CN105658270B - 带有嵌入式致动导管的柔性器械 - Google Patents

带有嵌入式致动导管的柔性器械 Download PDF

Info

Publication number
CN105658270B
CN105658270B CN201480057531.2A CN201480057531A CN105658270B CN 105658270 B CN105658270 B CN 105658270B CN 201480057531 A CN201480057531 A CN 201480057531A CN 105658270 B CN105658270 B CN 105658270B
Authority
CN
China
Prior art keywords
tube
flexible body
minimally invasive
invasive medical
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480057531.2A
Other languages
English (en)
Other versions
CN105658270A (zh
Inventor
A·B·科威思科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations Inc filed Critical Intuitive Surgical Operations Inc
Priority to CN201911224573.1A priority Critical patent/CN110833455B/zh
Publication of CN105658270A publication Critical patent/CN105658270A/zh
Application granted granted Critical
Publication of CN105658270B publication Critical patent/CN105658270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00309Cut-outs or slits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Endoscopes (AREA)
  • Manipulator (AREA)

Abstract

本申请描述的是一种微创手术器械,其包括细长柔性体、多个导管和至少一个肌腱,所述细长柔性体包括近端部分和远端部分,所述至少一个肌腱从细长柔性体的近端部分延伸穿过多个导管中的至少一个的导管内腔进入到细长柔性体的远端部分中。细长柔性体包括中心内腔和具有从内表面延伸到外表面的厚度的柔性壁。每个导管包括导管内腔并延伸穿过细长柔性体的壁且在细长柔性体的柔性壁内终止。每个导管包括直接固定到柔性壁的远端。所述至少一个肌腱可致动以使远端部分转向。

