CN105655137A - 一种基于自供能检测的户外通信设备 - Google Patents

一种基于自供能检测的户外通信设备 Download PDF

Info

Publication number
CN105655137A
CN105655137A CN201610020552.8A CN201610020552A CN105655137A CN 105655137 A CN105655137 A CN 105655137A CN 201610020552 A CN201610020552 A CN 201610020552A CN 105655137 A CN105655137 A CN 105655137A
Authority
CN
China
Prior art keywords
module
gas
film
electrode
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610020552.8A
Other languages
English (en)
Inventor
潘燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610020552.8A priority Critical patent/CN105655137A/zh
Publication of CN105655137A publication Critical patent/CN105655137A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种基于自供能检测的户外通信设备,通过在通信设备外部表面安装检测装置,该检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块,染料敏化太阳能电池模块作为气体传感器模块的工作电源,该感测原件可以实现对通信设备工作环境中有害气体的快速检测,灵敏度高,应用范围广。

Description

一种基于自供能检测的户外通信设备
技术领域
本发明涉及通信设备领域,更具体涉及一种基于自供能检测的户外通信设备。
背景技术
通信设备分为有线通信设备和无线通信设备,有限通信设备主要包括路由器、交换机、modem等设备,无线通信设备主要包括无线AP、无线网桥、无线网卡、天线等设备。
然而,由于现有通信设备应用范围较广泛,当其处于不同工作环境时,对其提出了新的功能上的要求,比如对危险气体的检测功能。
发明内容
本发明的目的在于避免现有技术中的不足之处而提供一种基于自供能检测的户外通信设备。
本发明的目的通过以下技术方案实现:
一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;染料敏化太阳能模块可以作为气体传感器模块的工作电源,对其产生自供能的效果,进而可以实现对通信设备所处工作环境中有害气体的快速检测,灵敏度高,并且重复性高,同时达到高效利用太阳能的目的。
所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约75nm,所述对电极上碳纳米管的长度为4μm;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料,所述多孔硅的孔径为20~30nm;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为300nm,所述Ni膜的厚度为15nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比1:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为45mA/cm2,腐蚀时间为1h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为100nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
本发明的有益之处在于:
(1)本发明基于染料敏化太阳能电池技术和气体传感器技术,设计自供能的气体传感器,即以染料敏化太阳能电池提供传感器工作的能源;将染料敏化太阳能电池与多孔硅基气体传感器串联,包括太阳能电池模块、传感器模块、数据读取模块和气体检测模块;太阳能电池通过太阳能发电来作为传感器的工作电源,对气体传感器产生自供能的效果,最大化利用了太阳能资源,减少了能源浪费和环境污染。
(2)在染料敏化太阳能电池的对电极中,通常采用Pt作为对电极催化剂材料,但是铂是一种贵金属,价格昂贵,本发明采用碳纳米管替代Pt作为催化剂,制作简单,催化效率高,价格低廉;制备成本大大降低,有利于大力推广应用;此外,本发明中气体传感器模块采用多孔硅为敏感材料,同时在多孔硅表面蒸镀一层氧化钨膜,多孔硅材料与氧化钨材料结合作为复合敏感材料,能快速识别环境中气体的变化情况,灵敏度高,方便快捷。
(3)本发明在数据读取模块后面设置了一个能够识别气体类型的气体识别模块,该模块中设置的气体检测构件中使用的指示载体粉末快速判断出气体类型,其工作运行时不需要染料敏化太阳能电池模块提供能量,整体省节约了能源,而且实现了无动力检测排放气体;快捷方便。
附图说明
