶液呈中性,最后真空干燥得到Fe3O4
二、磁性SiO2的制备:取0.5g步骤一中制得的Fe3O4置于三口瓶中,依次加入150mL体积分数为50%的乙醇水溶液,3mLNH3·H2O和5mL正硅酸四乙酯,在40℃,转速为300rpm的条件下反应24h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗产物至溶液呈中性,真空干燥后得到磁性SiO2
三、磁性SiO2的硅烷偶联化:取0.5g步骤二制得的磁性SiO2置于三口瓶中,向其中加入100mL蒸馏水和2mL3-氨基丙基三乙氧基硅烷,并将三口瓶置于60℃水浴锅中,在转速为300rpm的条件下反应5h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗至溶液呈中性,真空干燥后得到硅烷偶联化的磁性SiO2
四、磁性金属-有机骨架材料的制备:将0.56g2-氨基对苯二甲酸溶于30mLN,N-二甲基甲酰胺,将0.51gAlCl3·6H2O溶于40mLN,N-二甲基甲酰胺中;然后将2-氨基对苯二甲酸溶液逐滴加入到AlCl3·6H2O溶液中,并将步骤三制得的硅烷偶联化的磁性SiO2加入到混合物中,超声30min,将其移入到反应釜中,120℃加热反应10h;反应完成后,利用磁铁分离产物,用N,N-二甲基甲酰胺、蒸馏水分别洗涤3次,将产物放入甲醇中活化,温度为80℃,活化10h,用以除去磁性金属-有机骨架材料孔道中残余的N,N-二甲基甲酰胺和2-氨基对苯二甲酸;分别用乙醇、蒸馏水依次洗涤3次,然后在温度为60℃下对产物进行真空干燥10h,即得到磁性金属-有机骨架材料。
实施例2:
本实施例将磁性金属-有机骨架材料作为吸附剂用于水样中阴离子染料偶氮荧光桃红的吸附,按照以下步骤进行:
调节含有阴离子染料偶氮荧光桃红的待处理水体的pH为3,然后向400mL该水体中加入100mg实施例1制得的磁性金属-有机骨架材料,在搅拌速度为300rpm下搅拌10min,利用磁铁进行磁性分离,即完成待处理水体的去除染料处理,得到处理后水体。
实施例3:
本实施例磁性金属-有机骨架材料作为吸附剂用于水样中阳离子染料维多利亚蓝B的吸附,按照以下步骤进行:
调节含有阳离子染料维多利亚蓝B的待处理水体的pH为11,然后向400mL该水体中加入100mg实施例1制得的磁性金属-有机骨架材料,在搅拌速度为300rpm下搅拌30min,利用磁铁进行磁性分离,即完成待处理水体的去除染料处理,得到处理后水体。

Claims (3)

1.一种磁性金属-有机骨架材料的制备方法,其特征在于磁性金属-有机骨架材料的制备方法是按以下步骤完成的:
一、采用化学共沉淀法制备Fe3O4:在N2的保护下,将FeCl2·4H2O和FeCl3·6H2O溶解于蒸馏水中,在磁力搅拌的作用下充分混合;将上述溶液加热到80℃~90℃,逐滴加入NH3·H2O,在400rmp~600rmp的转速条件下,反应1h~2h;反应完成后,通过磁铁分离,并用蒸馏水反复洗涤至溶液呈中性,最后真空干燥得到Fe3O4;步骤一中所述的FeCl2·4H2O与FeCl3·6H2O的摩尔比为1:(1.9~2);步骤一中所述的FeCl2·4H2O与NH3·H2O的摩尔比为1:(8~9);
二、磁性SiO2的制备:取步骤一中制得的Fe3O4置于三口瓶中,依次加入体积分数为20%~50%的乙醇水溶液,NH3·H2O和正硅酸四乙酯,在30℃~40℃,转速为200rmp~300rmp的条件下反应20h~40h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗产物至溶液呈中性,真空干燥后得到磁性SiO2;步骤二中所述的Fe3O4的质量与体积分数为20%~50%的乙醇水溶液的体积比为(0.2g~2g):100mL;步骤二中所述的NH3·H2O与体积分数为20%~50%的乙醇水溶液的体积比为(2~4):100;步骤二中所述的正硅酸四乙酯与体积分数为20%~50%的乙醇水溶液的体积比为(3~5):100;
三、磁性SiO2的硅烷偶联化:将步骤二制得的磁性SiO2置于三口瓶中,向其中加入蒸馏水和3-氨基丙基三乙氧基硅烷,并将三口瓶置于55℃~65℃水浴锅中,在转速为200rpm~300rpm的条件下反应5h~6h;反应完成后,利用磁铁分离产物,用蒸馏水反复清洗至溶液呈中性,真空干燥后得到硅烷偶联化的磁性SiO2;步骤三中所述的磁性SiO2的质量与蒸馏水的体积比为1g:(100mL~200mL);步骤三中所述的磁性SiO2的质量与3-氨基丙基三乙氧基硅烷的体积比为1g:(1mL~5mL);
四、磁性金属-有机骨架材料的制备:将2-氨基对苯二甲酸和AlCl3·6H2O分别溶于N,N-二甲基甲酰胺中;然后将2-氨基对苯二甲酸溶液逐滴加入到AlCl3·6H2O溶液中,并将步骤三制得的硅烷偶联化的磁性SiO2加入到混合物中,超声30min~60min,将其移入到反应釜中,110℃~130℃加热反应9h~11h;反应完成后,利用磁铁分离产物,用N,N-二甲基甲酰胺、蒸馏水分别洗涤2~4次;将产物放入甲醇中活化,温度为80℃~90℃,活化10h~12h,用以除去磁性金属-有机骨架材料孔道中残余的N,N-二甲基甲酰胺和2-氨基对苯二甲酸;分别用乙醇、蒸馏水依次洗涤2~4次,然后在温度为50℃~70℃下对产物进行真空干燥10h~15h,即得到磁性金属-有机骨架材料;步骤四中所述的2-氨基对苯二甲酸的质量与N,N-二甲基甲酰胺的体积比为(1.5g~2.0g):100mL;步骤四中所述的AlCl3·6H2O的质量与N,N-二甲基甲酰胺的体积比为(1.2g~1.5g):100mL。
2.根据权利要求1所述的制备方法得到的磁性金属-有机骨架材料的应用,其特征在于磁性金属-有机骨架材料作为吸附剂用于待处理水体中染料的去除分离;其具体方法,按照以下步骤进行:调节含有染料的待处理水体的pH,其中调节阳离子染料时,pH调节范围是10~11;调节阴离子染料时,pH调节范围是3~10;然后向水体中加入磁性金属-有机骨架材料,在搅拌速度为300rpm~500rpm下搅拌2min~150min,利用磁铁进行磁性分离,即完成待处理水体的去除分离染料过程,得到处理后水体;所述的磁性金属-有机骨架材料的质量与待处理水体的体积比为1g:(3L~5L)。
3.根据权利要求2所述的一种磁性金属-有机骨架材料的应用,其特征在于所述的染料为阴阳离子染料,其中阴离子染料为偶氮荧光桃红、甲基橙、胭脂红或日落黄,阳离子染料为维多利亚蓝B、孔雀石绿、亚甲基蓝或罗丹明B。
CN201610214621.9A 2016-04-08 2016-04-08 利用pH调节的磁性金属‑有机骨架材料去除染料的方法 Expired - Fee Related CN105664885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610214621.9A CN105664885B (zh) 2016-04-08 2016-04-08 利用pH调节的磁性金属‑有机骨架材料去除染料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610214621.9A CN105664885B (zh) 2016-04-08 2016-04-08 利用pH调节的磁性金属‑有机骨架材料去除染料的方法