Description

带有嵌入式致动导管的柔性器械
技术领域
本公开涉及用于导航患者解剖结构以引导微创步骤的系统和方法,且更具体地,涉及用于使低型面(low-profile)柔性介入器械转向到患者解剖结构中的装置和方法。
背景技术
微创医疗技术旨在减少在介入步骤过程中受损的组织量,因而减少患者康复时间、不适及有害的副作用。这类微创技术可通过患者解剖结构中的自然孔口或通过一个或多个手术切口执行。通过这些自然孔口或切口,临床医生可插入介入器械(包括手术的、诊断的、治疗的,或活组织检查器械)以到达目标组织位置。为了到达目标组织位置,微创介入器械可导航解剖系统中的自然通道或外科手术创建的通道,所述解剖系统中的自然通道诸如肺、结肠、肠、肾、心脏、循环系统,等等。一些微创医疗器械可为远程操作的或计算机辅助的。遥控机器人介入器械可用于导航穿过患者解剖结构,且此类器械需要足够小以物理地安装在那些解剖内腔内。制造柔性遥控机器人器械可具有挑战性,该柔性遥控机器人被设计大小以包括适于远程操作或遥控机器人操作的机械结构并具有足够小的外直径以导航此类小通道。需要改进的设备和系统以用于经配置以插入解剖通道或手术创建的通道中的遥控机器人手术器械。
发明内容
本发明的实施例通过随附于本说明书的权利要求概述。
在一个实施例中,本公开涉及包括细长柔性体、多个导管,和至少一个肌腱的微创手术器械或诊断器械。一方面,细长柔性体包括近端部分、远端部分、中心内腔和具有从细长柔性体的内表面延伸到细长柔性体的外表面的厚度的柔性壁。一方面,多个导管延伸穿过近端部分中的细长柔性体的柔性壁并在细长柔性体的柔性壁内终止。一方面,每个导管包括导管内腔和远端。一方面,远端直接固定到柔性壁。一方面,至少一个肌腱从细长柔性体的近端部分延伸穿过多个导管中的至少一个的导管内腔进入到细长柔性体的远端部分,且所述至少一个肌腱可致动以使远端部分转向。
一方面,微创手术器械或诊断器械进一步包括耦接到细长柔性体的远端部分的可转向管。一方面,可转向管包括内管表面、外管表面、具有在内管表面和外管表面之间延伸的管壁厚度的管壁,以及壁中的经配置以接收导管的多个渠道。
在另一实施例中,本公开涉及微创手术系统或诊断系统,其包括致动器、细长柔性体、多个导管,以及多个致动肌腱。一方面,细长柔性体包括近端部分、远端部分和从近端部分连续延伸到远端部分的柔性内护套。一方面,柔性内护套具有内表面和外表面。一方面,多个导管在内表面和外表面之间嵌入柔性内护套内。一方面,每个导管包括内腔和远端。一方面,每个导管延伸穿过柔性内护套并在所述柔性内护套内终止,其中每个远端直接附贴到柔性内护套。一方面,每个致动肌腱固定在相对于致动器的近端处且延伸穿过多个导管中的一个的内腔进入到远端部分中。一方面,多个致动肌腱通过致动器可致动以弯曲远端部分。
一方面,微创手术系统进一步包括耦接到细长柔性体的远端部分的可转向管。一方面,可转向管包括内管表面、外管表面、具有在内管表面和外管表面之间延伸的管壁厚度的管壁,以及壁中的经配置以接收导管的多个渠道。
应该理解,上述一般性描述和下面的详细描述二者本质上都是示例性和说明性的,且在不限制本公开的范围的情况下旨在提供本公开的理解。在这方面,根据下面的详细描述,本公开的附加方面、特征和优点对本领域技术人员来说将是显然的。
附图说明
当结合附图阅读时,根据以下的详细描述将更好地理解本公开的方面。应当强调的是,根据本行业中的标准惯例,各种特征不按比例绘制。事实上,为了讨论的清晰起见,各种特征的尺寸可任意增加或减少。此外,本公开在各种实例中可重复标识数字和/或字母。这种重复是为了简单清晰的目的且其自身不决定所讨论的各种实施例和/或配置之间的关系。
图1根据本公开的实施例示出遥控机器人介入系统。
图2根据本公开的实施例示出介入器械系统。
图3根据本公开的实施例示出导管系统的可转向部分,其示出启用系统的铰接的各种元件的相对位置。
图4根据本公开的实施例示出图2所示的器械系统的示例性近端部分的横截面图。
图5根据本公开的实施例示出图2所示的器械系统的示例性远端部分的横截面图。
图6a根据本公开的一个实施例示出示例性可转向管的透视图。
图6b示出图6a所示的示例性可转向管的一部分的详细透视图。
图7示出图2所示的器械系统的示例性远端部分的横截面图。
图8根据本公开的一个实施例示出示例性可转向管的透视图。
图9示出图2所示的器械系统的示例性远端部分的横截面图。
图10示出导航管状结构内的转弯的非示例性器械系统的示例性射线图像。
图11根据本公开的原理示出导航管状结构内的转弯的示例性器械系统的示例性射线图像,其中所述示例性器械系统包括嵌入式导管和可转向管。
具体实施方式
为了促进对本公开的原理的理解,现在参考附图中所示的实施例,且使用具体语言描述附图中所示的实施例。然而,应该理解,不旨在限制本公开的范围。在本发明方面的以下详细描述中,许多具体细节被陈述以便提供对公开的实施例的彻底理解。然而,对本领域技术人员显而易见的是,本公开的实施例可以在没有这些具体细节的情况下实施。没有详细描述其它情况中所熟知的方法、程序、组件,和电路以免不必要地混淆本发明的实施例的方面。
所述设备、器械、方法,以及本公开的原理的任何进一步的应用的任何变化和进一步的修改完全可以预期是本公开相关领域的技术人员所通常能够想到的。具体地,完全可以预期,参考一个实施例所述的特征、组件和/或步骤可与参考本公开的其它实施例所述的特征、组件和/或步骤结合。此外,这里所提供的尺寸是用于具体实例且可以预期,不同的大小、尺寸,和/或比率可用于实施本公开的概念。为了避免不必要的描述性重复,根据一个说明性实施例描述的一个或多个组件或行为可被使用或省略,如其它说明性实施例可应用的那样。为简洁起见,这些组合的许多重复将不单独描述。为简单起见,在一些情况下,相同的标识号在视图中用于指相同或相似的部分。
实施例将在下面依照各种器械和器械的部分在三维空间中的状态描述各种器械和器械的部分。如本文所用的术语“位置”指三维空间中的物体或一部分物体的位置(例如,沿笛卡尔X、Y、Z坐标的3个平移自由度)。如本文所用的术语“取向”指物体或一部分物体的旋转安置(3个旋转自由度——例如,滚动、倾斜,和偏航(yaw))。如本文所用的术语“位姿(pose)”指至少1个平移自由度中的物体或一部分物体的位置且指至少一个旋转自由度(多至6个总自由度)中的那个物体或部分物体的取向。如本文所用的术语“形状”指沿细长物体测量的一组位姿、位置,或取向。
应该明白,术语“近端的”和“远端的”在本文中是以临床医生操纵从临床医生延伸到手术部位或诊断部位的器械的末端为参照的。术语“近端的”指更接近临床医生的器械部分,且术语“远端的”指进一步远离临床医生且更接近手术或诊断部位的器械部分。为清晰和简洁起见,空间术语,诸如“水平的”、“垂直的”、“在...上”,和“在...下”在本文中可参考附图使用。然而,手术或诊断器械用于许多取向和位置中,且这些术语并非是限制性的和绝对的。
本公开一般涉及用于致动线的导管或在铰接设备的操作中使用的肌腱。在一些情况下,本公开的实施例被配置为遥控机器人系统的部分。本领域技术人员将意识到本文所公开的嵌入式导管可在要求可转向器械的类似(例如,非遥控机器人)应用中使用。
本文所公开的导管被成形并被配置为沿柔性器械(例如,导管)的长度运载控制肌腱或线。本文所公开的导管包括柔性导管,其穿过柔性器械的近端部分嵌入柔性器械的壁内。不是在离散的刚性结构处(例如,柔性器械的近端部分和远端部分之间的过渡处)终止,导管在近端部分的柔性壁内朝器械的远端可转向部分连续延伸并在器械的柔性壁内终止。具体地,导管在柔性壁内终止而不被锚定到柔性器械内的任何离散终端结构。控制肌腱在它们的终端处离开导管并继续穿过壁以延伸到器械的可转向远端部分中。通过消除用于导管的离散终端结构的需要且因此准许控制肌腱以不间断的方式从近端传到器械的远端部分,本文所公开的嵌入式导管允许柔性器械在其穿过弓形解剖通道时的连续弯曲(例如,非扭结弯曲或不间断弯曲)。因此,本文所公开的嵌入式导管可改善柔性器械(例如,铰接或可转向设备)的耐用性和性能,且可利用这类嵌入式导管增加用于柔性器械的合适应用的范围。
根据各种实施例,医疗程序(诸如活组织检查程序)可使用远程操作系统执行以引导器械输送。参考附图1,在例如包括诊断程序、治疗程序或外科手术程序的医疗程序中使用的远程操作医疗系统一般通过标识号100指示。如将描述的那样,本公开的远程操作医疗系统在外科医生的远程操作控制下。在可替换实施例中,远程操作医疗系统可在经编程以执行程序或子程序的计算机的部分控制下。仍在其它可替换实施例中,在经编程以执行程序或子程序的计算机的完全控制下,完全自动的医疗系统可用于执行程序或子程序。如图1所示,远程操作医疗系统100一般包括安装到患者P被安置其上的手术台O或在所述手术台O附近安装的远程操作总成102。医疗器械系统104被可操作地耦接至远程操作总成102。操作员输入系统106允许外科医生或其它类型的临床医生S观察手术部位的图像或表示手术部位的图像并控制医疗器械系统104的操作。