利用附图对发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为本发明通信设备的示意图。
图2是本发明的染料敏化太阳能电池模块的结构示意图。
图3是本发明的气体传感器模块俯视示意图。
图4是本发明的气体传感器模块的截面图。
图5是本发明的染料敏化太阳能电池模块和气体传感器模块的结合示意图。
图6是本发明的气体识别模块的结构示意图。
具体实施方式
一般来说,气体传感器中的敏感元件在外界被测环境中的气体组分发生变化后,其相应的被测量的物理量也会发生变化,气体传感器将发生变化的特定的气体成分检测出来,并然后将其转化反映气体成分变化的电信号的变化,比如电阻、电容、电介质等。
多孔硅是一种具有疏松结构的材料,其可以由单晶硅或多晶硅在氢氟酸中被氧化来制得。多孔硅具有良好的光学性质、巨大的表面积等优点,目前,多孔硅已对湿度、有机气体、NOX、COX、O2、HCl等表现出检测性。以多孔硅为敏感材料的气体传感器,主要是利用其吸附气体后电导率的变化来检测气体。当多孔硅置于被检测气体环境中时,气体会在多孔硅表面发生吸附作用,气体分子会从多孔硅表面夺取空穴或电子,导致多孔硅的电阻发生变化,通过测量多孔硅电阻或电导的变化即可以测得待测气体浓度的变化。
目前相关技术中的气体传感器存在以下技术问题:在气体传感器在工作时,需要外接电源或电池来驱动其工作,大量使用电池会造成环境污染及能源浪费,对环境具有潜在的危害,因此,需要探寻一种环保节能的新型气体传感器。太阳能作为一种可持续的新型能源,是人类生存和发展的基础。未来,太阳能发电将成为人类社会的主要能源形式。目前,太阳能电池主要以硅太阳能电池、染料敏化太阳能电池和有机太阳能电池形式,其中,市场上大部分是单晶和多晶硅为代表的硅太阳能电池,虽然其具有转化效率高、性能稳定的优点,但是制备硅太阳能电池时,提炼高纯度硅材料需要耗费大量能源。
在太阳光照射下,染料分子吸收光能,其由本征态被激发到激发态,由于激发态的不稳定,其激发态电子会从染料分子传输到纳米半导体薄膜经过到光阳极的导电层,进而到外电路;失去电子的染料分子会被邻近的电解液中I-还原到本征态,而I-离子被氧化为I3-,电子从外电路传输到对电极,在催化剂的作用下,将电解液中I3-还原为I-,如此循环。
基于此,本发明器件的工作原理为:染料敏化太阳能电池与气体传感器、数据读取模块串联。在阳光照射下,染料敏化太阳能电池中染料分子吸收光能,被激发,释放的电子经过光阳极流向外电路,通过多孔硅基气体传感器、数据检测模块形成回路,在对电极,经过碳纳米管的催化作用,还原电解质中I3-离子,如此形成工作循环;对于气体传感器,在被检测气体环境下,多孔硅与氧化钨会吸附气体分子,导致其电导率发生变化,进而作用于电流的变化,此时数据监测模块会检测到变化,最后实时显现出该气体浓度。
本发明提供一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;染料敏化太阳能模块可以作为气体传感器模块的工作电源,对其产生自供能的效果,进而可以实现对通信设备所处工作环境中有害气体的快速检测,灵敏度高,并且重复性高,同时达到高效利用太阳能的目的。
结合图例对本发明做出进一步说明:
图1为本发明通信设备示意图。检测装置2安装于通信设备1的外部表面。
图2是本发明的染料敏化太阳能电池模块的结构示意图。
图3是本发明的气体传感器模块俯视示意图。
图4是本发明的气体传感器模块的截面图。
图5是本发明的染料敏化太阳能电池模块和气体传感器模块的结合示意图。
图6是本发明的气体识别模块的结构示意图。
其中:10-不锈钢基底,11-硅片衬底,12-硅片衬底,13-染料敏化太阳能电池模块,20-导电催化层,21-多孔硅区域,23-气体传感器模块,30-电解液,31-Au电极,32-氧化钨纳米线,33-数据读取模块,40-ITO导电玻璃基底,43-框架,50-对电极上碳纳米管,53-进气孔,60-TiO2粒子层和染料分子层,70-气体识别模块,71-外壳体,72-气体检测构件,73-扩散控制膜层,74-指示载体粉末,75-玻璃管。
结合以下实施例对本发明作进一步描述。
实施例1
本发明的实施例所提供的一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约75nm,;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为500nm,所述Ni膜的厚度为10nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比1:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为45mA/cm2,腐蚀时间为1h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为100nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
测试数据:
所制得器件中,染料敏化太阳能电池的对电极上碳纳米管的长度约为4μm,气体传感器中多孔硅的孔径约20~30nm;测试时,将该器件放入1m3的不透光密闭测试容器,取100mW/cm2的氙灯光源模拟太阳光,分别向测试容器中通入不同浓度的NO2气体。
气体的灵敏度用下式表示:R%=(I0±It/I0)×100%,式中,在光源功率不变的情况下,I0为没有通入NO2时器件中的电流大小,It为通入NO2测试气体时器件中的电流大小。
