一种杀菌剂组合物
技术领域
本发明属于农业植物保护领域,特别是涉及一种具有改进性能的杀菌组合物,具体地说是涉及一种包含苯并异噻唑啉酮类和含铜制剂的杀菌组合物。
背景技术
苯并异噻唑啉酮类化合物是一种新型、广谱杀菌剂,主要用于防治和治疗禾谷类作物、蔬菜、水果等多种细菌、真菌性病害。其杀菌作用机理,主要包括破坏病菌细胞核结构,使其失去心脏部位而衰竭死亡和干扰病菌细胞的新陈代谢,使其生理紊乱,最终导致死亡两个方面。在病害发生初期使用可有效保护植株不受病原物侵染,病害发生后酌情增加用药量可明显控制病菌的蔓延,从而达到保护和铲除的双重作用。
铜制剂农药对常见的真菌性和细菌性病害具有良好的防治作用。农业上常用的铜制剂主要分为有机铜和无机铜,无机铜主要有硫酸铜或碱式硫酸铜、氧化亚铜、氢氧化铜,农业上常用有机铜主要为铜络合物,常见的主要有琥胶肥酸铜、乙酸铜、辛酸铜、癸酸铜、络氨铜或松脂酸铜。
硫酸铜可以用于杀灭真菌。与石灰水混合后生成波尔多液,作为杀菌剂,用于控制柠檬、葡萄等作物上的真菌。稀溶液用于水族馆中灭菌以及除去蜗牛。由于铜离子对鱼有毒,用量必须严格控制。大多数真菌只需非常低浓度的硫酸铜就可被杀灭,大肠杆菌也可以被控制。此外,养殖业也用作饲料添加剂微量元素铜的主要原料。
氢氧化铜为蓝色粉末,为保护性广谱性杀菌剂。适用于瓜、果、菜等作物的主要真菌和细菌性病害。配制后药液稳定,扩散性能好。喷施后粘附性强,耐雨水冲刷,能稳定缓慢释放出铜离子,一般对作物不易产生药害,病菌也不易产生抗药性,同时可兼治真菌、细菌病害,对人畜较安全。
碱式硫酸铜多位点作用的杀菌剂,因其粒度细小,分散性好,耐雨水冲刷,能牢固地粘附在植物表面形成一层保护膜,碱式硫酸铜依靠在植物表面上水的酸化,逐步释放铜离子,抑制真菌孢子萌发和菌丝发育,能有效防治作物的真菌及细菌性病害。
氧化亚铜是保护性杀菌剂,有效地抑制菌丝体生长,破坏其生殖器官,防止蔓延。用于种子处理和叶面喷雾。拌种防治白粉病、叶斑病、枯萎病、疮痂病及腐烂病,能用于菠菜、甜菜、番茄、胡椒、豌豆、南瓜、菜豆和甜瓜种子的浸种,也可喷洒,防治果树病害。也可用于拌种,杀灭蛞蝓和蜗牛。
琥胶肥酸铜琥胶肥酸铜是一定比例的丁二酸络铜、戊二酸络铜和己二酸络铜的混合物,属于保护性杀菌剂。铜离子与病原菌膜表面上的阳离子交换,使病原菌细胞膜上的蛋白质凝固,同时部分铜离子渗透进入病原菌细胞内与某些酶结合,影响其活性。可用于防治黄瓜细菌性角斑病,并对植物生长有刺激作用。
乙酸铜是通过乙酸与铜元素络合而成,在农业生产活动中常用20%乙酸铜可湿性粉剂来防治多种作物的病害,防治对象有猝倒病、炭疽病、枯萎病、病毒病等。而起适用的作物包括黄瓜、西瓜、葱蒜、番茄、辣椒、茄子等蔬菜及棉花、水稻等多种作物。
辛酸铜、癸酸铜是主要防治作物的细菌性病害和真菌病害。如柑橘溃疡病、黄瓜细菌性角斑病、水稻细菌性条斑病等。
络氨铜为硫酸四氨络合铜盐混合型农用杀菌剂,内吸性强,以保护作用为主,并有一定的铲除作用,主要用于防治柑橘溃疡病,西瓜枯萎病、稻纹枯病等。对棉花、西瓜等作物的生长有一定的促进作用。主要通过铜离子发挥杀菌作用,铜离子与病原菌细胞膜表面上的K+离子、H+离子等阳离子交换,使病原菌细胞膜上的蛋白质凝固,同时部分铜离子渗透入病原菌细胞内与某些酶结合,影响其活性,络氨铜对棉苗、西瓜等的生长具一定的促进作用,起到一定的抗病和增产作用。氨铜能防治真菌、细菌和霉菌引起的多种病害,并能促进植物根深叶茂,增加叶绿素含量,增强光合作用及抗旱能力,有明显的增产作用。
松脂酸铜是一种高效低毒广谱的新型铜制剂杀菌农药,具有持效期长、使用方便的新特点,克服了原波尔多液的许多缺点,是取代波尔多液的理想杀菌剂。并且有预防保护和治疗双重作用。可用于防治多种真菌和细菌所引起的常见植物病害,对蔬菜有明显的刺激生长作用,可与其它杀菌剂交替,喷洒效果好。用于防治瓜类霜霉病、疫病、黑星病、炭疽病、细菌性角斑病、茄子立枯病、番茄晚疫病等多种蔬菜病害。
实际的农药经验已经表明,重复且专一施用一种活性化合物来防治有害真菌在很多情况下将导致真菌菌株的快速选择性,为降低抗性真菌菌株选择性的危险性,目前通常使用不同活性化合物的混合物来防治有害真菌。通过将具有不同作用机理的活性化合物进行组合,可延缓抗性产生,降低施用量,减少防治成本。
发明内容
本发明的目的是针对杀菌剂在实际应用中抗性以及土壤残留问题,筛选出不同杀菌原理的杀菌剂进行复配,得到新的一种杀菌剂组合物,以提高杀菌剂防治效果,延缓抗性产生,降低施用量,减少防治成本。
本发明的另一个目的是提供包含两种有效成分A和B杀菌组合物的制备方法及在农业领域防治农作物病害的应用。
本发明的目的可以通过以下措施达到:
一种具有增效作用的杀菌剂组合物,该组合物包含A和B两种活性组分,其中活性组分A为具有式(Ⅰ)的结构化合物,活性组分B为选自含无机铜或有机铜杀菌剂中的一种。
式(Ⅰ)中,R选自H或C1~C8烷基。
在一种优选方案中,活性组分B中的有机铜杀菌剂为含铜络合物。
在一种更优选方案中,活性组分B中的无机铜杀菌剂选自硫酸铜、碱式硫酸铜、氧化亚铜或氢氧化铜中的一种,有机铜杀菌剂选自琥胶肥酸铜、乙酸铜、辛酸铜、癸酸铜、络氨铜或松脂酸铜中的一种。
本发明中的C1~C8烷基是指含有1至8个碳原子的直链或支链烷基,它包括C1烷基(如甲基)、C2烷基(如乙基)、C3烷基(如正丙基、异丙基)、C4烷基(如正丁基、异丁基、叔丁基、仲丁基)、C5烷基(如正戊基等)、C6烷基、C7烷基、C8烷基。它包括但不限于C1~C6烷基、C1~C5烷基、C1~C4烷基等。
在一种优选方案中,R选自H或C1~C4烷基。
在一种更优选的方案中,R选自H、-CH3或-C4H9。
式(Ⅰ)中,当R为H时,A为1,2-苯并异噻唑啉-3-酮(说明书中简称BIT)。
式(Ⅰ)中,当R为CH3时,A为2-甲基-1,2-苯并异噻唑啉-3-酮(说明书中简称MBIT)。
式(Ⅰ)中,当R为C4H9时,A为2-丁基-1,2-苯并异噻唑啉-3-酮,该式中的“丁基”可以选择正丁基、异丁基、叔丁基、仲丁基,统称为2-丁基-1,2-苯并异噻唑啉-3-酮(说明书中,正-丁基-1,2-苯并异噻唑啉-3-酮简称BBIT)。
本发明中的辛酸铜为络合铜,可以为直链的正辛酸铜或其他形式的含有支链烷基的辛酸铜。
本发明中的癸酸铜为络合铜,可以为直链的正癸酸铜或其他形式的含有支链烷基的癸酸铜。
发明人通过试验发现,本发明的组合物是用于防治农作物细菌或真菌性病害防治增效明显,更重要的是施用量减少,降低使用成本。含有组分A与组分B的化合物结构类型不同,作用机制各异,两者复配能够扩大杀菌谱,并且可以在一定程度上延缓病原菌抗性的产生和发展速度,且组分A与组分B之间无交互抗性。
本发明杀菌剂组合物中的两组分之间的重量比为1:30~15:1,优选1:25~10:1,进一步优选1:20~10:1,更优选1:20~1:1。为使两组分间的药效增效作用更为显著,组分A和组分B的重量两组分之间的重量比可以进一步优化至1:20~8:1,特别优选的比例为1:20~5:1。在一种方案中,两组分之间的重量比可以在1:30、1:29、1:28、1:27、1:26、1:25、1:24、1:24、1:22、1:21、1:20、1:19、1:18、1:17、1:16、1:15、1:14、1:13、1:12、1:11、1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、2:3、3:2、2:5、5:2、3:4、4:3、5:2、2:5、5:3、3:5、5:4、4:5这些比例中选择。这些比例可以理解为重量比,也可以包括摩尔比。
本发明的组合物可以由活性成分和农药助剂或辅料制成农药上允许的剂型。进一步的,该组合物由5~80%重量份的活性组分与95~20%重量份的农药助剂组成农药上允许的剂型。
本发明提供了包含组分A和组分B的杀菌组合物在农业领域防治农作物病害方面的用途,特别是在防治某些作物的真菌或细菌方面的用途。
上述组合物具体可包含农药助剂或辅料,例如载体、溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂、表面活性剂或肥料等中的一种或几种。在施用的过程中可以混合常用的助剂。
合适的助剂或辅料可以是固体或液体,它们通常是剂型加工过程中常用的物质,例如天然的或再生的矿物质,溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂。
为提供使用效果,本发明的组合物可以与肥料加工成各种剂型的制剂,或与肥料共同施用或混用。合适的肥料如含有氮、磷、钾等中的一种或几种大量元素,或含有铜、铁、锰、锌、硼、钙、镁、硫等中的一种或几种微量元素,或含有腐殖酸、氨基酸等肥料的一种或两种的混合物。
本发明组合物的施用方法包括将本发明的组合物用于植物生长的地上部分,特别是叶部或叶面。可以选择浸种或涂抹于防治对象表面。施用的频率和施用量取决于病原体的生物学和气候生存条件。可以将植物的生长场所,如稻田,用组合物的液体制剂浸湿,或者将组合物以固体形式施用于土壤中,如以颗粒形式(土壤施用),组合物可以由土壤经植物根部进入植物体内(内吸作用)。
本发明的组合物可以制备成农药上可接受的各种剂型,包括但不限于乳油、悬浮剂、可湿性粉剂、水分散粒剂、粉剂、粒剂、水剂、水乳剂、微乳剂、毒饵、母液、母粉等,在一种优选方案中,本发明的剂型采用可湿性粉剂、悬浮剂、水分散粒剂、水乳剂或微乳剂。根据这些组合物的性质以及施用组合物所要达到的目的和环境情况,可以选择将组合物以喷雾、弥雾、喷粉、撒播或泼浇等之类的方法施用。
可用已知的方法可以将本发明的组合物制备成各种剂型,可以将有效成分与助剂,如溶剂、固体载体,需要时可以与表面活性剂一起均匀混合、研磨,制备成所需要的剂型。