操作员输入系统106可位于外科医生的控制台处,所述外科医生的控制台通常位于和手术台O相同的房间内。然而,应该理解,外科医生S能够位于不同的房间中或在与患者P完全不同的建筑内。操作员输入系统106一般包括一个或多个控制设备以用于控制医疗器械系统104。(一个或多个)控制设备可包括任何数量的各种输入设备中的一个或多个,所述输入设备诸如手柄、操纵杆、轨迹球、数据手套、触发枪、手控控制器、语音识别设备、触摸屏、肢体动作或存在传感器等等。在一些实施例中,(一个或多个)控制设备将被提供有与远程操作总成的医疗器械相同的自由度以向外科医生提供远程呈现,或(一个或多个)控制设备与器械成一体的看法以使得外科医生具有直接控制好像出现在手术部位处的器械的强烈意识。在另一些实施例中,控制设备可具有多于或少于相关联的医疗器械的自由度并仍向外科医生提供远程呈现。在一些实施例中,(一个或多个)控制设备为手动输入设备,其以6个自由度移动,且其还可包括可致动的手柄以用于致动器械(例如,用于关闭抓钳,应用电势到电极、输送药物治疗等等)。
远程操作总成102支持医疗器械系统104并可包括一个或多个非伺服式控制链接(links)的运动结构(例如,可手动安置或锁定在适当位置中的一个或多个链接,一般称为组建结构)和远程操作操纵器。远程操作总成102包括多个马达,其驱动医疗器械104系统上的输入。这些马达响应来自控制系统(例如,控制系统112)的命令而移动。马达包括驱动系统,当所述驱动系统耦接到医疗器械系统104时驱动系统可将医疗器械推到自然或手术创建的解剖孔口中。其它机动化驱动系统可以以多个自由度移动医疗器械的远端,所述多个自由度可包括3个线性运动度(例如,沿X、Y、Z笛卡尔坐标轴的线性运动)和3个旋转运动度(例如,围绕X、Y、Z笛卡尔坐标轴的旋转)。此外,马达能够用于致动器械的可铰接的末端执行器以用于抓取活组织检测设备或类似物的钳口中的组织。
远程操作医疗系统100还包括带有一个或多个子系统的传感器系统108以用于接收关于远程操作总成的器械的信息。这些子系统可包括位置传感器系统(例如,电磁(EM)传感器系统);用于确定导管尖端和/或沿器械系统104的柔性体的一个或多个节段的位置、取向、速度、速率、位姿和/或形状的形状传感器系统;和/或用于从导管系统的远端采集图像的可视化系统。
远程操作医疗系统100还包括显示系统110以用于显示手术部位和通过传感器系统108的子系统生成的(一个或多个)医疗器械系统104的图像或表示。显示器110和操作员输入系统106可被取向,使得操作员能够利用远程呈现的感知控制医疗器械系统104和操作员输入系统106。
可替换地或此外,显示系统110可使用成像技术(诸如计算机化断层显像(CT)、磁共振成像(MRI)、荧光镜检查、热敏成像、超声波、光学相干断层成像术(OCT)、热成像、阻抗成像、激光成像、纳米管X射线成像等)呈现术前或术中记录和/或成像的手术部位的图像。呈现的术前或术中图像可包括二维、三维,或四维(包括,例如,基于时间或基于速率的信息)图像和用于复制图像的相关图像数据集。
在一些实施例中,显示系统110可显示虚拟的可视化图像,其中医疗器械的实际位置利用术前或并发图像被记录(例如,动态参考)以向外科医生呈现医疗器械尖端位置处的内部手术部位的虚拟图像。
在另一些实施例中,显示系统110可显示虚拟的可视化图像,其中医疗器械的实际位置利用先前的图像(包括术前记录的图像)或并发图像被记录以向外科医生呈现手术部位处的医疗器械的虚拟图像。一部分医疗器械系统104的图像可叠加在虚拟图像上以帮助外科医生控制医疗器械。
远程操作医疗系统100还包括控制系统112。控制系统112包括至少一个存储器和至少一个处理器(未示出),且通常包括多个处理器,以用于影响医疗器械系统104、操作员输入系统106、传感器系统108,和显示系统110之间的控制。控制系统112还包括经编程的指令(例如,储存指令的计算机可读介质)以实施根据本文所公开的方面所述的一些或所有方法。虽然控制系统112被示出为图1的简化示意图中的单个方框,该系统可包括两个或更多个数据处理电路,其中所述处理的一部分可选地在远程操作总成102上执行或邻近远程操作总成102执行,所述处理的另一部分在操作员输入系统106处执行,等等。多种集中式或分散式数据处理架构中的任一个可被采用。类似地,程序指令可被实施为许多独立的程序或子程序,或它们可被整合到本文所述的远程操作系统的许多其它方面中。在一个实施例中,控制系统112支持无线通信协议,诸如蓝牙、红外数据通讯、家庭射频、IEEE 802.11、数位加强式无线通讯系统,和无线遥测。
在一些实施例中,控制系统112可包括从医疗器械系统104接收力和/或转矩反馈的一个或多个伺服控制器。响应于该反馈,伺服控制器传输信号到操作员输入系统106。(一个或多个)伺服控制器还可传输指示远程操作总成102移动医疗器械系统104的信号,所述医疗器械系统104经由身体中的开口延伸到患者身体内的内部手术部位中。可使用任何合适的传统的或专门的伺服控制器。伺服控制器可与远程操作总成102分开,或与远程操作总成102整合。在一些实施例中,伺服控制器和远程操作总成被提供为邻近患者身体安置的远程操作手臂推车的部分。
控制系统112可进一步包括虚拟的可视化系统以向(一个或多个)医疗器械系统104提供导航帮助。使用虚拟的可视化系统的虚拟导航基于参考与解剖通道的三维结构相关联的获得的数据集。更具体地,虚拟的可视化系统处理使用成像技术(诸如计算机化断层显像(CT)、磁共振成像(MRI)、荧光镜检查、热敏成像、超声波、光学相干断层成像术(OCT)、热成像、阻抗成像、激光成像、纳米管X射线成像,或等等)成像的手术部位的图像。软件用于将记录的图像转换为部分或整个解剖器官或解剖区域的二维或三维复合表示。图像数据集与复合表示相关联。复合表示和图像数据集描述通道的各种位置和形状以及它们的连通性。在临床程序过程中用于生成复合表示的图像可在术前或术中记录。在可替换实施例中,虚拟的可视化系统可使用标准表示(即,非患者特异的)或标准表示和患者特异数据的混合。复合表示和通过复合表示生成的任何虚拟图像可表示运动的一个或多个阶段过程中(例如,在肺的吸气/呼气周期过程中)的可变形的解剖区域的静态姿势。
在虚拟的导航程序过程中,传感器系统108可用于计算器械相对于患者解剖结构的大概位置。该位置能够用于产生患者解剖结构的宏观层面跟踪图像和患者解剖结构的虚拟内部图像。使用光纤传感器记录并显示医疗实施和术前记录的手术图像(诸如来自虚拟的可视化系统的那些)的各种系统是已知的。例如,美国专利申请No.13/107,562(2011年5月13日提交)(公开为“为图像引导的外科手术提供解剖结构的模型的动态记录的医疗系统”)公开了一种这样的系统,所述申请在此以引用的方式被全部并入。
远程操作医疗系统100可进一步包括可选操作和支持系统(未示出),诸如照明系统、转向控制系统、冲洗系统,和/或吸入系统。在可替换实施例中,远程操作系统可包括不止一个远程操作总成和/或不止一个操作员输入系统。操纵器装配的准确数量将取决于其它因素中的手术程序和手术室内的空间约束。操作员输入系统可并置,或它们可安置在独立的位置中。多个操作员输入系统允许不止一个操作员在各种组合中控制一个或多个操纵器装配。
图2示出介入器械系统200,其可用作遥控机器人介入系统100的介入器械系统104。可替换地,介入器械系统200可用于非机器人探索性程序或可在涉及传统上手动操作的介入器械(诸如内窥镜检查)的程序中使用。在各种实施例中,介入器械系统200可包括柔性支气管器械,诸如在肺的检查、诊断、活组织检查,或治疗中使用的支气管窥镜或支气管导管。该系统也适于在包括结肠、肠、肾、大脑、心脏、循环系统等等的各种解剖系统的任一个中经由自然的或手术创建的连接通道的其它组织的导航和治疗。
器械系统200包括耦接到器械主体204的导管系统202。导管系统202包括具有近端217和远端或尖端部分218的细长柔性体216。远端部分221在近端218和过渡区230之间延伸。近端部分220在过渡区230和近端217之间延伸。在一个实施例中,柔性体216具有约3mm的外直径。其它柔性体外直径可较大或较小。在一些实施例中,柔性体外直径从近端217到远端218逐渐减小。在另一些实施例中,近端217处的柔性体外直径大于远端218处的柔性体外直径。在一些实施例中,柔性体外直径在整个近端部分220中基本不变。在一些实施例中,柔性体外直径在整个远端部分221中基本不变。在另一些实施例中,柔性体外直径在整个近端部分220和/或远端部分221中可逐渐减小。在另一些实施例中,过渡区230处的柔性体中能够存在从近端部分220的较大外直径到远端部分221的较小直径的突然变化或停止。
导管系统202可选地包括形状传感器222,其用于确定远端218处的导管尖端的和/或沿主体216的一个或多个节段224的位置、取向、速度、位姿和/或形状。远端218和近端217之间的主体216的整个长度可有效地分为节段224。如果器械系统200为遥控机器人介入系统100的介入器械系统104,形状传感器222可为传感器系统108的组件。如果器械系统200手动操作或以其他方式用于非机器人程序,形状传感器222可耦接到跟踪系统,其询问形状传感器并处理接收的形状数据。