测试得到,染料敏化太阳能电池的最优转化效率约11.2%,测试重复2000次后发现,染料敏化太阳能电池转化效率下降到8.5%,重复性好;当气体传感器工作温度约40℃时,其对气体的选择性和灵敏度均表现最佳,其中,对NO2气体的探测极限为11ppm,对100ppm的NO2,灵敏度为72,响应时间7s;对NH3气体的探测极限为9ppm,对100ppm的NH3,灵敏度达56,响应时间4s。
实施例2:
本发明的实施例所提供的一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约65nm;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为300nm,所述Ni膜的厚度为7nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成30μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比2:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为55mA/cm2,腐蚀时间为2h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为60nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
测试数据:
所制得器件中,染料敏化太阳能电池的对电极上碳纳米管的长度约为7μm,气体传感器中多孔硅的孔径约5~25nm;测试时,将该器件放入1m3的不透光密闭测试容器,取100mW/cm2的氙灯光源模拟太阳光,分别向测试容器中通入不同浓度的NO2气体。
气体的灵敏度用下式表示:R%=(I0±It/I0)×100%,式中,在光源功率不变的情况下,I0为没有通入NO2时器件中的电流大小,It为通入NO2测试气体时器件中的电流大小。
测试得到,染料敏化太阳能电池的最优转化效率约10.8%,测试重复2000次后发现,染料敏化太阳能电池转化效率下降到7.1%,重复性好;当气体传感器工作温度约40℃时,其对气体的选择性和灵敏度均表现最佳,其中,对NO2气体的探测极限为12ppm,对100ppm的NO2,灵敏度为52,响应时间10s;对NH3气体的探测极限为12ppm,对100ppm的NH3,灵敏度达50,响应时间12s。
实施例3
本发明的实施例所提供的一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约55nm;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为260nm,所述Ni膜的厚度为15nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.2M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比1:4的氢氟酸(40%)和去离子水的混合液,腐蚀电流为62mA/cm2,腐蚀时间为1h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为50nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
测试数据:
所制得器件中,染料敏化太阳能电池的对电极上碳纳米管的长度约为9μm,气体传感器中多孔硅的孔径约5~50nm;测试时,将该器件放入1m3的不透光密闭测试容器,取100mW/cm2的氙灯光源模拟太阳光,分别向测试容器中通入不同浓度的NO2气体。
气体的灵敏度用下式表示:R%=(I0±It/I0)×100%,式中,在光源功率不变的情况下,I0为没有通入NO2时器件中的电流大小,It为通入NO2测试气体时器件中的电流大小。
测试得到,染料敏化太阳能电池的最优转化效率约11.4%,测试重复2000次后发现,染料敏化太阳能电池转化效率下降到7.3%,重复性好;当气体传感器工作温度约40℃时,其对气体的选择性和灵敏度均表现最佳,其中,对NO2气体的探测极限为16ppm,对100ppm的NO2,灵敏度为51,响应时间22s;对NH3气体的探测极限为13ppm,对100ppm的NH3,灵敏度达29,响应时间17s。
实施例4
本发明的实施例所提供的一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约80nm;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为350nm,所述Ni膜的厚度为15nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯5ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、6ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比2:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为48mA/cm2,腐蚀时间为1h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为70nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