上述的溶剂可选自芳香烃,优选含8-12个碳原子,如二甲苯混合物或取代的苯,酞酸酯类,如酞酸二丁酯或酞酸二辛酸,脂肪烃类,如环已烷或石蜡,醇和乙二醇和它们的醚和酯,如乙醇,乙二醇,乙二醇单甲基;酮类,如环已酮,强极性的溶剂,如N-甲基-2-吡咯烷酮,二甲基亚砜或二甲基甲酰胺,和植物油或植物油,如大豆油。
上述的固体载体,如用于粉剂和可分散剂的通常是天然矿物填料,例如滑石、高岭土,蒙脱石或活性白土。为了管理组合物的物理性能,也可以加入高分散性硅酸或高分散性吸附聚合物载体,例如粒状吸附载体或非吸附载体,合适的粒状吸附载体是多孔型的,如浮石、皂土或膨润土;合适的非吸附载体如方解石或砂。另外,可以使用大量的无机性质或有机性质的预制成粒状的材料作为载体,特别是白云石。
根据本发明的组合物中的有效成分的化学性质,合适的表面活性剂为木质素磺酸、萘磺酸、苯酚磺酸、碱土金属盐或胺盐,烷基芳基磺酸盐,烷基硫酸盐,烷基磺酸盐,脂肪醇硫酸盐,脂肪酸和硫酸化脂肪醇乙二醇醚,还有磺化萘和萘衍生物与甲醛的缩合物,萘或萘磺酸与苯酚和甲醛的缩合物,聚氧乙烯辛基苯基醚,乙氧基化异辛基酚,辛基酚,壬基酚,烷基芳基聚乙二醇醚,三丁基苯聚乙二醇醚,三硬脂基苯基聚乙二醇醚,烷基芳基聚醚醇,乙氧基化蓖麻油,聚氧乙烯烷基醚,氧化乙烯缩合物、乙氧基化聚氧丙烯,月桂酸聚乙二醇醚缩醛,山梨醇酯,木质素亚硫酸盐废液和甲基纤维素。
在制备液体剂型时,可以先将活性组分A溶于碱性物质,形成苯并异噻唑啉金属盐,合适的碱性物质包括:碱金属碳酸盐、碱金属氢氧化物(如氢氧化钠、氢氧化钾)、碱金属烷氧基碳酸盐、碱金属醇盐或甲醇镁。
本发明的组合物中两种有效成分表现为增效效果,该组合物的活性比使用单个化合物的活性预期总和,以及单个化合物的单独活性更为显著。增效效果表现为允许施用量减少、更宽的杀真菌控制谱、见效快、更持久的防治效果、通过仅仅一次或少数几次施用更好的控制植物有害真菌、以及加宽了可能的施用间隔时间。这些特性是植物真菌控制实践过程中特别需要的。
本发明的杀菌剂组合物可应用于农业领域防治农作物病害方面,所针对的具体病症包括但不限于桃树细菌性穿孔病、烟草野火病、水稻纹枯病、黄瓜细菌性角斑病、黄瓜霜霉病、水稻细菌性条斑病、水稻细菌性基腐病、玉米细菌性枯萎病、西瓜枯萎病、葡萄霜霉病、番茄青枯病、茄子青枯病、水稻稻曲病、水稻细菌性条斑病、辣椒炭疽病、荔枝溃疡病、葡萄炭疽病、烟草青枯病、黄瓜炭疽病、芹菜斑枯病、莲藕立枯病、草莓白粉病、莴苣霜霉病、芹菜灰霉病、杏细菌性穿孔病、桃树溃疡病、洋葱霜霉病、棉花细菌性角斑病、黄瓜细菌性叶枯病等。
本发明的杀菌组合物的表现出的其它特点主要表现为:1、本发明的组合物混配具有明显的增效作用;2、由于本组合物的两个单剂化学结构差异很大,作用机理完全不同,不存在交互抗性,可延缓两单剂单独使用所产生的抗性问题;3、本发明的组合物对作物安全、防效好。经试验证明,本发明杀菌剂组合物化学性质稳定,增效显著,对防治对象表现出明显的增效以及互补作用。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
以下实施例所有配方中百分比均为重量百分比。本发明组合物各种制剂的加工工艺均为现有技术,根据不同情况可以有所变化。
一、剂型制备实施例
(一)水分散粒剂的加工及实施例
将活性成分活性分组A与活性组分B,与助剂和填料按配方的比例混合均匀,经气流粉碎成可湿性粉剂,再加入一定量的水混合挤压造粒,经干燥筛分后制得水分散粒剂产品。
1、活性组分A(BIT)与活性组分B制备水分散粒剂
实施例1:31%BIT·硫酸铜水分散粒剂
BIT 1%,硫酸铜30%,十二烷基磺酸钾5%,硫酸铵3%,烷基萘磺酸钾4%,轻质碳酸钙补足至100%。
实施例2:16%BIT·硫酸铜水分散粒剂
BIT 15%,硫酸铜1%,甲基萘磺酸钠甲醛缩合物5%,十二烷基硫酸钠3%,木质素磺酸钠6%,硅藻土补足至100%。
实施例3:31%BIT·碱式硫酸铜水分散粒剂
BIT 1%,碱式硫酸铜30%,羧甲基淀粉钠2%,十二烷基磺酸钠4%,黄原胶2%,木质素磺酸钠6%,凹凸棒土补足至100%。
实施例4:16%BIT·碱式硫酸铜水分散粒剂
BIT15%,碱式硫酸铜1%,硫酸铵1%,有机硅酮2%,海藻酸钠4%,甲基萘磺酸钠甲醛缩合物2%,膨润土补足至100%。
实施例5:31%BIT·氧化亚铜水分散粒剂
BIT 1%,氧化亚铜30%,硫酸铵5%,烷基萘磺酸钠2%,十二烷基磺酸钠3%,轻质碳酸钙补足至100%。
实施例6:16%BIT·氧化亚铜水分散粒剂
BIT 15%,氧化亚铜1%,甲基萘磺酸钠甲醛缩合物5%,木质素磺酸钠5%,十二烷基硫酸钠3%,硅藻土补足至100%。
实施例7:31%BIT·氢氧化铜水分散粒剂
BIT1%,氢氧化铜30%,木质素磺酸钠4%,聚氧化烯芳基苯醚硫酸钠2%,碳酸钙8%,白碳黑补充至100%。
实施例8:16%BIT·氢氧化铜水分散粒剂
BIT15%,氢氧化铜1%,脂肪醇聚氧乙烯醚5%,十二烷基苯磺酸钙4%,碳酸镁3%,高岭土补充至100%。
实施例9:31%BIT·琥胶肥酸铜水分散粒剂
BIT1%,琥胶肥酸铜30%,烷基磺基琥珀酸钠8%,碳酸钠5%,淀粉补充至100%。
实施例10:16%BIT·琥胶肥酸铜水分散粒剂
BIT15%,琥胶肥酸铜1%,萘磺酸盐和烷基取代萘磺酸盐与甲醛的缩合物8%,碳酸氢钠5%,磷酸钠6%,粘土补充至100%。
实施例11:31%BIT·乙酸铜水分散粒剂
BIT1%,乙酸铜30%,十二烷基萘磺酸钠9%,碳酸氢钾6%,蔗糖补充至100%。
实施例12:16%BIT·乙酸铜水分散粒剂
BIT15%,乙酸铜1%,月桂酸钠3%,碳酸钾5%,高岭土补充至100%。
实施例13:31%BIT·辛酸铜水分散粒剂
BIT 1%,辛酸铜30%,其余组分按照实施例11的方法制备。
实施例14:16%BIT·辛酸铜水分散粒剂
BIT15%,辛酸铜1%,其余组分按照实施例12的方法制备。
实施例15:31%BIT·癸酸铜水分散粒剂
BIT 1%,癸酸铜30%,其余组分按照实施例11的方法制备。
实施例16:16%BIT·癸酸铜水分散粒剂
BIT15%,癸酸铜1%,其余组分按照实施例12的方法制备。
实施例17:31%BIT·络氨铜水分散粒剂
BIT 1%,络氨铜30%,羧甲基淀粉钠2%,木质素磺酸钠4%,碳酸镁2%,,高岭土补足至100%。
实施例18:16%MBIT·络氨铜水分散粒剂
BIT15%,络氨铜1%,有机硅酮2%,甲基萘磺酸钠甲醛缩合物3%,海藻酸钠4%,磷酸钠4%,膨润土补足至100%。
实施例19:31%BIT·松脂酸铜水分散粒剂
BIT 1%,松脂酸铜30%,其余组分按照实施例17的方法制备。
实施例20:16%MBIT·松脂酸铜水分散粒剂
BIT15%,松脂酸铜1%,其余组分按照实施例18的方法制备。
2、活性组分A(MBIT)与活性组分B制备水分散粒剂
实施例21:31%MBIT·硫酸铜水分散粒剂
MBIT 1%,硫酸铜30%,其余组分按照实施例1的方法制备。
实施例22:16%MBIT·硫酸铜水分散粒剂
MBIT 15%,硫酸铜1%,其余组分按照实施例2的方法制备。
实施例23:31%MBIT·碱式硫酸铜水分散粒剂
MBIT 1%,碱式硫酸铜30%,其余组分按照实施例3的方法制备。
实施例24:16%MBIT·碱式硫酸铜水分散粒剂
MBIT15%,碱式硫酸铜1%,其余组分按照实施例4的方法制备。
实施例25:31%MBIT·氧化亚铜水分散粒剂
MBIT 1%,氧化亚铜30%,其余组分按照实施例5的方法制备。
实施例26:16%MBIT·氧化亚铜水分散粒剂
MBIT 15%,氧化亚铜1%,其余组分按照实施例6的方法制备。
实施例27:31%MBIT·氢氧化铜水分散粒剂
MBIT1%,氢氧化铜30%,其余组分按照实施例7的方法制备。
实施例28:16%MBIT·氢氧化铜水分散粒剂
MBIT15%,氢氧化铜1%,其余组分按照实施例8的方法制备。
实施例29:31%MBIT·琥胶肥酸铜水分散粒剂
MBIT1%,琥胶肥酸铜30%,其余组分按照实施例9的方法制备。
实施例30:16%MBIT·琥胶肥酸铜水分散粒剂
MBIT15%,琥胶肥酸铜1%,其余组分按照实施例10的方法制备。
实施例31:31%MBIT·乙酸铜水分散粒剂
MBIT1%,乙酸铜30%,其余组分按照实施例11的方法制备。
实施例32:16%MBIT·乙酸铜水分散粒剂
MBIT15%,乙酸铜1%,其余组分按照实施例12的方法制备。
实施例33:31%MBIT·辛酸铜水分散粒剂
MBIT 1%,辛酸铜30%,其余组分按照实施例11的方法制备。
实施例34:16%MBIT·辛酸铜水分散粒剂
MBIT15%,辛酸铜1%,其余组分按照实施例12的方法制备。
实施例35:31%MBIT·癸酸铜水分散粒剂
MBIT 1%,癸酸铜30%,其余组分按照实施例11的方法制备。
实施例36:16%MBIT·癸酸铜水分散粒剂
MBIT15%,癸酸铜1%,其余组分按照实施例12的方法制备。
实施例37:31%MBIT·络氨铜水分散粒剂
MBIT 1%,络氨铜30%,其余组分按照实施例17的方法制备。
实施例38:16%MBIT·络氨铜水分散粒剂
MBIT15%,络氨铜1%,其余组分按照实施例18的方法制备。
实施例39:31%MBIT·松脂酸铜水分散粒剂
MBIT 1%,松脂酸铜30%,其余组分按照实施例19的方法制备。
实施例40:16%MBIT·松脂酸铜水分散粒剂
MBIT15%,松脂酸铜1%,其余组分按照实施例20的方法制备。
3、活性组分A(BBIT)与活性组分B制备水分散粒剂
实施例41:31%BBIT·硫酸铜水分散粒剂
BBIT 1%,硫酸铜30%,其余组分按照实施例1的方法制备。
实施例42:16%BBIT·硫酸铜水分散粒剂
BBIT 15%,硫酸铜1%,其余组分按照实施例2的方法制备。