形状传感器系统222可包括与柔性导管体216对齐的光纤(例如,提供在内导管(未示出)内或安装在外部)。形状传感器系统222的光纤可形成用于确定至少一部分导管系统202的形状的光纤弯曲传感器。用于监测三维中的光纤的形状和相对位置的各种系统和方法在下列专利中描述:2005年7月13日提交的公开“光纤位置和形状感测设备及相关方法”的美国专利申请No.11/180,389;2004年7月16日提交的公开“光纤形状和相对位置感测”的美国临时专利申请No.60/588,336;以及1998年6月17日提交的公开“光纤弯曲传感器”的美国专利No.6,389,187,所述专利在此以引用的方式被全部并入。在其它可替换中,采用其它应变感测技术(诸如瑞利散射、拉曼散射、布里渊散射,和荧光散射)的传感器可为合适的。在其它可替换实施例中,导管的形状可使用其它技术确定。
更具体地,穿过光纤的光经处理以检测导管系统202的形状并用于利用该信息协助手术程序。传感器系统(例如,传感器系统108或图3所述的另一类型的跟踪系统)可包括用于生成并检测光的解调系统,用于确定导管系统202的形状。该信息进而能够用于确定其它相关变量,诸如介入器械的部分的速度和加速度。
柔性导管体216包括内腔225,其被设定大小和形状以接收辅助工具226。辅助工具可包括,例如,图像采集探头、活组织检测设备、激光烧蚀纤维,或其它手术的、诊断的,或治疗的工具。辅助工具可包括末端执行器,其具有单一工作构件,诸如解剖刀、刀片、光纤,或电极。其它末端执行器可包括一对或多个工作构件,例如,诸如镊子、抓紧器、剪刀,或施夹器。电力致动的末端执行器的实例包括电外科手术电极、转换器、传感器等等。
在各种实施例中,辅助工具226可为图像采集探头,其包括带有设置在柔性导管体216的远端218附近的立体摄像机或单视场摄像机的尖端部分以用于采集经处理以显示的图像(包括视频图像)。图像采集探头可包括耦接到摄像机的电缆,其用于传输采集的图像数据。可替换地,图像采集器械可为耦接到成像系统的光导纤维束,诸如纤维镜。图像采集器械可为单光谱的或多光谱的,例如采集可见光谱中的图像数据,或采集可见的且红外线的或紫外线光谱中的图像数据。
导管系统202可选地包括位置传感器系统231(例如,电磁(EM)传感器系统),如果由于例如来自手术间内的其它装备的磁干扰所述位置传感器系统变得不可靠或如果其它导航跟踪系统更可靠,所述位置传感器系统可被操作员或自动系统(例如,控制系统112的功能)禁用。位置传感器系统231可为EM传感器系统,其包括可经受外部产生的电磁场的一个或多个传导线圈。EM传感器系统231的每个线圈然后产生感测的电信号,该感测的电信号具有取决于线圈相对于外部产生的电磁磁场的位置和取向的特征。在一个实施例中,EM传感器系统可经配置和安置以测量6个自由度(“6-DOF”),例如,3个位置坐标X、Y、Z和指示基点的倾斜、偏航和滚动的3个取向角,或5个自由度(例如,3个位置坐标X、Y、Z和指示基点的倾斜和偏航的2个取向角)。EM传感器系统的进一步描述在1999年8月11日提交的公开为“在正被跟踪的物体上具有被动应答器的6自由度跟踪系统”的美国专利No.6,380,732中提供,所述专利在此以引用的方式被全部并入。
柔性导管体216还可安放在器械主体204和远端218之间延伸以可控制地弯曲或转动远端部分221(如例如远端部分的点划线版本所示)的电缆、联动装置,或其它转向控制件(图2中未示出)。在一些实施例中,柔性体216能够限定一个或多个额外的内腔,通过这些内腔,介入器械、电缆、联动装置,和/或其它转向控制件(诸如,通过非限制性实例的方式,盘管和肌腱)可延伸穿过。
在器械系统200通过遥控机器人总成致动的实施例中,器械主体204可包括耦接到遥控机器人总成的机动化驱动元件的驱动输入。在器械系统200手动操作的实施例中,器械主体204可包括紧夹特征、手动致动器和用于手动控制器械系统的运动的其它组件。导管系统可转向,或可替换地,可在没有用于器械的操作员控制的集成机制弯曲的情况下不转向。在一些实施例中,近端部分220经配置以被动偏斜以响应作用于柔性体上的力,且远端部分221经配置以主动铰接以响应遥控机器人总成和/或来自器械主体204的控制信号。
图3示出导管系统300的一部分,所述导管系统300具有近端部分302、远端部分304,和设置其间的过渡区306。导管系统300可与上面关于图2所述的导管系统202相同。近端部分302可与近端部分220的最远端节段224相同且远端部分306可与导管系统202的远端部分221的最近端节段相同。在一些实施例中,过渡区306与图2所示的近端部分220和远端部分221之间所示的过渡区230相同。在所示实施例中,远端部分304包括最近端可转向节段307。可转向节段307包括近端308和远端309。
内腔310(例如,内腔225)中心地延伸穿过导管系统300的近端部分320、过渡区306和远端部分304。导管系统300包括带有层状壁组件(见图4和图5)的柔性壁312,为清晰起见,所述层状壁组件从图3的图示中省略。
博登(Bowden)电缆314沿导管系统300的导管柔性体(例如,柔性体216)的长度向下延伸到远端节段300。在该实施例中,博登电缆314完全在壁305内延伸或至少部分在壁305内延伸。博登电缆314包括控制线或肌腱318延伸穿过的导管或盘管316。盘管316沿柔性体的长度安放肌腱318,且肌腱318能够在盘管316内纵向滑动。盘管316在邻近远端部分304内的可转向节段307的过渡区306处终止。肌腱318在过渡区306处伸出盘管316,进入近端308,延伸穿过节段307,并附接到远端309。
在所示实施例中,4个盘管308围绕内腔310周向布置在壁312中。其它实施例可包括以各种对称或不对称模式中的任一个布置在壁312内的任何数量的盘管316。
在所示实施例中,盘管316在垂直于内腔303的大约共用平面中的节段300的柔性壁312内终止。如图3所示,盘管316在壁312的非离散部分中终止,其中盘管316嵌入或锚定到壁312(或类似的柔性护套状结构)。在所示实施例中,每个盘管316的远端320直接固定到邻近远端节段307的壁312。在一些实施例中,盘管316可进行表面处理以帮助固定到壁312。在一些实施例中,通过非限制性实例的方式,每个盘管316的远端320可经由黏合剂或熔化固定到壁312。在所示实施例中,盘管316的远端320没有锚定到在壁312或导管系统300内的任何离散元件,诸如刚性环。相反,每个盘管316在邻近经配置以通过特定盘管316内所运载的肌腱318转向的任意可转向节段(例如,可转向节段307)的位置处的壁312内终止并附贴到壁312。肌腱318继续穿过盘管的远端320以延伸穿过可转向节段307并在可转向节段307的远端309处终止。至于额外的结构支持,额外的线盘可在盘管圈内围绕盘管316中的每个被缠绕。
虽然所示实施例中的盘管316在近端部分302内的共用平面中终止,应该理解,单个盘管316可延伸到具有在不同长度(即,不在共用平面中)处终止的盘管的柔性体216的任何长度中。例如,在一些实施例中,盘管316中的至少一个延伸柔性体的整个长度或基本整个长度(例如,到远端部分304内的最远端可转向节段)。在另一些实施例中,盘管316仅部分沿柔性体的长度延伸。
每个肌腱318的近端耦接到致动器(未示出)。在一些实施例中,致动器可被设置在图2所示的器械主体204内。通过致动器施加到肌腱318的张力通过使用盘管316被隔离到特定节段307。这些博登电缆314能够被远程致动且能够用于选择性地施加力到节段300并铰接所述节段300。肌腱318可由各种材料中的任一种制成,所述材料包括但不限于不锈钢、钛、镍钛诺、超高分子量聚乙烯,和技术人员所知的任何其他合适的材料。在一些实施例中,博登电缆314在构造和操作方面基本类似于2007年10月11日提交且2009年4月16日公布的题为“用于管理铰接器械中的博登电缆的系统”的美国专利申请No.2009/0099420 A1所公开的电缆,所述申请在此以引用的方式被全部并入。如上所述,本领域技术人员应该明白,额外的盘管可穿过节段307或围绕节段307行进从而在导管的近端或远端部分的更远端节段处终止。
图4示出近端部分330(例如,图2所示的示例性导管系统202的近端部分220)的横截面图。在近端部分330处,柔性体332包括限定内腔334的多层中空圆柱形管。在近端部分330中,柔性体332包括外护套350、支持层355、线圈层360和内护套365,其中的每个围绕内腔334同心或共轴设置。外护套350包括经配置以运载位置传感器372的至少一部分(例如,EM传感器线和/或相关的位置信号线)的内腔370。在所示实施例中,支持层355包括嵌入式支持组件375,其在细长柔性体332的铰接过程中帮助维持内腔334(和任何其它内腔)的通畅。在一些实施例中,通过非限制性实例的方式,支持组件375包括管状编织元件,诸如聚酰亚胺编织。支持组件可抵抗径向膨胀和/或增加扭转刚度。支持组件375被夹在支持层355内,所述支持层355可由可彼此粘合和/或粘合到支持组件375的柔性管的两个单独挤压的长度制造。线圈层360在细长柔性体332的铰接过程中也可帮助维持内腔334(和任何其它内腔)的通畅。在一些实施例中,线圈层360包括卷绕元件,其具有开放的节距或封闭的节距。在另一些实施例中,线圈层360包括交织或编织元件。其它实施例可缺少支持层355和/或线圈层360。其它实施例可包括在外护套350和内护套365之间的任何数量或布置的支持层和/或线圈层。