测试数据:
所制得器件中,染料敏化太阳能电池的对电极上碳纳米管的长度约为8μm,气体传感器中多孔硅的孔径约20~40nm;测试时,将该器件放入1m3的不透光密闭测试容器,取100mW/cm2的氙灯光源模拟太阳光,分别向测试容器中通入不同浓度的NO2气体。
气体的灵敏度用下式表示:R%=(I0±It/I0)×100%,式中,在光源功率不变的情况下,I0为没有通入NO2时器件中的电流大小,It为通入NO2测试气体时器件中的电流大小。
测试得到,染料敏化太阳能电池的最优转化效率约8.7%,测试重复2000次后发现,染料敏化太阳能电池转化效率下降到7.4%,重复性好;当气体传感器工作温度约40℃时,其对气体的选择性和灵敏度均表现最佳,其中,对NO2气体的探测极限为26ppm,对100ppm的NO2,灵敏度为39,响应时间15s;对NH3气体的探测极限为12ppm,对100ppm的NH3,灵敏度达37,响应时间9s。
实施例5
本发明的实施例所提供的一种基于自供能检测的户外通信设备,该通信设备的外部表面安装检测装置,所述检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块和气体传感器模块;所述染料敏化太阳能电池模块包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液,所述对电极包括不锈钢基底、紧邻不锈钢基底的导电催化层、设置于所述导电催化层上的碳纳米管,所述光阳极包括ITO导电玻璃基底和位于ITO导电玻璃基底上的TiO2粒子和染料分子层,所述TiO2粒子的粒径约100nm;所述气体传感器模块包括硅片衬底、氧化钨纳米线和Au电极,所述硅片衬底的表面上腐蚀有多孔硅区域,所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料;所述染料敏化太阳能电池模块和气体传感器模块设置于表面有一直径为0.5cm的进气孔的规格为5cm×5cm×1cm的铝制的长方体框架内,所述染料敏化太阳能电池模块通过粘合剂粘合至所述框架的外表面,并使光阳极朝上,所述气体传感器模块、数据读取模块设置于所述框架内部,所述染料敏化太阳能电池模块、所述气体传感器模块和数据读取模块通过导线连接。
优选地,所述染料敏化太阳能电池模块的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底,用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底上镀金属Cr膜和Ni膜形成导电催化层,所述Cr膜的厚度为300nm,所述Ni膜的厚度为15nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液注入到空腔中,形成染料敏化太阳能电池模块;
所述气体传感器模块的制备包括以下步骤:
①切割硅片衬底尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比1:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为25mA/cm2,腐蚀时间为1h,在硅片衬底表面形成大小1.5cm×1cm的多孔硅区域;
③将硅片衬底放入磁控溅射仪中,在其多孔硅区域表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域上制作两个圆点状的Au电极,所述Au电极的直径为1mm,厚度为100nm。
所述数据读取模块通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块,所述气体识别模块通过导线和所述数据读取模块连接,所述气体识别模块主要由外壳体和与外壳体拆卸式连接的气体检测构件构成,所述气体检测构件由扩散控制膜层、指示载体粉末和玻璃管构成;所述气体检测构件的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
测试数据:
所制得器件中,染料敏化太阳能电池的对电极上碳纳米管的长度约为9μm,气体传感器中多孔硅的孔径约30~70nm;测试时,将该器件放入1m3的不透光密闭测试容器,取100mW/cm2的氙灯光源模拟太阳光,分别向测试容器中通入不同浓度的NO2气体。
气体的灵敏度用下式表示:R%=(I0±It/I0)×100%,式中,在光源功率不变的情况下,I0为没有通入NO2时器件中的电流大小,It为通入NO2测试气体时器件中的电流大小。
测试得到,染料敏化太阳能电池的最优转化效率约11.7%,测试重复2000次后发现,染料敏化太阳能电池转化效率下降到9.7%,重复性好;当气体传感器工作温度约40℃时,其对气体的选择性和灵敏度均表现最佳,其中,对NO2气体的探测极限为14ppm,对100ppm的NO2,灵敏度为67,响应时间15s;对NH3气体的探测极限为25ppm,对100ppm的NH3,灵敏度达36,响应时间23s。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (2)