实施例43:31%BBIT·碱式硫酸铜水分散粒剂
BBIT 1%,碱式硫酸铜30%,其余组分按照实施例3的方法制备。
实施例44:16%BBIT·碱式硫酸铜水分散粒剂
BBIT15%,碱式硫酸铜1%,其余组分按照实施例4的方法制备。
实施例45:31%BBIT·氧化亚铜水分散粒剂
BBIT 1%,氧化亚铜30%,其余组分按照实施例5的方法制备。
实施例46:16%BBIT·氧化亚铜水分散粒剂
BBIT 15%,氧化亚铜1%,其余组分按照实施例6的方法制备。
实施例47:31%BBIT·氢氧化铜水分散粒剂
BBIT1%,氢氧化铜30%,其余组分按照实施例7的方法制备。
实施例48:16%BBIT·氢氧化铜水分散粒剂
BBIT15%,氢氧化铜1%,其余组分按照实施例8的方法制备。
实施例49:31%BBIT·琥胶肥酸铜水分散粒剂
BBIT1%,琥胶肥酸铜30%,其余组分按照实施例9的方法制备。
实施例50:16%BBIT·琥胶肥酸铜水分散粒剂
BBIT15%,琥胶肥酸铜1%,其余组分按照实施例10的方法制备。
实施例51:31%BBIT·乙酸铜水分散粒剂
BBIT1%,乙酸铜30%,其余组分按照实施例11的方法制备。
实施例52:16%BBIT·乙酸铜水分散粒剂
BBIT15%,乙酸铜1%,其余组分按照实施例12的方法制备。
实施例53:31%BBIT·辛酸铜水分散粒剂
BBIT 1%,辛酸铜30%,其余组分按照实施例11的方法制备。
实施例54:16%BBIT·辛酸铜水分散粒剂
BBIT15%,辛酸铜1%,其余组分按照实施例12的方法制备。
实施例55:31%BBIT·癸酸铜水分散粒剂
BBIT 1%,癸酸铜30%,其余组分按照实施例11的方法制备。
实施例56:16%BBIT·癸酸铜水分散粒剂
BBIT15%,癸酸铜1%,其余组分按照实施例12的方法制备。
实施例57:31%BBIT·络氨铜水分散粒剂
BBIT 1%,络氨铜30%,其余组分按照实施例17的方法制备。
实施例58:16%BBIT·络氨铜水分散粒剂
BBIT15%,络氨铜1%,其余组分按照实施例18的方法制备。
实施例59:31%BBIT·松脂酸铜水分散粒剂
BBIT 1%,松脂酸铜30%,其余组分按照实施例19的方法制备。
实施例60:16%BBIT·松脂酸铜水分散粒剂
BBIT15%,松脂酸铜1%,其余组分按照实施例20的方法制备。
(二)悬浮剂的加工及实施例
将活性成分活性分组A与活性组分B,与分散剂、润湿剂、增稠剂和水等各组分按配方的比例混合均匀,经砂磨和/或高速剪切后,得到半成品,分析后补加水混合均匀过滤即得成品。
1、活性组分A(BIT)与活性组分B制备悬浮剂
实施例61:16%BIT·硫酸铜悬浮剂
BIT 1%,硫酸铜15%,黄原胶3%,膨润土4%,硅酸铝镁2%,乙二醇2%,木质素磺酸钠7%,水补足至100%。
实施例62:20%BIT·硫酸铜悬浮剂
BIT 15%,硫酸铜5%,膨润土4%,丙三醇3%,甲基萘磺酸钠甲醛缩合物5%,水补足至100%。
实施例63:16%BIT·碱式硫酸铜悬浮剂
BIT 1%,碱式硫酸铜15%,白炭黑3%,丙三醇6%,苯甲酸钠2%,脂肪醇聚氧乙烯醚磷酸酯7%,水补足至100%。
实施例64:20%BIT·碱式硫酸铜悬浮剂
BIT15%,碱式硫酸铜5%,白炭黑4%,乙二醇5%,木质素磺酸钠7%,黄原胶2%,水补足至100%。
实施例65:16%BIT·氧化亚铜悬浮剂
BIT1%,氧化亚铜15%,烷基酚甲醛树脂聚氧乙烯醚2%,木质素磺酸钠4%,乙二醇3%,聚二甲基硅氧烷0.4%,黄原胶1%,苯甲酸钠0.25%,水补足至100%。
实施例66:20%BIT·氧化亚铜悬浮剂
BIT15%,氧化亚铜5%,特种聚醚改性聚有机硅氧烷4%,丙二醇3%,异辛醇1%,烷基酚基聚氧乙烯基磷酸酯3%,阿拉伯胶0.5%,水补足至100%。
实施例67:16%BIT·氢氧化铜悬浮剂
BIT1%,氢氧化铜15%,5.2g,聚萘甲醛磺酸钠盐4%,脂肪醇聚氧乙烯醚2%,丙三醇4%,正辛醇1%,海藻酸钠0.5%,乳酸0.5%,水补足至100%。
实施例68:20%BIT·氢氧化铜悬浮剂
BIT15%,氢氧化铜5%,拉开粉2%,烷基酚基聚氧乙烯基磷酸酯3%,异辛醇1%,阿拉伯胶1%,丙二醇4%,苯甲酸钠0.5%,水补足至100%。
实施例69:16%BIT·琥胶肥酸铜悬浮剂
BIT1%,琥胶肥酸铜15%,烷基酚甲醛树脂聚氧乙烯醚3%,木质素磺酸钙5%,乙二醇4%,聚二甲基硅氧烷0.4%,黄原胶0.2%,苯甲酸钠0.2%,水补足至100%。
实施例70:20%BIT·琥胶肥酸铜悬浮剂
BIT15%,琥胶肥酸铜5%,脂肪醇聚氧乙烯醚2%,聚萘甲醛磺酸钠盐5%,乙二醇4%,异辛醇1%,海藻酸钠0.9%,乳酸0.5%,水补足至100%。
实施例71:16%BIT·乙酸铜悬浮剂
BIT1%,乙酸铜15%,烷基酚基聚氧乙烯基醚2%,乙二醇4%,苯甲酸钠0.5%烷基萘磺酸缩合物3%,聚二甲基硅氧烷0.5%,黄原胶0.3%,水补足至100%。
实施例72:20%BIT·乙酸铜悬浮剂
BIT15%,乙酸铜5%,拉开粉2%,聚萘甲醛磺酸钠盐6%,尿素4%,聚二甲基硅氧烷0.5%,黄原胶0.5%,苯甲酸钠0.8%,水补足至100%。
实施例73:16%BIT·辛酸铜悬浮剂
BIT1%,辛酸铜15%,其余组分按照实施例71的方法制备。
实施例74:20%BIT·辛酸铜悬浮剂
BIT15%,辛酸铜5%,其余组分按照实施例72的方法制备。
实施例75:16%BIT·癸酸铜悬浮剂
BIT1%,癸酸铜15%,其余组分按照实施例71的方法制备。
实施例76:20%BIT·癸酸铜悬浮剂
BIT15%,癸酸铜5%,其余组分按照实施例72的方法制备。
实施例77:16%BIT·络氨铜悬浮剂
BIT1%,络氨铜15%,阿拉伯胶1%,苯乙基酚聚氧乙烯醚2%,改性木质素磺酸钙5%,丙二醇4%,异辛醇4%,苯甲酸钠0.1%。
实施例78:20%BIT·络氨铜悬浮剂
BIT15%,络氨铜5%,木质素磺酸钙4%,乙二醇4%,苯乙基酚聚氧乙烯醚2%,聚二甲基硅氧烷0.5%,阿拉伯胶0.2%。
实施例79:16%BIT·松脂酸铜悬浮剂
BIT1%,松脂酸铜15%,脂肪醇聚氧乙烯醚3%,苯乙基酚聚氧乙烯醚3%,乙二醇3%,异辛醇2%,海藻酸钠1%,阿拉伯胶0.2%。
实施例80:20%BIT·松脂酸铜悬浮剂
BIT15%,松脂酸铜5%,木质素磺酸钙4%,异丙二醇4%,聚萘甲醛磺酸钠盐4%,异辛醇4%,苯甲酸钠0.8%。
2、活性组分A(MBIT)与活性组分B制备悬浮剂
实施例81:16%MBIT·硫酸铜悬浮剂
MBIT 1%,硫酸铜15%,其余组分按照实施例61的方法制备。
实施例82:20%MBIT·硫酸铜悬浮剂
MBIT 15%,硫酸铜5%,其余组分按照实施例62的方法制备。
实施例83:16%MBIT·碱式硫酸铜悬浮剂
MBIT 1%,碱式硫酸铜15%,其余组分按照实施例63的方法制备。
实施例84:20%MBIT·碱式硫酸铜悬浮剂
MBIT15%,碱式硫酸铜5%,其余组分按照实施例64的方法制备。
实施例85:16%MBIT·氧化亚铜悬浮剂
MBIT1%,氧化亚铜15%,其余组分按照实施例65的方法制备。
实施例86:20%MBIT·氧化亚铜悬浮剂
MBIT15%,氧化亚铜5%,其余组分按照实施例66的方法制备。
实施例87:16%MBIT·氢氧化铜悬浮剂
MBIT1%,氢氧化铜15%,其余组分按照实施例67的方法制备。
实施例88:20%MBIT·氢氧化铜悬浮剂
MBIT15%,氢氧化铜5%,其余组分按照实施例68的方法制备。
实施例89:16%MBIT·琥胶肥酸铜悬浮剂
MBIT1%,琥胶肥酸铜15%,其余组分按照实施例69的方法制备。
实施例90:20%MBIT·琥胶肥酸铜悬浮剂
MBIT15%,琥胶肥酸铜5%,其余组分按照实施例70的方法制备。
实施例91:16%MBIT·乙酸铜悬浮剂
MBIT1%,乙酸铜15%,其余组分按照实施例71的方法制备。
实施例92:20%MBIT·乙酸铜悬浮剂
MBIT15%,乙酸铜5%,其余组分按照实施例72的方法制备。
实施例93:16%MBIT·辛酸铜悬浮剂
MBIT1%,辛酸铜15%,其余组分按照实施例71的方法制备。
实施例94:20%MBIT·辛酸铜悬浮剂
MBIT15%,辛酸铜5%,其余组分按照实施例72的方法制备。
实施例95:16%MBIT·癸酸铜悬浮剂
MBIT1%,癸酸铜15%,其余组分按照实施例71的方法制备。
实施例96:20%MBIT·癸酸铜悬浮剂
MBIT15%,癸酸铜5%,其余组分按照实施例72的方法制备。
实施例97:16%MBIT·络氨铜悬浮剂
MBIT1%,络氨铜15%,其余组分按照实施例77的方法制备。
实施例98:20%MBIT·络氨铜悬浮剂
MBIT15%,络氨铜5%,其余组分按照实施例78的方法制备。
实施例99:16%MBIT·松脂酸铜悬浮剂
MBIT1%,松脂酸铜15%,其余组分按照实施例79的方法制备。
实施例100:20%MBIT·松脂酸铜悬浮剂
MBIT15%,松脂酸铜5%,其余组分按照实施例80的方法制备。
3、活性组分A(BBIT)与活性组分B制备悬浮剂
实施例101:16%BBIT·硫酸铜悬浮剂
BBIT 1%,硫酸铜15%,其余组分按照实施例61的方法制备。
实施例102:20%BBIT·硫酸铜悬浮剂
BBIT 15%,硫酸铜5%,其余组分按照实施例62的方法制备。
实施例103:16%BBIT·碱式硫酸铜悬浮剂
BBIT 1%,碱式硫酸铜15%,其余组分按照实施例63的方法制备。
实施例104:20%BBIT·碱式硫酸铜悬浮剂
BBIT15%,碱式硫酸铜5%,其余组分按照实施例64的方法制备。
实施例105:16%BBIT·氧化亚铜悬浮剂