内护套365包括一定长度的柔性管件,该柔性管件带有从内表面405延伸到外表面410的厚度T。内护套包括5个导管,其包括经配置以运载肌腱401的4个导管400a、400b、400c和400d以及经配置以运载传感器元件415的传感器导管400e。在一些实施例中,导管400a至400e包括成形为圆柱形线圈或盘管(例如,盘管316)的材料的窄带。这类导管的盘绕性质可允许所述导管在张力和压缩下执行得很好。每个导管400a至400e可在预成形的渠道内延伸穿过内护套或可在内护套被围绕导管挤压时嵌入内护套中。导管400可围绕内护套365不对称布置。在另一些实施例中,根据器械系统200的应用和结构,内护套365可包括任何数量、类型和布置的导管400。
在图4的实施例中,导管400设置在更接近内护套365的内表面405而不是外表面410的内护套365内,从而创建突出420。在所示实施例中,突出420为管腔内突出。换句话说,突出420延伸到内腔334中。在另一些实施例中,导管400可设置在更接近外表面410的内护套365内而不是所示实施例所示的那样,且突出420可小于所示的或外表面410上的或不存在。
在一些实施例中,内护套365、支持层355,和/或支持组件375经配置以使导管400维持在穿过柔性体216的长度或至少一部分长度的基本已知的径向位置中。这可允许穿过柔性体332延伸的传感纤维(例如,传感器元件415和/或位置传感器系统230)的形状和取向以及柔性体332的形状和取向之间的可靠关联。在一些实施例中,导管400的径向位置沿柔性体332的长度相对于内表面405和外表面410变化。例如,在一些实施例中,当导管400朝远端部分远端地延伸穿过柔性体332时,导管400可更接近外表面410转变。
肌腱401(例如,肌腱310)共轴设置在导管400a、400b、400c和400d内。在一些实施例中,导管400a至400e经配置以维持柔性体内腔334的通畅或开放性并最小化摩擦以使得肌腱401能够在导管内自由滑动或浮动。在一些实施例中,导管400a至400e经配置以提供沿柔性体332的长度的肌腱310的可靠安置。
在该实施例中,导管400a至400e在内护套365内大体沿导管400a至400e的整个长度延伸。在一些现有技术导管系统中,转向电缆(例如,博登电缆)延伸穿过导管内腔而不附接到内腔壁或导管壁上仅带有周期性锚位置或电缆终端位置。在其它现有技术系统中,转向电缆周期性附接到导管的外表面。在这两种现有技术配置中,转向电缆将与导管壁分离,从而在附接点(俗称“豁开(cheese-wiring)”的情况)之间创建直线。在图4的实施例中,内护套捕获导管从而防止与导管壁分离。如图10和图11进一步所述,在不使用用于导管锚定或终止的刚性环的情况下,当在扭曲的解剖通道中使用时,将导管完全或部分嵌入柔性体332的壁内可允许柔性体抵抗(在刚性环的部位处或附近)形成尖锐弯曲。
导管400可由各种柔性材料的任一种构成,所述柔性材料包括但不限于尼龙、聚酰亚胺、PTFE、聚醚酰胺以及本领域技术人员所知的任何其它合适的材料。导管400可由线圈或编织结构构成。内护套365可由各种柔性材料中的任一种构成,所述柔性材料包括但不限于聚氨酯、PEP、聚醚酰胺以及本领域技术人员所知的任何其它合适的材料。
图5示出远端部分331(例如,图2所示的示例性导管系统202的远端部分221)的横截面图。在远端部分331处,柔性体332包括限定内腔334的多层中空圆柱形管。远端部分331中的柔性体332包括外护套440、可转向管450,和内护套365,其中的每个围绕内腔225同心或共轴设置。在一些实施例中,外护套440与上面关于图4所述的外护套350相同或与外护套350连续。在所示实施例中,外护套440包住可转向管450,且可转向管450同心地围绕限定内腔334的内护套360。外护套440可经配置以当其弯曲或挠曲时支持并约束可转向管450。在一些实施例中,外护套440经配置以随可转向管450的运动而弯曲和挠曲,而不过度限制可转向管450的运动。
如上面关于图4所述,内护套365包括5个导管,其包括经配置以运载肌腱401的4个肌腱导管400a、400b、400c、和400d以及经配置以运载传感器元件415的传感器导管400e。在远端部分331中,导管400a至400e更接近内护套的外表面410且伸进内腔334中的突出被消除。在各种可替换实施例中,所有导管或一些导管可在近端部分的远端处(例如,在图2的过度区230处)终止以使得仅肌腱(而不是导管)延伸到导管的远端部分中。一些可替换实施例可缺少导管的远端部分331中的内护套365,且导管400a至400e可通过如下面进一步详细描述的可转向管450捕获。
可转向管450包括设置在内护套365和外护套440之间的管状构件。可转向管450具有壁451和在壁451的内表面452和外表面454之间延伸的壁厚度T2。远端部分331具有跨越内腔334的内直径D1,和跨越外护套440的外直径D2。内直径D1可从1.5到2.5mm变动,且外直径D2可从2.5到4mm变动。这些测量被提供以仅用于示例性的目的,且并非为限制性的。可转向管450经成形并配置以使内护套365和外护套440之间约束的环形空间中的轴向刚度最大化,同时运载在下面进一步描述的凹口或凹槽470a至470e内的导管400。
图6a根据本公开的一个实施例示出可转向管450的透视图。在图6a所示的实施例中,可转向管450包括中空细长的管状构件,其具有从近端500延伸到远端505的长度L。在所示实施例中,可转向管450具有在非挠曲状态中圆柱形形状并沿纵向轴线AA延伸。
可转向管450可包括多个切口或切口特征461。切口特征461以提供轴向、弯曲和扭转刚度的最佳平衡的模式形成。在所示实施例中,切口特征基本垂直于纵向轴线AA形成。切口特征461允许可转向管450在多维中弯曲。在一些实施例中,可转向管450的任一给定部分中的切口的频率和模式可确定该部分的柔性。在一些实施例中,切口的较高空间频率可对应于较高柔性。在所示实施例中,切口特征461仅沿可转向管450的一部分延伸。在另一些实施例中,切口特征可延伸可转向管450的整个长度,或沿可转向管450的不同部分延伸。附图中所示的切口特征461仅为示例性的,且不旨在限制数量、类型、布置或形状。在各种实施例中,可转向管450可具有任何数量、类型、形状和布置的切口特征461。
如上所述,可转向管450包括经配置以接收导管400的渠道或凹槽470a至470e。渠道470a至470e可包括凹口、凹槽或封闭通道。在所示实施例中,可转向管450包括对应于沿内护套365延伸的导管400a、400b、400c、400d和400e的5个凹槽470a、470b、470c、470d和470e。在所示实施例中,凹槽470a至470e具有大体半球形横截面形状。在另一些实施例中,凹槽470a至470e可具有各种横截面形状中的任一种,通过非限制性实例的方式,所示横截面形状包括完整的或封闭的圆、不完整的或部分圆,不完整的或部分多边形,或完整的或封闭的多边形。在一些实施例中,凹槽470a至470e可具有开放的横截面形状。在另一些实施例中,凹槽470a至470e可具有封闭的横截面形状。在一些实施例中,其中导管400相对于柔性体216的近端部分330的纵向轴线纵向轴线以特定的径向模式布置,凹槽470相对于可转向管450的纵向轴线AA以相同的径向模式布置以使得导管400从柔性体332的近端部分220到远端部分331维持相同的径向模式。
凹槽470a、470b、470c、470d和470e围绕可转向管450周向设置在可转向管的内表面452上。可转向管450上的凹槽470a至470e的周向位置与内护套365上的导管400的周向位置相关联,且大致平行于可转向管450的纵向轴线AA。因此,导管400(或如果导管已经近端终止,肌腱)可滑动地被接收在可转向管450的凹槽470内而不终止或扭结导管400。该配置允许导管400在可转向管450旁边延伸,同时最大化内腔334的潜在内直径D1、最小化柔性体的远端部分331的外直径D2并最大化可转向管450的壁厚度。
如图6a所示,凹槽470从内表面450上的近端500延伸到远端505。凹槽470在平行于可转向管450的纵向轴线AA的基本笔直路径中延伸。在另一些实施例中,凹槽470可在可转向管450内形成非笔直(例如,弯曲的或螺旋的)路径。
在一些实施例中,凹槽470相对于可转向管450的切口特征461智能对齐以最大化可转向管450的机械性能。具体地,凹槽470可设置在可转向管450上以使得凹槽470远离管材料的大体轴向网(即,可转向管450的“支柱”)旋转转移。如图6a所示(且类似地在图8所示的实施例中),凹槽470延伸或贯通可转向管450的“环”,但避开可转向管450的“支柱”。该布置提供最大可转向管材料以用于支持轴向压缩。然而,如果可转向管450的扭转最弱,凹槽470可在别处相对于可转向管450上的“支柱”转移。换句话说,凹槽470的布置可经选择以避免切割可转向管450的最弱部分或带有凹槽470的挠曲。