1.一种基于自供能检测的户外通信设备,其特征在于:所述通信设备的外部表面安装检测装置,该检测装置基于自供能感测元件,并且还包括数据读取模块和气体识别模块;该自供能感测元件包括染料敏化太阳能电池模块(13)和气体传感器模块(23);所述染料敏化太阳能电池模块(13)包括对电极、光阳极以及填充于所述对电极和光阳极之间的电解液(30),所述对电极包括不锈钢基底(10)、紧邻不锈钢基底(10)的导电催化层(20)、设置于所述导电催化层(20)上的碳纳米管(50),所述光阳极包括ITO导电玻璃基底(40)和位于ITO导电玻璃基底(40)上的TiO2粒子和染料分子层(60),所述TiO2粒子的粒径约75nm,所述对电极上碳纳米管(50)的长度为4μm;所述气体传感器模块(23)包括硅片衬底(11)、氧化钨纳米线(32)和Au电极(31),所述硅片衬底(11)的表面上腐蚀有多孔硅区域(21),所述多孔硅区域的表面蒸镀有一层氧化钨膜与多孔硅一起作为检测气体的复合敏感材料,所述多孔硅的孔径为20~30nm;所述染料敏化太阳能电池模块(13)和气体传感器模块(23)设置于表面有一直径为0.5cm的进气孔(53)的规格为5cm×5cm×1cm的铝制的长方体框架(43)内,所述染料敏化太阳能电池模块(13)通过粘合剂粘合至所述框架(53)的外表面,并使光阳极朝上,所述气体传感器模块(23)、数据读取模块(33)设置于所述框架(53)内部,所述染料敏化太阳能电池模块(13)、所述气体传感器模块(23)和数据读取模块(33)通过导线连接。
2.根据权利要求1所述的通信设备,其特征在于,
所述染料敏化太阳能电池模块(13)的制作包括如下步骤:
S1:对电极制备:①选用厚度为0.3mm的规格为5cm×5cm的不锈钢基底(10),用砂纸抛光,经过丙酮、乙醇、去离子水依次超声清洗;②利用磁控溅射法在不锈钢基底(10)上镀金属Cr膜和Ni膜形成导电催化层(20),所述Cr膜的厚度为300nm,所述Ni膜的厚度为15nm;③利用CVD法,CH4为碳源,Ni为催化剂,生长碳纳米管;
S2:光阳极的制备:①分别取无水乙醇50ml、乙二醇胺2ml,在50℃水浴中搅拌使其充分混合,在混合溶液中加入钛酸丁酯9ml,继续在水浴中搅拌1h,然后加入无水乙醇10ml,在水浴中搅拌1h,静置12h,得到TiO2溶液,将其过滤,干燥;②取5g步骤①中干燥的TiO2粒子、10ml乙醇、2ml乙酰丙酮混合,放入研钵中研磨充分,制得TiO2浆料;③取步骤②中的适量的TiO2浆料刮涂在清洗后的规格为5cm×5cm的ITO导电玻璃基底(40)上,经过110℃下处理2h,然后将其浸渍在N719的乙醇溶液中6h,即得光阳极;
S3:电解液配制:0.5M碘化锂、0.06M碘、0.1M4-叔基吡啶和0.3M1-丙基-3-甲基咪唑碘盐,溶剂为体积比1:1的乙腈和丙烯碳酸脂混合液;
S4:组装:将对电极覆盖在光阳极上,两者之间形成50μm的空腔,边缘利用绝缘体封装,将电解液(30)注入到空腔中,形成染料敏化太阳能电池模块(13);
所述气体传感器模块(23)的制备包括以下步骤:
①切割硅片衬底(11)尺寸至2cm×2cm,放入清洗液中超声清洗40min,清洗液为体积比为3:1的98%浓硫酸和40%双氧水;取出硅片衬底(11)用去离子水冲洗干净,再放入氢氟酸中浸泡10min,再依次用丙酮、乙醇、去离子水分别超声清洗20min;
②采用电化学法腐蚀硅片,配制腐蚀液,腐蚀液为体积比1:3的氢氟酸(40%)和去离子水的混合液,腐蚀电流为45mA/cm2,腐蚀时间为1h,在硅片衬底(11)表面形成大小1.5cm×1cm的多孔硅区域(21);
③将硅片衬底(11)放入磁控溅射仪中,在其多孔硅区域(21)表面蒸镀一层钨膜,厚度为200nm,然后将硅片衬底(11)放入管式炉中,密封常压下通入氮气,利用CVD法450℃生长氧化钨纳米线;
④使用磁控溅射法在多孔硅区域(21)上制作两个圆点状的Au电极(31),所述Au电极(31)的直径为1mm,厚度为100nm。
所述数据读取模块(33)通过无线通信模块发送至设置于所述检测装置内部的控制器模块,所述控制器模块通过无线通信模块和GPRS模块通信,并将由所述检测装置检测到的数据值传输至检测数据基站;
进一步的,所述自供能感测元件还设置有一个气体识别模块(70),所述气体识别模块(70)通过导线和所述数据读取模块(33)连接,所述气体识别模块(70)主要由外壳体(71)和与外壳体(71)拆卸式连接的气体检测构件(72)构成,所述气体检测构件(72)由扩散控制膜层(73)、指示载体粉末(74)和玻璃管(75)构成;所述气体检测构件(72)的制备步骤如下:
S1:载体的处理与活化:将筛分好的硅胶载体(90~100目)置于在600℃马弗炉中煅烧2h,冷却后,装瓶待用;
S2:指示载体的制备:量取一定量的原始液放入一容器中,倒入一定量的活化载体,边加边搅拌,直至混合均匀,上层清液较少为止。在空气中自然干燥后,装入密闭容器中待用;
S3:玻璃管的准备:遴选内径均匀、透明度好的玻璃管(规格为ID2.0mm×OD4.0mm),截取成长度为30mm的玻璃管若干段,用砂纸将两侧打毛,然后依次用肥皂水、清水、蒸馏水将玻璃管清洗干净,晾干待用;
S4:扩散控制膜的准备:采用0.5mm厚的聚酯膜作为扩散控制膜,待聚脂膜干燥后,用模具冲压成外径为2.0mm的圆形薄膜;
S5:气体识别模块的装配:将扩散控制膜用粘合剂粘合到玻璃管的一侧,然后称取一定量指示载体粉末慢慢装入玻璃管内至玻璃管无空隙,平整后粘合另一侧扩散控制膜。
CN201610020552.8A 2016-01-13 2016-01-13 一种基于自供能检测的户外通信设备 Pending CN105655137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610020552.8A CN105655137A (zh) 2016-01-13 2016-01-13 一种基于自供能检测的户外通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610020552.8A CN105655137A (zh) 2016-01-13 2016-01-13 一种基于自供能检测的户外通信设备