BBIT1%,氧化亚铜15%,其余组分按照实施例65的方法制备。
实施例106:20%BBIT·氧化亚铜悬浮剂
BBIT15%,氧化亚铜5%,其余组分按照实施例66的方法制备。
实施例107:16%BBIT·氢氧化铜悬浮剂
BBIT1%,氢氧化铜15%,其余组分按照实施例67的方法制备。
实施例108:20%BBIT·氢氧化铜悬浮剂
BBIT15%,氢氧化铜5%,其余组分按照实施例68的方法制备。
实施例109:16%BBIT·琥胶肥酸铜悬浮剂
BBIT1%,琥胶肥酸铜15%,其余组分按照实施例69的方法制备。
实施例110:20%BBIT·琥胶肥酸铜悬浮剂
BBIT15%,琥胶肥酸铜5%,其余组分按照实施例70的方法制备。
实施例111:16%BBIT·乙酸铜悬浮剂
BBIT1%,乙酸铜15%,其余组分按照实施例71的方法制备。
实施例112:20%BBIT·乙酸铜悬浮剂
BBIT15%,乙酸铜5%,其余组分按照实施例72的方法制备。
实施例113:16%BBIT·辛酸铜悬浮剂
BBIT1%,辛酸铜15%,其余组分按照实施例71的方法制备。
实施例114:20%BBIT·辛酸铜悬浮剂
BBIT15%,辛酸铜5%,其余组分按照实施例72的方法制备。
实施例115:16%BBIT·癸酸铜悬浮剂
BBIT1%,癸酸铜15%,其余组分按照实施例71的方法制备。
实施例116:20%BBIT·癸酸铜悬浮剂
BBIT15%,癸酸铜5%,其余组分按照实施例72的方法制备。
实施例117:16%BBIT·络氨铜悬浮剂
BBIT1%,络氨铜15%,其余组分按照实施例77的方法制备。
实施例118:20%BBIT·络氨铜悬浮剂
BBIT15%,络氨铜5%,其余组分按照实施例78的方法制备。
实施例119:16%BBIT·松脂酸铜悬浮剂
BBIT1%,松脂酸铜15%,其余组分按照实施例79的方法制备。
实施例120:20%BBIT·松脂酸铜悬浮剂
BBIT15%,松脂酸铜5%,其余组分按照实施例80的方法制备。
(三)可湿性粉剂的加工及实施例
将活性成分A与B活性成分与各种助剂及填料等按比例充分混合,经超细粉碎机粉碎后制得可湿性粉剂。
1、活性组分A(BIT)与活性组分B制备可湿性粉剂
实施例121:20%BIT·硫酸铜可湿性粉剂
BIT5%,硫酸铜15%,十二烷基苯磺酸钠2%,木质素磺酸钙3%,膨润土3%,凹凸棒土补足至100%。
实施例122:20%BIT·碱式硫酸铜可湿性粉剂
BIT 5%,碱式硫酸铜15%,拉开粉2%,膨润土1.5%,烷基聚氧乙基醚磺酸盐1%,白炭黑2%,硅藻土补足至100%。
实施例123:20%BIT·氧化亚铜可湿性粉剂
BIT5%,氧化亚铜15%,木质素磺酸钠6%,烷基磺酸盐7%,白炭黑10%,高岭土补足至100%。
实施例124:20%BIT·氢氧化铜可湿性粉剂
BIT5%,氢氧化铜15%,木质素磺酸钠5%,白炭黑3%,聚氧乙烯辛基苯基醚4%,硅藻土补足至100%。
实施例125:20%BIT·琥胶肥酸铜可湿性粉剂
BIT 5%,琥胶肥酸铜15%,聚氧乙烯辛基苯基醚2%,木质素磺酸钠1%,白炭黑3%,硅藻土补足至100%。
实施例126:20%BIT·乙酸铜可湿性粉剂
BIT 5%,乙酸铜15%,白炭黑3%,十二烷基苯磺酸钠4%,木质素磺酸钠5%,凹凸棒土补足至100%。
实施例127:20%BIT·辛酸铜可湿性粉剂
BIT 5%,辛酸铜15%,十二烷基苯磺酸钠3%,拉开粉4%,膨润土6%,凹凸棒土补足至100%。
实施例128:20%BIT·癸酸铜可湿性粉剂
BIT 5%,癸酸铜15%,木质素磺酸钙4%,烷基聚氧乙基醚磺酸盐3%,膨润土2%,白炭黑4%,硅藻土补足至100%。
实施例129:20%BIT·络氨铜可湿性粉剂
BIT 5%,络氨铜15%,聚氧乙烯辛基苯基醚4%,木质素磺酸钠5%,白炭黑6%,硅藻土补足至100%。
实施例130:20%BIT··松脂酸铜可湿性粉剂
BIT 5%,松脂酸铜15%,烷基聚氧乙基醚磺酸盐2%,拉开粉6%,膨润土5%,白炭黑4%,硅藻土补足至100%。
2、活性组分A(MBIT)与活性组分B制备可湿性粉剂
实施例131:20%MBIT·硫酸铜可湿性粉剂
MBIT5%,硫酸铜15%,其余组分按照实施例121的方法制备。
实施例132:20%MBIT·碱式硫酸铜可湿性粉剂
MBIT 5%,碱式硫酸铜15%,其余组分按照实施例122的方法制备。
实施例133:20%MBIT·氧化亚铜可湿性粉剂
MBIT5%,氧化亚铜15%,其余组分按照实施例123的方法制备。
实施例134:20%MBIT·氢氧化铜可湿性粉剂
MBIT5%,氢氧化铜15%,其余组分按照实施例124的方法制备。
实施例135:20%MBIT·琥胶肥酸铜可湿性粉剂
MBIT 5%,琥胶肥酸铜15%,其余组分按照实施例125的方法制备。
实施例136:20%MBIT·乙酸铜可湿性粉剂
MBIT 5%,乙酸铜15%,其余组分按照实施例126的方法制备。
实施例137:20%MBIT·辛酸铜可湿性粉剂
MBIT 5%,辛酸铜15%,其余组分按照实施例127的方法制备。
实施例138:20%MBIT·癸酸铜可湿性粉剂
MBIT 5%,癸酸铜15%,其余组分按照实施例128的方法制备。
实施例139:20%MBIT·络氨铜可湿性粉剂
MBIT 5%,络氨铜15%,其余组分按照实施例129的方法制备。
实施例140:20%MBIT··松脂酸铜可湿性粉剂
MBIT 5%,松脂酸铜15%,其余组分按照实施例130的方法制备。
3、活性组分A(BBIT)与活性组分B制备可湿性粉剂
实施例141:20%BBIT·硫酸铜可湿性粉剂
BBIT5%,硫酸铜15%,其余组分按照实施例121的方法制备。
实施例142:20%BBIT·碱式硫酸铜可湿性粉剂
BBIT 5%,碱式硫酸铜15%,其余组分按照实施例122的方法制备。
实施例143:20%BBIT·氧化亚铜可湿性粉剂
BBIT5%,氧化亚铜15%,其余组分按照实施例123的方法制备。
实施例144:20%BBIT·氢氧化铜可湿性粉剂
BBIT5%,氢氧化铜15%,其余组分按照实施例124的方法制备。
实施例135:20%BBIT·琥胶肥酸铜可湿性粉剂
BBIT 5%,琥胶肥酸铜15%,其余组分按照实施例125的方法制备。
实施例146:20%BBIT·乙酸铜可湿性粉剂
BBIT 5%,乙酸铜15%,其余组分按照实施例126的方法制备。
实施例147:20%BBIT·辛酸铜可湿性粉剂
BBIT 5%,辛酸铜15%,其余组分按照实施例127的方法制备。
实施例148:20%BBIT·癸酸铜可湿性粉剂
BBIT 5%,癸酸铜15%,其余组分按照实施例128的方法制备。
实施例149:20%BBIT·络氨铜可湿性粉剂
BBIT 5%,络氨铜15%,其余组分按照实施例129的方法制备。
实施例150:20%BBIT··松脂酸铜可湿性粉剂
BBIT 5%,松脂酸铜15%,其余组分按照实施例130的方法制备。
二、药效验证试验
(一)生物测定实施例
按照试验分级标准调查整株叶片的发病情况,计算病情指数和防治效果。
将防治效果换算成几率值(y),药液弄高度(μg/ml)转换成对数值(x),以最小二乘法计算毒力方程和抑制中浓度EC50,依孙云沛法计算药剂的毒力指数级共毒系数(CTC)。
实测毒力指数(ATI)=(标准药剂EC50/供试药剂EC50)*100
理论毒力指数(TTI)=A药剂毒力指数*混剂中A的百分含量+B药剂毒力指数*混剂中B的百分含量
共毒系数(CTC)=[混剂实测毒力指数(ATI)/混剂理论毒力指数(TTI)]*100
CTC≤80,组合物表现为拮抗作用,80<CTC<120,组合物表现为相加作用,CTC≥120,组合物表现为增效作用。
1、BIT与有机铜或无机铜室内活性测定试验
(1)BIT与硫酸铜复配对毒力测定试验
表1. BIT与硫酸铜复配对桃树细菌性穿孔病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
硫酸铜 |
35.92 |
100 |
/ |
/ |
BIT |
19.58 |
183.45 |
/ |
/ |
硫酸铜:BIT=30:1 |
27.98 |
128.38 |
102.69 |
125.01 |
硫酸铜:BIT=20:1 |
25.56 |
140.53 |
103.97 |
135.17 |
硫酸铜:BIT=10:1 |
19.96 |
179.96 |
107.59 |
167.26 |
硫酸铜:BIT=1:1 |
18.86 |
190.46 |
141.73 |
134.38 |
硫酸铜:BIT=1:10 |
15.84 |
226.77 |
175.86 |
128.95 |
硫酸铜:BIT=1:15 |
16.09 |
223.24 |
178.23 |
125.26 |
结果(表1)表明,BIT与硫酸铜复配对桃树细菌性穿孔病的防治效果显著提高,说明二者复配对桃树细菌性穿孔病防治有显著的增效作用。
(2)BIT与碱式硫酸铜复配对烟草野火病毒力测定试验
表2 BIT与碱式硫酸铜复配对烟草野火病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
碱式硫酸铜 |
67.87 |
100 |
/ |
/ |
BIT |
41.15 |
164.93 |
/ |
/ |
碱式硫酸铜:BIT=30:1 |
52.26 |
129.87 |
102.09 |
127.21 |
碱式硫酸铜:BIT=20:1 |
48.02 |
141.34 |
103.09 |
137.10 |
碱式硫酸铜:BIT=10:1 |
41.28 |
164.41 |
105.9 |
155.25 |