如图6a和图6b所示,在没有凹槽470的区域中可转向管450的厚度T2可基本均匀,且壁厚度在凹槽470的区域中以基本均匀量减少。在凹槽470的区域中可转向管450可具有基本均匀的壁厚度T3。壁厚度T3小于壁厚度T2。在一些实施例中,厚度T2从0.25mm到0.38mm变动。在一些实施例中,厚度T3从0.07mm到0.127mm变动。这里测量经呈现以仅用于示例性目的,且并非为限制性的。预期其它壁厚度。可转向管450可由提供必要的拉力特性和挠曲特性的任何合适的生物相容性材料制成。通过非限制性实例的方式,合适的材料可包括形状记忆材料,诸如镍钛诺、不锈钢,和塑料。在一些实施例中,可转向管450全部由相同的材料制成(例如,从近端500到远端505由镍钛诺制成)。在另一些实施例中,可转向管450可由两种或更多种不同材料制成(例如,较少柔性区域由不锈钢制成而在更柔性区域由镍钛诺制成)。
用于可转向管450的构造的一种技术为激光切割技术,其可以自动方式(例如,通过计算机数值控制切割)产生可转向管450。壁厚度(例如,T2和T3)、长度L、内直径D1和外直径D2的细小变化可使用激光切割技术自动编程并生成。通过非限制性实例的方式,其它合适的制造方法可包括水射流切割、电化学蚀刻、电火花加工,和金刚石切割。在一些实施例中,紧随切口特征461和凹槽470的创建之后的是合适的表面处理,诸如,通过非限制性实例的方式,蚀刻或电解抛光以除去不规则表面的毛刺或使尖锐边缘变钝。
在一些实施例中,如图7和图8所示,凹槽470a’至470e’可在可转向管的外表面454’上形成。图7示出示例性器械系统的示例性远端部分331’的横截面。在远端部分331’处,柔性体包括限定内腔334的多层中空圆柱形管。在所示实施例中,远端部分331’包括外护套700、可转向管450’、内护套705,和内腔护套710,其中的每个围绕内腔334同心或共轴设置。在一些实施例中,外护套700基本与上面关于图5所述的外护套440相同。在一些实施例中,内护套705基本与上面关于图4和图5所述的内护套365相同。在所示实施例中,外护套700包住内护套705,内护套705包住可转向管450’,且可转向管450’同心地围绕限定内腔334的内腔护套710。一些实施例可缺少内腔护套710。
如上关于图4至图6b所示的内护套365所述,内护套705包括5个导管,其包括经配置以运载肌腱310的4个肌腱导管400a、400b、400c和400d,以及经配置以运载传感器元件415的传感器导管400e。可转向管450’包括在内护套705和内腔护套710之间设置的管状构件。可转向管450’经成形和配置以运载在下面进一步描述的凹口或凹槽470’内的导管400。
图8根据本公开的一个实施例示出可转向管450’的透视图。除了本文所述的不同外,可转向管450’基本类似于上面参考图5至图6b所述的可转向管450。可转向管450’包括经配置以接收导管400的凹口或凹槽470’。除了本文所述的不同外,凹槽470’基本类似于上面参考图5至图6b所述的凹槽470。在图7和图8所示的实施例中,可转向管450’包括对应于内护套705的导管400a、400b、400c、400d和400e的5个凹槽470a’、470b’、470c’、470d’和470e’。在所示实施例中,凹槽470’设置在可转向管450’的外表面454’上。具体地,凹槽470a’、470b’、470c’、470d’和470d’围绕可转向管450’周向设置在可转向管的外表面454’上。可转向管450’上的凹槽470’的周向位置与内护套705上的导管400的周向位置相关联。因此,内护套705的导管400可被滑动地接收在可转向管450’的凹槽470’内。该配置允许导管400在可转向管450’旁边延伸,同时最小化柔性体216的远端部分331的外直径D2’。
如图8所示,凹槽470’从外表面454’上的近端500’延伸到远端505’。凹槽470’沿与可转向管450’的纵向轴线AA共轴的基本笔直路径延伸。在另一些实施例中,凹槽470’可在可转向管450’内形成非笔直(例如,弯曲的或螺旋的)路径。
在一些实施例中,如图9所示,凹槽470可被形成在可转向管450的内表面452和外表面454之间的可转向管450的壁内。例如,图9示出图2所示的示例性器械系统200的示例性远端部分331”的横截面图。在远端部分331”处,器械系统200的柔性体216”包括限定内腔334的多层中空圆柱形管。在所示实施例中,柔性体332”包括外护套800、可转向管450”和内腔护套810,其中的每个围绕内腔334同心或共轴设置。在一些实施例中,外护套800与上面关于图5所述的外护套440基本相同。在一些实施例中,内腔护套710与上面关于图7所述的内腔护套710基本相同。在所示实施例中,外护套800包住可转向管450”,且可转向管450”同心地围绕限定内腔334的内腔护套810。一些实施例可缺少内腔护套810。
除了本文所述的不同外,可转向管450”基本类似于上面参考图5至图6b所述的可转向管450。可转向管450”包括经配置以接收导管400的渠道820。在所示实施例中,可转向管450”包括对应于导管400a、400b、400c、400d和400e的5个渠道820a、820b、820c、820d和820e。在所示实施例中,渠道820包括封闭的圆柱形通道,其设置在可转向管450”的内表面452”和外表面454”之间的可转向管450”的壁830内。具体地,渠道820a、820b、820c、820d和820e围绕可转向管450”周向设置在可转向管450”的壁830内。可转向管450”的渠道820的周向位置与柔性体332(例如,如图4所示)的近端部分330内的内护套365上的导管400的周向位置相关联。因此,内护套365的导管400可滑动地被接收在可转向管450”的渠道820内。该配置允许导管400在可转向管450”内延伸,同时最小化柔性体332”的远端部分331”的外直径D2”并最大化柔性体332’的内直径D1”。
图10示出导航示例性解剖结构内的转弯的柔性体900的示例性射线图像。柔性体900缺少图3至图9所公开的嵌入式导管400和可转向管450。在柔性体900中,运载控制肌腱310的导管(例如,盘管)可在离散元件(例如,刚性环)处锚定到柔性体900,所述离散元件设置在柔性体900的近端部分920和远端部分921之间的过渡930处。当柔性体900弯曲时,柔性体900显示柔性体900的近端部分920和远端部分921之间的过渡930处的尖锐弯曲,如箭头B所示。尖锐弯曲能够引起形状传感器组件发生故障且能够通过扭结或约束转向电缆限制转向控制。这种尖锐弯曲还可妨碍临床医生收回柔性体的能力。
图11根据本公开的原理示出包括嵌入式导管400和可选的可转向管450的柔性体216的示例性射线图像。如上关于图2和图4所述,导管400沿导管400的整个长度被嵌入内护套365内或以其他方式被安放在内护套365内。在所示实施例中,内护套365(图11未示出)沿柔性体216的长度从近端部分220连续延伸到远端部分221,并在可转向管450旁边或可转向管450内延伸。不是在过渡区230、导管终端位置或其它锚定位置处固定地附接到刚性锚元件(例如,刚性环),导管400穿过柔性体216的壁连续延伸并在所述壁内终止。在一些实施例中,导管400(图11中未示出)在内护套365内连续延伸,所述内护套365可穿过过渡230从柔性体216(图2所示)的近端部分220延伸到远端部分221。在一些实施例中,内护套365仅延伸穿过过渡230。在另一些实施例中,导管400和/或内护套365在柔性体216的远端处终止。
如图11所示,由于柔性体216导航解剖转弯(tum),而不是经历如图10所示的突然转弯(例如,刚性锚元件处),嵌入式导管400(和过渡230处因此缺少刚性锚元件)使柔性体216能够逐渐弯曲。因此,柔性体216在过渡230处保持柔性,同时仍维持可被隔离到远端部分221的铰接。嵌入式导管400和凹陷的可转向管450允许柔性管216从近端部分220通过远端部分221维持连续的、不间断的弯曲。柔性体216弯曲为连续弯曲而不扭结的能力促进穿过解剖结构的更有效率且更安全的导航。具体地,在柔性体216的推进过程中非故意地刺穿或以其他方式损害周围解剖结构的可能性(例如,由于在尖锐弯曲或扭结的过渡230处施加的力)减小,因为柔性体216(具有穿过过渡230嵌入内护套365中的导管400)能够比在用于导管400的过渡230处具有刚性锚元件的柔性体更容易弯曲并接近于自然的解剖通道。
本发明的实施例中的一个或多个元素可在软件中实施以在诸如控制系统112的计算机系统的处理器上执行。当在软件中实施时,本发明的实施例的元素本质上是执行必要任务的代码节段。程序或代码节段能够被储存在处理器可读存储介质或设备中,所述设备已通过嵌入传输介质或通信链接上的载波中的计算机数据信号的方式下载。处理器可读存储设备可包括能够储存信息的任何介质,其包括光学介质、半导体介质和磁性介质。处理器可读存储设备实例包括电子电路;半导体设备;半导体存储器设备,只读存储器(ROM)、闪速存储器、可擦除可编程只读存储器(EPROM);软盘,CD-ROM,光盘、硬盘,或其它存储设备。代码节段可经由计算机网络(诸如,因特网,内联网等)下载。
注意的是,所呈现的过程和显示可能不与任何特定的计算机或其它装置内在相关。各种这些系统的所需结构将作为元素出现在权利要求中。此外,本发明的实施例没有参考任何特定的编程语言描述。应该明白,各种编程语言可用于实施如本文所述的本发明的教导。
虽然本发明的某些示例性实施例已在附图中描述并示出,应该理解,这样的实施例仅仅是对广义创造性的解释而非限制,且由于本领域普通技术人员可想到各种其它的修改,本发明的实施例不限于所示和所述的具体结构和布置。