Publications (2)

Publication Number Publication Date
CN105664885A true CN105664885A (zh) 2016-06-15
CN105664885B CN105664885B (zh) 2018-01-12

Family

ID=56308592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610214621.9A Expired - Fee Related CN105664885B (zh) 2016-04-08 2016-04-08 利用pH调节的磁性金属‑有机骨架材料去除染料的方法

Country Status (1)

Country Link
CN (1) CN105664885B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN115382512A (zh) * 2021-05-24 2022-11-25 中国水产科学研究院 磁性金属有机骨架复合材料、其制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030389A (zh) * 2014-06-23 2014-09-10 东北林业大学 一种利用磁性金属-有机骨架材料去除水中染料的方法
US20140319062A1 (en) * 2011-11-25 2014-10-30 Council Of Scientific & Industrial Research Process for the synthesis of magnetically recoverable, high surface area carbon-fe3o4 nano-composite using metal organic framework (mof)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140319062A1 (en) * 2011-11-25 2014-10-30 Council Of Scientific & Industrial Research Process for the synthesis of magnetically recoverable, high surface area carbon-fe3o4 nano-composite using metal organic framework (mof)
CN104030389A (zh) * 2014-06-23 2014-09-10 东北林业大学 一种利用磁性金属-有机骨架材料去除水中染料的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN109400889B (zh) * 2017-08-16 2021-09-24 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN115382512A (zh) * 2021-05-24 2022-11-25 中国水产科学研究院 磁性金属有机骨架复合材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN105664885B (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
Li et al. La (OH) 3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal
CN105148852B (zh) 一种巯基改性磁性MOFs吸附剂及其制备方法和应用
Araghi et al. Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution
Wu et al. Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents
Wang et al. Simultaneous adsorption of Cu (II) and SO42− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand
Arkas et al. Organic/inorganic hybrid nanospheres based on hyperbranched poly (ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water
CN103920472A (zh) 一种磁性壳聚糖复合微球吸附剂的制备方法
Shariati et al. Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite
Mehdinia et al. Removal of lead (II), copper (II) and zinc (II) ions from aqueous solutions using magnetic amine-functionalized mesoporous silica nanocomposites
CN107970878B (zh) 一种磷酸基团官能化中空介孔二氧化硅微球的制备方法
CN103408785B (zh) 基于硅基介孔分子筛的铈离子表面印迹聚合物的制备方法
Wang et al. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles
Khraisheh et al. Enhanced dye adsorption by microemulsion-modified calcined diatomite (μE-CD)
Liu et al. Magnetically separable and recyclable lanthanum/iron co-modified attapulgite: A sustainable option to efficiently control phosphate loading
Donia et al. Selective separation of U (VI) from its solutions using amine modified silica gel produced from leached zircon
Yang et al. Synthesis of imprinted amino-functionalized mesoporous silica and their selective adsorption performance of Pb 2+, Cu 2+, and Zn 2+
Wu et al. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents
CN105664885A (zh) 利用pH调节的磁性金属-有机骨架材料去除染料的方法
Parambadath et al. Chelation dependent selective adsorption of metal ions by Schiff Base modified SBA-15 from aqueous solutions
US9987617B1 (en) Carboxylic functionalized magnetic nanocomposite
Guan et al. Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder
Wu et al. Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica
CN113842889A (zh) 一种微波合成金属有机骨架材料DUT-5(Al)及其合成方法和应用
Lakić et al. Uptake and separation of rare earth elements and late transition metal cations by nanoadsorbent grafted with diamino ligands
CN111944154B (zh) 基于倍半硅氧烷-卟啉的多孔有机聚合物与制备方法及其在污水处理中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180112