碱式硫酸铜:BIT=1:1 |
37.57 |
180.65 |
132.47 |
136.37 |
碱式硫酸铜:BIT=1:10 |
32.83 |
206.73 |
159.03 |
130.00 |
碱式硫酸铜:BIT=1:15 |
33.27 |
204.00 |
160.87 |
126.81 |
结果(表2)表明,BIT与碱式硫酸铜复配对烟草野火病毒力的防治效果显著提高,说明二者复配对烟草野火病具有显著的增效作用。
(3)BIT与氧化亚铜复配对水稻纹枯病毒力测定试验
表3. BIT与氧化亚铜复配对水稻纹枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
氧化亚铜 |
28.92 |
100 |
/ |
/ |
BIT |
18.13 |
159.51 |
/ |
/ |
氧化亚铜:BIT=30:1 |
23.04 |
125.52 |
101.92 |
123.16 |
氧化亚铜:BIT=20:1 |
20.77 |
139.24 |
102.83 |
135.41 |
氧化亚铜:BIT=10:1 |
18.27 |
158.29 |
105.41 |
150.17 |
氧化亚铜:BIT=1:1 |
15.76 |
183.50 |
129.76 |
141.42 |
氧化亚铜:BIT=1:10 |
14.74 |
196.20 |
154.1 |
127.32 |
氧化亚铜:BIT=1:15 |
14.94 |
193.57 |
155.79 |
124.25 |
结果(表3)表明,BIT与氧化亚铜复配对水稻纹枯病毒力的防治效果显著提高,说明二者复配对水稻纹枯病具有显著的增效作用。
(4)BIT与氢氧化铜复配对黄瓜细菌性角斑病毒力测定
表4. BIT与氢氧化铜复配对黄瓜细菌性角斑病毒力测定结果分析
结果(表4)表明,BIT与氢氧化铜复配对黄瓜细菌性角斑病毒力的防治效果显著提高,说明二者复配对黄瓜细菌性角斑病具有显著的增效作用。
(5)BIT与琥胶肥酸铜复配对黄瓜霜霉病毒力测定
表5. BIT与琥胶肥酸铜复配对黄瓜霜霉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
琥胶肥酸铜 |
38.16 |
100 |
/ |
/ |
BIT |
21.35 |
178.74 |
/ |
/ |
琥胶肥酸铜:BIT=30:1 |
29.47 |
129.49 |
102.54 |
126.28 |
琥胶肥酸铜:BIT=20:1 |
27 |
141.33 |
103.75 |
136.22 |
琥胶肥酸铜:BIT=10:1 |
23.6 |
161.69 |
107.16 |
150.89 |
琥胶肥酸铜:BIT=1:1 |
19.36 |
197.11 |
139.37 |
141.43 |
琥胶肥酸铜:BIT=1:10 |
16.77 |
227.55 |
171.58 |
132.62 |
琥胶肥酸铜:BIT=1:15 |
17.21 |
221.73 |
173.82 |
127.56 |
结果(表5)表明,BIT与琥胶肥酸铜复配对黄瓜霜霉病的防治效果显著提高,说明二者复配对黄瓜霜霉病具有显著的增效作用。
(6)BIT与乙酸铜复配对水稻细菌性条斑病毒力测定
表6. BIT与乙酸铜复配对水稻细菌性条斑病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
乙酸铜 |
46.81 |
100 |
/ |
/ |
BIT |
28.32 |
165.29 |
/ |
/ |
乙酸铜:BIT=30:1 |
37.37 |
125.26 |
102.11 |
122.67 |
乙酸铜:BIT=20:1 |
35.29 |
132.64 |
103.11 |
128.64 |
乙酸铜:BIT=10:1 |
32.17 |
145.51 |
105.94 |
137.35 |
乙酸铜:BIT=1:1 |
26.96 |
173.63 |
132.65 |
130.89 |
乙酸铜:BIT=1:10 |
23.13 |
202.38 |
159.35 |
127.00 |
乙酸铜:BIT=1:15 |
23.81 |
196.60 |
161.21 |
121.95 |
结果(表6)表明,BIT与乙酸铜复配对水稻细菌性条斑病的防治效果显著提高,说明二者复配对水稻细菌性条斑病具有显著的增效作用。
(7)BIT与辛酸铜复配对水稻细菌性基腐病毒力测定
表7. BIT与辛酸铜复配对水稻细菌性基腐病毒力测定结果分析
结果(表7)表明,BIT与辛酸铜复配对水稻细菌性基腐病的防治效果显著提高,说明二者复配对水稻细菌性基腐病具有显著的增效作用。
(8)BIT与癸酸铜复配对玉米细菌性枯萎病毒力测定
表8. BIT与癸酸铜复配对玉米细菌性枯萎病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
癸酸铜 |
36.09 |
100 |
/ |
/ |
BIT |
25.12 |
143.67 |
/ |
/ |
癸酸铜:BIT=30:1 |
27.73 |
130.15 |
101.41 |
128.34 |
癸酸铜:BIT=20:1 |
26.33 |
137.07 |
102.08 |
134.28 |
癸酸铜:BIT=10:1 |
23.54 |
153.31 |
103.97 |
147.46 |
癸酸铜:BIT=1:1 |
22.24 |
162.28 |
121.84 |
133.19 |
癸酸铜:BIT=1:10 |
19.69 |
183.29 |
139.7 |
131.20 |
癸酸铜:BIT=1:15 |
20.2 |
178.66 |
140.94 |
126.77 |
结果(表8)表明,BIT与癸酸铜复配对玉米细菌性枯萎病的防治效果显著提高,说明二者复配对玉米细菌性枯萎病具有显著的增效作用。
(9)BIT与络氨铜复配对西瓜枯萎病毒力测定
表9. BIT与络氨铜复配对西瓜枯萎病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
络氨铜 |
31.24 |
100 |
/ |
/ |
BIT |
23.52 |
132.82 |
/ |
/ |
络氨铜:BIT=30:1 |
25.09 |
124.51 |
101.06 |
123.21 |
络氨铜:BIT=20:1 |
23.42 |
133.39 |
101.56 |
131.34 |
络氨铜:BIT=10:1 |
21.43 |
145.78 |
102.98 |
141.56 |
络氨铜:BIT=1:1 |
20.83 |
149.98 |
116.41 |
128.83 |
络氨铜:BIT=1:10 |
19.14 |
163.22 |
129.84 |
125.71 |
络氨铜:BIT=1:15 |
19.45 |
160.62 |
130.77 |
122.82 |
结果(表9)表明,BIT与络氨铜复配对西瓜枯萎病的防治效果显著提高,说明二者复配对西瓜枯萎病具有显著的增效作用。
(10)BIT与松脂酸铜复配对葡萄霜霉病毒力测定
表10. BIT与松脂酸铜复配对葡萄霜霉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
松脂酸铜 |
46.82 |
100 |
/ |
/ |
BIT |
29.35 |
159.52 |
/ |
/ |
松脂酸铜:BIT=30:1 |
35.97 |
130.16 |
101.92 |
127.71 |
松脂酸铜:BIT=20:1 |
33.3 |
140.60 |
102.83 |
136.73 |
松脂酸铜:BIT=10:1 |
30.08 |
155.65 |
105.41 |
147.66 |
松脂酸铜:BIT=1:1 |
26.36 |
177.62 |
129.76 |
136.88 |
松脂酸铜:BIT=1:10 |
23.16 |
202.16 |
154.11 |
131.18 |
松脂酸铜:BIT=1:15 |
24.01 |
195.00 |
155.8 |
125.16 |
结果(表10)表明,BIT与松脂酸铜复配对葡萄霜霉病的防治效果显著提高,说明二者复配对葡萄霜霉病具有显著的增效作用。
2、MBIT与有机铜或无机铜复配毒力测定实验
(11)MBIT与硫酸铜复配对番茄青枯病毒力测定
表11. MBIT与硫酸铜复配对番茄青枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
硫酸铜 |
35.12 |
100 |
/ |
/ |
MBIT |
21.09 |
166.52 |
/ |
/ |
硫酸铜:MBIT=30:1 |
27.64 |
127.06 |
102.15 |
124.39 |
硫酸铜:MBIT=20:1 |
25.3 |
138.81 |
103.17 |
134.55 |
硫酸铜:MBIT=10:1 |
22.83 |
153.83 |
106.05 |
145.06 |
硫酸铜:MBIT=1:1 |
19.67 |
178.55 |
133.26 |
133.98 |
硫酸铜:MBIT=1:10 |
17.27 |
203.36 |
160.47 |
126.73 |
硫酸铜:MBIT=1:15 |
17.2 |
204.19 |
162.36 |
125.76 |
结果(表11)表明,MBIT与硫酸铜复配对番茄青枯病的防治效果显著提高,说明二者复配对番茄青枯病防治有显著的增效作用。尤其是MBIT与硫酸铜配比在1:20~5:1之间,增效作用明显。