Claims (21)

1.一种微创医疗器械,其包括:
细长柔性体,其包括近端部分、远端部分、限定中心内腔的内护套和外护套,所述内护套具有内表面和外表面;
多个导管,所述多个导管嵌入在所述内护套内,所述多个导管延伸穿过所述内护套并在所述内护套内终止,每个导管包括导管内腔和远端,所述远端直接固定到所述内护套;以及
至少一个肌腱,其从所述细长柔性体的所述近端部分延伸穿过所述多个导管中的至少一个的所述导管内腔进入到所述细长柔性体的所述远端部分中,所述至少一个肌腱可致动以使所述远端部分转向。
2.根据权利要求1所述的微创医疗器械,其中所述多个导管中的至少一个在所述导管内腔内安放传感器元件。
3.根据权利要求1所述的微创医疗器械,其中所述多个导管中的至少一个包括盘管。
4.根据权利要求1所述的微创医疗器械,其中每个导管固定在相对于致动器的所述导管的近端处,且在所述导管的远端处固定至所述远端部分中的所述内护套。
5.根据权利要求1所述的微创医疗器械,其中每个肌腱固定在相对于致动器的所述肌腱的近端处,且在所述肌腱的远端处固定至所述远端部分。
6.根据权利要求1所述的微创医疗器械,其中所述多个导管不间断地延伸穿过所述细长柔性体的所述近端部分和所述远端部分之间的过渡。
7.根据权利要求1所述的微创医疗器械,其中所述多个导管基本平行于所述细长柔性体的纵向轴线取向。
8.根据权利要求1所述的微创医疗器械,其中所述多个导管相对于所述细长柔性体的纵向轴线以弯曲的模式取向。
9.根据权利要求1所述的微创医疗器械,进一步包括耦接到所述细长柔性体的所述远端部分的可转向管,所述可转向管包括内管表面、外管表面、具有在所述内管表面和所述外管表面之间延伸的管壁厚度的管壁,以及所述管壁中的经配置以接收安放所述导管的所述内护套的突出的多个渠道。
10.根据权利要求9所述的微创医疗器械,其中所述多个导管相对于所述细长柔性体的所述近端部分的纵向轴线以第一径向模式布置,且所述多个渠道相对于所述可转向管的纵向轴线以所述第一径向模式布置,使得所述导管从所述细长柔性体的所述近端部分到所述细长柔性体的所述远端部分维持所述第一径向模式。
11.根据权利要求9所述的微创医疗器械,其中所述可转向管包括所述可转向管的所述管壁中的多个切口特征。
12.根据权利要求11所述的微创医疗器械,其中所述可转向管的所述管壁中的所述多个切口特征基本垂直于所述可转向管的纵向轴线取向。
13.一种微创医疗系统,其包括:
致动器;
细长柔性体,其包括近端部分、远端部分、外护套和限定中心内腔并从所述近端部分连续延伸到所述远端部分的具有一定厚度的柔性内护套,所述柔性内护套具有内表面和外表面;
在所述内表面和所述外表面之间的所述柔性内护套内嵌入的多个导管,每个导管包括内腔和远端,每个导管延伸穿过所述柔性内护套并在所述柔性内护套内终止,其中每个远端直接附贴到所述柔性内护套;以及
多个致动肌腱,每个致动肌腱固定在相对于所述致动器的近端处并延伸穿过所述多个导管中的一个的所述内腔进入到所述远端部分中,
其中所述多个致动肌腱通过所述致动器可致动以弯曲所述远端部分。
14.根据权利要求13所述的微创医疗系统,进一步包括耦接到所述细长柔性体的所述远端部分的可转向管,所述可转向管包括内管表面、外管表面、具有在所述内管表面和所述外管表面之间延伸的厚度的管壁、以及所述管壁中的经配置以接收安放所述多个导管的所述柔性内护套的突出的多个渠道。
15.根据权利要求14所述的微创医疗系统,其中所述多个导管中的每个导管通过所述可转向管中的所述多个渠道中的一个从所述近端部分延伸穿过所述柔性内护套。
16.根据权利要求14所述的微创医疗系统,其中所述多个致动肌腱中的每个致动肌腱连续延伸穿过所述多个导管中的一个的所述内腔进入所述可转向管的所述管壁中。
17.根据权利要求14所述的微创医疗系统,其中所述多个致动肌键可致动以弯曲所述可转向管。
18.根据权利要求13所述的微创医疗系统,其中所述多个导管中的至少一个在所述内腔内安放传感器元件。
19.根据权利要求13所述的微创医疗系统,其中所述多个导管中的至少一个包括盘管。
20.根据权利要求13所述的微创医疗系统,其中所述多个导管中的至少一个通过黏合剂在其远端处固定至所述柔性内护套。
21.根据权利要求14所述的微创医疗系统,其中所述多个导管相对于所述细长柔性体的所述近端部分的纵向轴线以第一径向模式布置,且所述多个渠道相对于所述可转向管的纵向轴线以所述第一径向模式布置,使得所述导管从所述细长柔性体的所述近端部分到所述细长柔性体的所述远端部分维持所述第一径向模式。
CN201480057531.2A 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械 Active CN105658270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911224573.1A CN110833455B (zh) 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361895778P 2013-10-25 2013-10-25
US61/895,778 2013-10-25
PCT/US2014/062188 WO2015061692A1 (en) 2013-10-25 2014-10-24 Flexible instrument with embedded actuation conduits