(12)MBIT与碱式硫酸铜复配对茄子青枯病毒力测定试验
表12. MBIT与碱式硫酸铜复配对茄子青枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
碱式硫酸铜 |
48.56 |
100 |
/ |
/ |
MBIT |
31.62 |
153.57 |
/ |
/ |
碱式硫酸铜:MBIT=30:1 |
38.08 |
127.52 |
101.73 |
125.35 |
碱式硫酸铜:MBIT=20:1 |
35.11 |
138.31 |
102.55 |
134.87 |
碱式硫酸铜:MBIT=10:1 |
31.54 |
153.96 |
104.87 |
146.81 |
碱式硫酸铜:MBIT=1:1 |
28.01 |
173.37 |
126.79 |
136.74 |
碱式硫酸铜:MBIT=1:10 |
25.66 |
189.24 |
148.7 |
127.27 |
碱式硫酸铜:MBIT=1:15 |
26.44 |
183.66 |
150.22 |
122.26 |
结果(表12)表明,MBIT与碱式硫酸铜复配对茄子青枯病毒力的防治效果显著提高,说明二者复配对茄子青枯病具有显著的增效作用,尤其是MBIT与碱式硫酸铜配比在1:20~15:1之间,增效作用明显。
(13)MBIT与氧化亚铜复配对水稻稻曲病毒力测定试验
表13. MBIT与氧化亚铜复配对水稻稻曲病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
氧化亚铜 |
36.83 |
100 |
/ |
/ |
MBIT |
22.51 |
163.62 |
/ |
/ |
氧化亚铜:MBIT=30:1 |
28.51 |
129.18 |
102.05 |
126.59 |
氧化亚铜:MBIT=20:1 |
25.64 |
143.64 |
103.03 |
139.42 |
氧化亚铜:MBIT=10:1 |
22.22 |
165.75 |
105.78 |
156.69 |
氧化亚铜:MBIT=1:1 |
18.93 |
194.56 |
131.81 |
147.61 |
氧化亚铜:MBIT=1:10 |
18.07 |
203.82 |
157.84 |
129.13 |
氧化亚铜:MBIT=1:15 |
18.93 |
194.56 |
159.64 |
121.87 |
结果(表13)表明,MBIT与氧化亚铜复配对水稻稻曲病毒力的防治效果显著提高,说明二者复配对水稻稻曲病具有显著的增效作用。
(14)MBIT与氢氧化铜复配对水稻细菌性条斑病毒力测定
表14. MBIT与氢氧化铜复配对水稻细菌性条斑病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
氢氧化铜 |
48.05 |
100 |
/ |
/ |
MBIT |
32.69 |
146.99 |
/ |
/ |
氢氧化铜:MBIT=30:1 |
36.8 |
130.57 |
101.52 |
128.62 |
氢氧化铜:MBIT=20:1 |
33.97 |
141.45 |
102.24 |
138.35 |
氢氧化铜:MBIT=10:1 |
30.18 |
159.21 |
104.27 |
152.69 |
氢氧化铜:MBIT=1:1 |
27.12 |
177.18 |
123.5 |
143.46 |
氢氧化铜:MBIT=1:10 |
24.97 |
192.43 |
142.72 |
134.83 |
氢氧化铜:MBIT=1:15 |
25.68 |
187.11 |
144.05 |
129.89 |
结果(表14)表明,MBIT与氢氧化铜复配对水稻细菌性条斑病毒力的防治效果显著提高,说明二者复配对水稻细菌性条斑病具有显著的增效作用。
(15)MBIT与琥胶肥酸铜复配对辣椒炭疽病毒力测定
表15. MBIT与琥胶肥酸铜复配对辣椒炭疽病毒力测定结果分析
结果(表15)表明,MBIT与琥胶肥酸铜复配对辣椒炭疽病的防治效果显著提高,说明二者复配对辣椒炭疽病具有显著的增效作用。
(16)MBIT与乙酸铜复配对荔枝溃疡病毒力测定
表16. MBIT与乙酸铜复配对荔枝溃疡病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
乙酸铜 |
35.63 |
100 |
/ |
/ |
MBIT |
32.03 |
111.24 |
/ |
/ |
乙酸铜:MBIT=30:1 |
27.67 |
128.77 |
100.39 |
128.27 |
乙酸铜:MBIT=20:1 |
26.29 |
135.53 |
100.58 |
134.75 |
乙酸铜:MBIT=10:1 |
24.15 |
147.54 |
101.11 |
145.92 |
乙酸铜:MBIT=1:1 |
24.88 |
143.21 |
106.12 |
134.95 |
乙酸铜:MBIT=1:10 |
24 |
148.46 |
111.13 |
133.59 |
乙酸铜:MBIT=1:15 |
24.97 |
142.69 |
111.48 |
128.00 |
结果(表16)表明,MBIT与乙酸铜复配对荔枝溃疡病的防治效果显著提高,说明二者复配对荔枝溃疡病具有显著的增效作用。
(17)MBIT与辛酸铜复配对葡萄炭疽病毒力测定
表17. MBIT与辛酸铜复配对葡萄炭疽病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
辛酸铜 |
33.56 |
100 |
/ |
/ |
MBIT |
23.71 |
141.54 |
/ |
/ |
辛酸铜:MBIT=30:1 |
25.77 |
130.23 |
101.34 |
128.51 |
辛酸铜:MBIT=20:1 |
24.08 |
139.37 |
101.98 |
136.66 |
辛酸铜:MBIT=10:1 |
21.88 |
153.38 |
103.78 |
147.80 |
辛酸铜:MBIT=1:1 |
20.23 |
165.89 |
120.77 |
137.36 |
辛酸铜:MBIT=1:10 |
18.18 |
184.60 |
137.76 |
134.00 |
辛酸铜:MBIT=1:15 |
18.88 |
177.75 |
138.94 |
127.94 |
结果(表17)表明,MBIT与辛酸铜复配对葡萄炭疽病的防治效果显著提高,说明二者复配对葡萄炭疽病具有显著的增效作用。
(18)MBIT与癸酸铜复配对黄瓜细菌性角斑病毒力测定
表18. MBIT与癸酸铜复配对黄瓜细菌性角斑病毒力测定结果分析
结果(表18)表明,MBIT与癸酸铜复配对黄瓜细菌性角斑病的防治效果显著提高,说明二者复配对黄瓜细菌性角斑病具有显著的增效作用。
(19)MBIT与络氨铜复配对烟草青枯病毒力测定
表19. MBIT与络氨铜复配对烟草青枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
络氨铜 |
47.65 |
100 |
/ |
/ |
MBIT |
33.93 |
140.44 |
/ |
/ |
络氨铜:MBIT=30:1 |
36.51 |
130.51 |
101.3 |
128.84 |
络氨铜:MBIT=20:1 |
34.08 |
139.82 |
101.93 |
137.17 |
络氨铜:MBIT=10:1 |
31.13 |
153.07 |
103.68 |
147.63 |
络氨铜:MBIT=1:1 |
29.44 |
161.85 |
120.22 |
134.63 |
络氨铜:MBIT=1:10 |
26.52 |
179.68 |
136.76 |
131.38 |
络氨铜:MBIT=1:15 |
26.9 |
177.14 |
137.91 |
128.44 |
结果(表19)表明,MBIT与络氨铜复配对烟草青枯病的防治效果显著提高,说明二者复配对烟草青枯病具有显著的增效作用。
(20)MBIT与松脂酸铜复配对黄瓜炭疽病毒力测定
表20. MBIT与松脂酸铜复配对黄瓜炭疽病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
松脂酸铜 |
33.61 |
100 |
/ |
/ |
MBIT |
25.87 |
129.92 |
/ |
/ |
松脂酸铜:BIT=30:1 |
27.19 |
123.61 |
100.97 |
122.42 |
松脂酸铜:MBIT=20:1 |
25.05 |
134.17 |
101.42 |
132.29 |
松脂酸铜:MBIT=10:1 |
22.79 |
147.48 |
102.72 |
143.57 |
松脂酸铜:MBIT=1:1 |
22.27 |
150.92 |
114.96 |
131.28 |
松脂酸铜:MBIT=1:10 |
20.83 |
161.35 |
127.2 |
126.85 |
松脂酸铜:MBIT=1:15 |
21.6 |
155.60 |
128.05 |
121.52 |
结果(表20)表明,MBIT与松脂酸铜复配对黄瓜炭疽病的防治效果显著提高,说明二者复配对黄瓜炭疽病具有显著的增效作用。
3、BBIT与有机铜或无机铜室内活性测定试验
(21)BBIT与硫酸铜复配对芹菜斑枯病病毒力测定
表21. BBIT与硫酸铜复配对芹菜斑枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
硫酸铜 |
42.56 |
100 |
/ |
/ |
BBIT |
27.15 |
156.76 |
/ |
/ |
硫酸铜:BBIT=30:1 |
32.84 |
129.60 |
101.83 |
127.27 |
硫酸铜:BBIT=20:1 |
29.91 |
142.29 |
102.7 |
138.55 |
硫酸铜:BBIT=10:1 |
26.72 |
159.28 |
105.16 |
151.47 |
硫酸铜:BBIT=1:1 |
23.99 |
177.41 |
128.38 |
138.19 |
硫酸铜:BBIT=1:10 |
21.15 |
201.23 |
151.6 |
132.74 |
硫酸铜:BBIT=1:15 |
21.41 |
198.79 |
153.21 |
129.75 |
结果(表21)表明,BBIT与硫酸铜复配对芹菜斑枯病的防治效果显著提高,说明二者复配对芹菜斑枯病防治有显著的增效作用。
(22)BBIT与碱式硫酸铜复配对莲藕立枯病毒力测定试验
表22. BBIT与碱式硫酸铜复配对莲藕立枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
碱式硫酸铜 |
45.72 |
100 |
/ |
/ |
BBIT |
33.65 |
135.87 |
/ |
/ |
碱式硫酸铜:BBIT=30:1 |
36.71 |
124.54 |
101.16 |
123.12 |
碱式硫酸铜:BBIT=20:1 |
34.45 |
132.71 |
101.71 |
130.48 |
碱式硫酸铜:BBIT=10:1 |
31.37 |
145.74 |
103.26 |
141.14 |
碱式硫酸铜:BBIT=1:1 |
29.32 |
155.93 |
117.94 |
132.22 |
碱式硫酸铜:BBIT=1:10 |
27.38 |
166.98 |
132.61 |
125.92 |
碱式硫酸铜:BBIT=1:15 |
28.06 |
162.94 |
133.63 |
121.93 |
结果(表22)表明,BBIT与碱式硫酸铜复配对莲藕立枯病毒力的防治效果显著提高,说明二者复配对莲藕立枯病具有显著的增效作用。
(23)BBIT与氧化亚铜复配对草莓白粉病毒力测定试验
表23. BBIT与氧化亚铜复配对草莓白粉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
氧化亚铜 |
26.52 |
100 |
/ |
/ |
BBIT |
15.69 |
169.02 |
/ |
/ |
氧化亚铜:BBIT=30:1 |
20.21 |
131.22 |
102.23 |
128.36 |
氧化亚铜:BBIT=20:1 |
17.97 |
147.58 |
103.29 |
142.88 |
氧化亚铜:BBIT=10:1 |
16.06 |
165.13 |
106.27 |
155.39 |
氧化亚铜:BBIT=1:1 |
13.49 |
196.59 |
134.51 |
146.15 |
氧化亚铜:BBIT=1:10 |
12.13 |
218.63 |
162.75 |
134.34 |
氧化亚铜:BBIT=1:15 |
12.74 |
208.16 |
164.71 |
126.38 |
结果(表23)表明,BBIT与氧化亚铜复配对草莓白粉病毒力的防治效果显著提高,说明二者复配对草莓白粉病具有显著的增效作用。
(24)BBIT与氢氧化铜复配对莴苣霜霉病毒力测定
表24. BBIT与氢氧化铜复配对莴苣霜霉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
氢氧化铜 |
39.63 |
100 |
/ |
/ |
BBIT |
26.85 |
147.60 |
/ |
/ |
氢氧化铜:BBIT=30:1 |
30.75 |
128.88 |
101.54 |
126.92 |
氢氧化铜:BBIT=20:1 |
28.71 |
138.04 |
102.27 |
134.97 |
氢氧化铜:BBIT=10:1 |
25.79 |
153.66 |
104.33 |
147.29 |
氢氧化铜:BBIT=1:1 |
22.63 |
175.12 |
123.8 |
141.46 |
氢氧化铜:BBIT=1:10 |
21.2 |
186.93 |
143.27 |
130.48 |
氢氧化铜:BBIT=1:15 |
21.75 |
182.21 |
144.63 |
125.98 |
结果(表24)表明,BBIT与氢氧化铜复配对莴苣霜霉病毒力的防治效果显著提高,说明二者复配对莴苣霜霉病具有显著的增效作用。
(25)BBIT与琥胶肥酸铜复配对芹菜灰霉病毒力测定
表25. BBIT与琥胶肥酸铜复配对芹菜灰霉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
琥胶肥酸铜 |
32.15 |
100 |
/ |
/ |
BBIT |
23.61 |
136.17 |
/ |
/ |
琥胶肥酸铜:BBIT=30:1 |
25.87 |
124.28 |
101.17 |
122.84 |
琥胶肥酸铜:BBIT=20:1 |
24.18 |
132.96 |
101.72 |
130.71 |
琥胶肥酸铜:BBIT=10:1 |
20.9 |
153.83 |
103.29 |
148.93 |
琥胶肥酸铜:BBIT=1:1 |
20.19 |
159.24 |
118.09 |
134.84 |
琥胶肥酸铜:BBIT=1:10 |
19.17 |
167.71 |
132.88 |
126.21 |
琥胶肥酸铜:BBIT=1:15 |
19.88 |
161.72 |
133.91 |
120.77 |
结果(表25)表明,BBIT与琥胶肥酸铜复配对芹菜灰霉病的防治效果显著提高,说明二者复配对芹菜灰霉病具有显著的增效作用。
(26)BBIT与乙酸铜复配对杏细菌性穿孔病毒力测定
表26. BBIT与乙酸铜复配对杏细菌性穿孔病毒力测定结果分析
结果(表26)表明,BBIT与乙酸铜复配对杏细菌性穿孔病的防治效果显著提高,说明二者复配对杏细菌性穿孔病具有显著的增效作用。
(27)BBIT与辛酸铜复配对桃树溃疡病毒力测定
表27. BBIT与辛酸铜复配对桃树溃疡病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
辛酸铜 |
69.58 |
100 |
/ |
/ |
MBIT |
41.81 |
166.42 |
/ |
/ |
辛酸铜:MBIT=30:1 |
52.29 |
133.07 |
102.14 |
130.28 |
辛酸铜:MBIT=20:1 |
48.91 |
142.26 |
103.16 |
137.90 |
辛酸铜:MBIT=10:1 |
43.75 |
159.04 |
106.04 |
149.98 |
辛酸铜:MBIT=1:1 |
38.73 |
179.65 |
133.21 |
134.87 |
辛酸铜:MBIT=1:10 |
33.23 |
209.39 |
160.38 |
130.56 |
辛酸铜:MBIT=1:15 |
34.13 |
203.87 |
162.27 |
125.63 |
结果(表27)表明,BBIT与辛酸铜复配对桃树溃疡病的防治效果显著提高,说明二者复配对桃树溃疡病具有显著的增效作用。
(28)BBIT与癸酸铜复配对洋葱霜霉病毒力测定
表28. BBIT与癸酸铜复配对洋葱霜霉病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
癸酸铜 |
47.12 |
100 |
/ |
/ |
BBIT |
34.97 |
134.74 |
/ |
/ |
癸酸铜:BBIT=30:1 |
38.32 |
122.96 |
101.12 |
121.60 |
癸酸铜:BBIT=20:1 |
36.44 |
129.31 |
101.65 |
127.21 |
癸酸铜:BBIT=10:1 |
33.91 |
138.96 |
103.16 |
134.70 |
癸酸铜:BBIT=1:1 |
31.57 |
149.26 |
117.37 |
127.17 |
癸酸铜:BBIT=1:10 |
28.45 |
165.62 |
131.58 |
125.87 |
癸酸铜:BBIT=1:15 |
29.58 |
159.30 |
132.57 |
120.16 |
结果(表28)表明,BBIT与癸酸铜复配对洋葱霜霉病的防治效果显著提高,说明二者复配对洋葱霜霉病具有显著的增效作用。
(29)BBIT与络氨铜复配对棉花细菌性角斑病毒力测定
表29. BBIT与络氨铜复配对棉花细菌性角斑病毒力测定结果分析
结果(表29)表明,BBIT与络氨铜复配对棉花细菌性角斑病的防治效果显著提高,说明二者复配对棉花细菌性角斑病具有显著的增效作用。
(30)BBIT与松脂酸铜复配对黄瓜细菌性叶枯病毒力测定
表30. BBIT与松脂酸铜复配对黄瓜细菌性叶枯病毒力测定结果分析
药剂名称 |
EC50(μg/ml) |
ATI |
TTI |
共毒系数(CTC) |
松脂酸铜 |
75.98 |
100 |
/ |
/ |
BBIT |
39.36 |
193.04 |
/ |
/ |
松脂酸铜:BBIT=30:1 |
60.6 |
125.38 |
103 |
121.73 |
松脂酸铜:BBIT=20:1 |
57.74 |
131.59 |
104.43 |
126.01 |
松脂酸铜:BBIT=10:1 |
51.68 |
147.02 |