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911224573.1A Division CN110833455B (zh) 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械

Publications (2)

Publication Number Publication Date
CN105658270A CN105658270A (zh) 2016-06-08
CN105658270B true CN105658270B (zh) 2019-12-27

Family

ID=52993622

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480057531.2A Active CN105658270B (zh) 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械
CN201911224573.1A Active CN110833455B (zh) 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911224573.1A Active CN110833455B (zh) 2013-10-25 2014-10-24 带有嵌入式致动导管的柔性器械

Country Status (6)

Country Link
US (2) US11007026B2 (zh)
EP (1) EP3060288B1 (zh)
JP (1) JP6795977B2 (zh)
KR (1) KR102313708B1 (zh)
CN (2) CN105658270B (zh)
WO (1) WO2015061692A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140200639A1 (en) 2013-01-16 2014-07-17 Advanced Neuromodulation Systems, Inc. Self-expanding neurostimulation leads having broad multi-electrode arrays
JP6431678B2 (ja) * 2014-03-20 2018-11-28 オリンパス株式会社 挿入形状検出装置
JP7082052B2 (ja) 2015-09-03 2022-06-07 ネプチューン メディカル インク. 小腸内での内視鏡前進の為の器具
US20190105112A1 (en) * 2016-03-31 2019-04-11 Koninklijke Philips N.V. Image guided robot for catheter placement
US11000265B1 (en) * 2016-06-20 2021-05-11 Intelligent Fiber Optic Systems, Inc. Steerable biopsy needle with fiber-activated shape memory alloy
US11122971B2 (en) 2016-08-18 2021-09-21 Neptune Medical Inc. Device and method for enhanced visualization of the small intestine
US10729886B2 (en) 2016-08-24 2020-08-04 Intuitive Surgical Operations, Inc. Axial support structure for a flexible elongate device
US10933214B2 (en) * 2017-04-26 2021-03-02 Biosense Webster (Israel) Ltd. Method for producing a deflectable insertion tool
WO2019018736A2 (en) 2017-07-21 2019-01-24 Intuitive Surgical Operations, Inc. SYSTEMS AND METHODS FOR FLEXIBLE ELONGATED DEVICE
US10872449B2 (en) 2018-05-02 2020-12-22 Covidien Lp System and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
JP2021531111A (ja) 2018-07-19 2021-11-18 ネプチューン メディカル インク. 動的硬化医療用複合構造
US11678788B2 (en) 2018-07-25 2023-06-20 Intuitive Surgical Operations, Inc. Systems and methods for use of a variable stiffness flexible elongate device
US11793392B2 (en) 2019-04-17 2023-10-24 Neptune Medical Inc. External working channels
CN113080833B (zh) 2019-12-23 2023-01-03 财团法人工业技术研究院 光纤扫描探头及内视镜
TWI744910B (zh) * 2019-12-23 2021-11-01 財團法人工業技術研究院 光纖掃描探頭及內視鏡
CA3178444A1 (en) 2020-03-30 2021-10-07 Neptune Medical Inc. Layered walls for rigidizing devices
US11701492B2 (en) 2020-06-04 2023-07-18 Covidien Lp Active distal tip drive
CN113842102A (zh) * 2021-09-23 2021-12-28 上海微创医疗机器人(集团)股份有限公司 柔性部件、柔性探入器及内窥镜装置
US20230346204A1 (en) 2022-04-27 2023-11-02 Neptune Medical Inc. Endoscope sheath apparatuses

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251611A (en) * 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
EP0575580B1 (en) * 1991-12-23 1999-03-17 Sims Deltec, Inc. Guide wire device with location sensing member
US5438975A (en) * 1993-03-24 1995-08-08 Machida Endoscope Co., Ltd. Distal tip of endoscope having spirally coiled control wires
WO1998036236A1 (en) 1997-02-13 1998-08-20 Super Dimension Ltd. Six-degree tracking system
GB9713018D0 (en) 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor
US6450948B1 (en) 1999-11-02 2002-09-17 Vista Medical Technologies, Inc. Deflecting tip for surgical cannula
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6616628B2 (en) * 2001-11-16 2003-09-09 Cardiac Pacemakers, Inc. Steerable catheter with a longitudinally adjustable curved core
US20040199052A1 (en) * 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US7772541B2 (en) 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US7781724B2 (en) 2004-07-16 2010-08-24 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US20060013523A1 (en) 2004-07-16 2006-01-19 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US8273285B2 (en) 2005-01-10 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter and methods of making the same
US7959601B2 (en) 2005-02-14 2011-06-14 Biosense Webster, Inc. Steerable catheter with in-plane deflection
WO2007034664A1 (ja) 2005-09-22 2007-03-29 Olympus Corporation 内視鏡挿入部
WO2007062179A2 (en) 2005-11-22 2007-05-31 Neoguide Systems, Inc. Method of determining the shape of a bendable instrument
US7930065B2 (en) * 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
JP2009056054A (ja) * 2007-08-31 2009-03-19 Hoya Corp 内視鏡案内管装置
US20090062606A1 (en) * 2007-08-31 2009-03-05 Hoya Corporation Endoscope guiding tube device
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
KR20090062606A (ko) 2007-12-13 2009-06-17 삼성전기주식회사 방열 구조를 가진 회전 구동 디바이스와 전자기 멤스스캐너
AU2009205454B2 (en) 2008-01-14 2015-07-09 Boston Scientific Scimed, Inc. Catheter
US9462932B2 (en) 2008-01-24 2016-10-11 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
CN103654694B (zh) * 2008-02-05 2016-09-07 可控仪器制造公司 可操纵管
US20100168717A1 (en) * 2008-12-30 2010-07-01 Grasse Martin M Multi-lumen medical devices and methods of manufacturing same
US9254123B2 (en) * 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US20110015648A1 (en) 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
JP2011194126A (ja) * 2010-03-23 2011-10-06 Fujifilm Corp 内視鏡若しくは処置具のガイド管
JP5817181B2 (ja) * 2011-03-31 2015-11-18 住友ベークライト株式会社 医療機器
US8900131B2 (en) 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
US20130030363A1 (en) 2011-07-29 2013-01-31 Hansen Medical, Inc. Systems and methods utilizing shape sensing fibers
US9452276B2 (en) * 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130096385A1 (en) 2011-10-14 2013-04-18 Intuitive Surgical Operations, Inc. Vision probe and catheter systems
US8961550B2 (en) 2012-04-17 2015-02-24 Indian Wells Medical, Inc. Steerable endoluminal punch
US9033917B2 (en) * 2012-08-15 2015-05-19 Abbott Cardiovascular Systems Inc. Needle catheter for delivery of agents directly into vessel wall
EP3653156B1 (en) 2013-10-25 2023-08-02 Intuitive Surgical Operations, Inc. Flexible instrument with grooved steerable tube

Also Published As

Publication number Publication date
US20160270870A1 (en) 2016-09-22
KR20160077062A (ko) 2016-07-01
EP3060288B1 (en) 2018-07-04
US11007026B2 (en) 2021-05-18
CN110833455B (zh) 2023-02-28
EP3060288A4 (en) 2017-05-10
CN110833455A (zh) 2020-02-25
EP3060288A1 (en) 2016-08-31
JP2016538032A (ja) 2016-12-08
CN105658270A (zh) 2016-06-08
JP6795977B2 (ja) 2020-12-02
WO2015061692A1 (en) 2015-04-30
KR102313708B1 (ko) 2021-10-19
US20210212783A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US20200345436A1 (en) Flexible instrument with grooved steerable tube
US20210212783A1 (en) Flexible instrument with embedded actuation conduits
US20220152356A1 (en) Flexible instrument with nested conduits
JP6816243B2 (ja) スタイレット及び最小侵襲システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160608

Assignee: Intuitive medical Co.

Assignor: INTUITIVE SURGICAL OPERATIONS, Inc.

Contract record no.: X2022990000161

Denomination of invention: Flexible instrument with embedded actuating catheter

Granted publication date: 20191227

License type: Common License

Record date: 20220317

EE01 Entry into force of recordation of patent licensing contract