108.46 |
135.55 |
松脂酸铜:BBIT=1:1 |
40.46 |
187.79 |
146.52 |
128.17 |
松脂酸铜:BBIT=1:10 |
32.75 |
232.00 |
184.58 |
125.69 |
松脂酸铜:BBIT=1:15 |
33.57 |
226.33 |
187.23 |
120.88 |
结果(表30)表明,BBIT与松脂酸铜复配对黄瓜细菌性叶枯病的防治效果显著提高,说明二者复配对黄瓜细菌性叶枯病具有显著的增效作用。
(二)田间药效验证试验
试验方法:在发病初期,立即进行第一次喷雾,7天后进行第二次施药,每个处理4个小区,每个小区20平米。于药前和第二次药后11天调查统计发病情况,每个小区5点随机取样,每点调查5株作物,调查整株上每叶片的病斑面积占叶片面积的百分率并分级,计算病情指数和防治效果。
预期防效(%)=X+Y-XY/100(其中,X,Y为单剂防效)
分级标准:
0级:无病斑;
1级:叶片病斑少于5个,长度小于1cm;
3级:叶片病斑6-10个,部分病斑长度大于1cm;
5级:叶片病斑11-25个,部分病斑连成片,病斑面积占叶面积的10-25%;
7级:叶片病斑26个以上,病斑连成片,病斑面积占叶面积的26-50%;
9级:病斑连成片,病斑面积占叶面积的50%以上或全叶枯死。
1、BIT与有机铜或无机铜农药复配田间药效实验
(1)BIT与硫酸铜混配对苹果腐烂病的田间药效试验
表31 BIT与硫酸铜混配对苹果腐烂病防治效果
测定结果(表31)表明,BIT与硫酸铜混配对苹果腐烂病的防效明显提高,说明二者复配对苹果腐烂病有显著的增效作用。
(2)BIT与碱式硫酸铜混配对水稻稻瘟病的田间药效试验
表32 BIT与碱式硫酸铜混配对水稻稻瘟病防治效果
测定结果(表32)表明,BIT与碱式硫酸铜混配对水稻稻瘟病的防效明显提高,说明二者复配对水稻稻瘟病有显著的增效作用。
(3)BIT与氧化亚铜混配对白菜腐烂病的田间药效试验
表33 BIT与氧化亚铜混配对白菜腐烂病防治效果
测定结果(表33)表明,BIT与氧化亚铜混配对白菜腐烂病的防效明显提高,说明二者复配对白菜腐烂病有显著的增效作用。
(4)BIT与氢氧化铜混配对番茄细菌性斑点病的田间药效试验
表34 BIT与氢氧化铜混配对番茄细菌性斑点病防治效果
测定结果(表34)表明,BIT与氢氧化铜混配对番茄细菌性斑点病的防效明显提高,说明二者复配对番茄细菌性斑点病有显著的增效作用。
(5)BIT与琥胶肥酸铜混配对桃树细菌性穿孔病的田间药效试验
表35 BIT与琥胶肥酸铜混配对桃树细菌性穿孔病防治效果
测定结果(表35)表明,BIT与琥胶肥酸铜混配对桃树细菌性穿孔病的防效明显提高,说明二者复配对桃树细菌性穿孔病有显著的增效作用。
(6)BIT与乙酸铜混配对柑橘溃疡病的田间药效试验
表36 BIT与乙酸铜混配对柑橘溃疡病防治效果
测定结果(表36)表明,BIT与乙酸铜混配对柑橘溃疡病的防效明显提高,说明二者复配对柑橘溃疡病有显著的增效作用。
(7)BIT与辛酸铜混配对豇豆细菌性角斑病的田间药效试验
表37 BIT与辛酸铜混配对豇豆细菌性角斑病防治效果
测定结果(表37)表明,BIT与辛酸铜混配对豇豆细菌性角斑病的防效明显提高,说明二者复配对豇豆细菌性角斑病有显著的增效作用。
(8)BIT与癸酸铜混配对西瓜细菌性枯萎病的田间药效试验
表38 BIT与癸酸铜混配对西瓜细菌性枯萎病防治效果
测定结果(表38)表明,BIT与癸酸铜混配对西瓜细菌性枯萎病的防效明显提高,说明二者复配对西瓜细菌性枯萎病有显著的增效作用。
(9)BIT与络氨铜混配对芒果细菌性斑点病的田间药效试验
表39 BIT与络氨铜混配对芒果细菌性斑点病防治效果
测定结果(表39)表明,BIT与络氨铜混配对芒果细菌性斑点病的防效明显提高,说明二者复配对芒果细菌性斑点病有显著的增效作用。
(10)BIT与松脂酸铜混配对菊花细菌性角斑病的田间药效试验
表40 BIT与松脂酸铜混配对菊花细菌性角斑病防治效果
测定结果(表40)表明,BIT与松脂酸铜混配对菊花细菌性角斑病的防效明显提高,说明二者复配对菊花细菌性角斑病有显著的增效作用。
2、MBIT与有机铜或无机铜农药复配田间药效实验
(1)MBIT与硫酸铜混配对苹果腐烂病的田间药效试验
表41 MBIT与硫酸铜混配对苹果腐烂病防治效果
测定结果(表41)表明,MBIT与硫酸铜混配对苹果腐烂病的防效明显提高,说明二者复配对苹果腐烂病有显著的增效作用。
(2)MBIT与碱式硫酸铜混配对芒果细菌性斑点病的田间药效试验
表42 MBIT与碱式硫酸铜混配对芒果细菌性斑点病防治效果
测定结果(表42)表明,MBIT与碱式硫酸铜混配对芒果细菌性斑点病的防效明显提高,说明二者复配对芒果细菌性斑点病有显著的增效作用。
(3)MBIT与氧化亚铜混配对枣缩果病的田间药效试验
表43 MBIT与氧化亚铜混配对枣缩果病防治效果
测定结果(表43)表明,MBIT与氧化亚铜混配对枣缩果病的防效明显提高,说明二者复配对枣缩果病有显著的增效作用。
(4)MBIT与氢氧化铜混配对大豆细菌性斑疹病的田间药效试验
表44 MBIT与氢氧化铜混配对大豆细菌性斑疹病防治效果
测定结果(表44)表明,MBIT与氢氧化铜混配对大豆细菌性斑疹病的防效明显提高,说明二者复配对大豆细菌性斑疹病有显著的增效作用。
(5)MBIT与琥胶肥酸铜混配对水稻基腐病的田间药效试验
表45 MBIT与琥胶肥酸铜混配对水稻基腐病防治效果
测定结果(表45)表明,MBIT与琥胶肥酸铜混配对水稻基腐病的防效明显提高,说明二者复配对水稻基腐病有显著的增效作用。
(6)MBIT与乙酸铜混配对水稻白叶枯病的田间药效试验
表46 MBIT与乙酸铜混配对水稻白叶枯病防治效果
测定结果(表46)表明,MBIT与乙酸铜混配对水稻白叶枯病的防效明显提高,说明二者复配对水稻白叶枯病有显著的增效作用。
(7)MBIT与辛酸铜混配对马铃薯黑胫病的田间药效试验
表47 MBIT与辛酸铜混配对马铃薯黑胫病防治效果
测定结果(表47)表明,MBIT与辛酸铜混配对马铃薯黑胫病的防效明显提高,说明二者复配对马铃薯黑胫病有显著的增效作用。
(8)MBIT与癸酸铜混配对辣椒细菌性叶斑病的田间药效试验
表48 MBIT与癸酸铜混配对辣椒细菌性叶斑病防治效果
测定结果(表48)表明,MBIT与癸酸铜混配对辣椒细菌性叶斑病的防效明显提高,说明二者复配对辣椒细菌性叶斑病有显著的增效作用。
(9)MBIT与络氨铜混配对水稻纹枯病的田间药效试验
表49 MBIT与络氨铜混配对水稻纹枯病防治效果
测定结果(表49)表明,MBIT与络氨铜混配对水稻纹枯病的防效明显提高,说明二者复配对水稻纹枯病有显著的增效作用。
(10)MBIT与松脂酸铜混配对桃树细菌性穿孔病的田间药效试验
表50 MBIT与松脂酸铜混配对桃树细菌性穿孔病防治效果
测定结果(表50)表明,MBIT与松脂酸铜混配对桃树细菌性穿孔病的防效明显提高,说明二者复配对桃树细菌性穿孔病有显著的增效作用。
3、BBIT与有机铜或无机铜农药的复配田间药效实验
(1)BBIT与硫酸铜混配对花椰菜细菌性角斑病的田间药效试验
表51 BBIT与硫酸铜混配对花椰菜细菌性角斑病防治效果
测定结果(表51)表明,BBIT与硫酸铜混配对花椰菜细菌性角斑病的防效明显提高,说明二者复配对花椰菜细菌性角斑病有显著的增效作用。
(2)BBIT与碱式硫酸铜混配对猕猴桃溃疡病的田间药效试验
表52 BBIT与碱式硫酸铜混配对猕猴桃溃疡病防治效果
测定结果(表52)表明,BBIT与碱式硫酸铜混配对猕猴桃溃疡病的防效明显提高,说明二者复配对猕猴桃溃疡病有显著的增效作用。
(3)BBIT与氧化亚铜混配对苹果疮痂病的田间药效试验
表53 BBIT与氧化亚铜混配对苹果疮痂病防治效果
测定结果(表53)表明,BBIT与氧化亚铜混配对苹果疮痂病的防效明显提高,说明二者复配对苹果疮痂病有显著的增效作用。
(4)BBIT与氢氧化铜混配对樱桃细菌性孔病的田间药效试验
表54 BBIT与氢氧化铜混配对樱桃细菌性孔病防治效果
测定结果(表54)表明,BBIT与氢氧化铜混配对樱桃细菌性孔病的防效明显提高,说明二者复配对樱桃细菌性孔病有显著的增效作用。
(5)BBIT与琥胶肥酸铜混配对梨细菌性花腐病的田间药效试验
表55 BBIT与琥胶肥酸铜混配对梨细菌性花腐病防治效果
测定结果(表55)表明,BBIT与琥胶肥酸铜混配对梨细菌性花腐病的防效明显提高,说明二者复配对梨细菌性花腐病有显著的增效作用。
(6)BBIT与乙酸铜混配对大蒜叶斑病的田间药效试验
表56 BBIT与乙酸铜混配对大蒜叶斑病防治效果
测定结果(表56)表明,BBIT与乙酸铜混配对大蒜叶斑病的防效明显提高,说明二者复配对大蒜叶斑病有显著的增效作用。
(7)BBIT与辛酸铜混配对苹果花腐病的田间药效试验
表57 BBIT与辛酸铜混配对苹果花腐病防治效果
测定结果(表57)表明,BBIT与辛酸铜混配对苹果花腐病的防效明显提高,说明二者复配对苹果花腐病有显著的增效作用。
(8)BBIT与癸酸铜混配对草莓青枯病的田间药效试验
表58 BBIT与癸酸铜混配对草莓青枯病防治效果
测定结果(表58)表明,BBIT与癸酸铜混配对草莓青枯病的防效明显提高,说明二者复配对草莓青枯病有显著的增效作用。
(9)BBIT与络氨铜混配对大豆细菌性斑疹病的田间药效试验
表59 BBIT与络氨铜混配对大豆细菌性斑疹病防治效果
测定结果(表59)表明,BBIT与络氨铜混配对大豆细菌性斑疹病的防效明显提高,说明二者复配对大豆细菌性斑疹病有显著的增效作用。
(10)BBIT与松脂酸铜混配对水稻白叶枯病的田间药效试验
表60 MBIT与松脂酸铜混配对水稻白叶枯病防治效果
测定结果(表60)表明,BBIT与松脂酸铜混配对水稻白叶枯病的防效明显提高,说明二者复配对水稻白叶枯病有显著的增效作用。