Publications (1)

Publication Number Publication Date
CN105655137A true CN105655137A (zh) 2016-06-08

Family

ID=56487242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610020552.8A Pending CN105655137A (zh) 2016-01-13 2016-01-13 一种基于自供能检测的户外通信设备

Country Status (1)

Country Link
CN (1) CN105655137A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105976729A (zh) * 2016-06-29 2016-09-28 潘燕 一种太阳能影像显示系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587781A (zh) * 2009-06-26 2009-11-25 大连理工大学 一种全喷涂工艺制备染料敏化太阳能电池的方法
CN101694819A (zh) * 2009-10-21 2010-04-14 华东师范大学 一种高功率染料敏化太阳能电池
CN102122579A (zh) * 2010-12-08 2011-07-13 天津理工大学 一种碳纳米管阵列光阴极材料及其制备方法和应用
CN102831753A (zh) * 2012-08-16 2012-12-19 上海霖睿自控设备有限公司 太阳能气体检测报警系统
CN103063707A (zh) * 2012-12-26 2013-04-24 天津大学 一种复合结构气敏材料的制备方法
CN203350214U (zh) * 2013-07-24 2013-12-18 天津大学 一种室温工作的高性能氮氧化物气敏元件
CN103512924A (zh) * 2013-10-21 2014-01-15 天津大学 一种低温检测氮氧化物气敏元件的制备方法
CN103630572A (zh) * 2013-10-21 2014-03-12 天津大学 用于气敏材料的多孔硅/氧化钨纳米线复合结构的制备方法
CN104237314A (zh) * 2014-08-12 2014-12-24 天津大学 一种高灵敏度室温二氧化氮气敏材料的制备方法
CN204906581U (zh) * 2015-08-24 2015-12-23 石家庄辉腾商贸有限公司 一种易燃易爆气体视频监测仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587781A (zh) * 2009-06-26 2009-11-25 大连理工大学 一种全喷涂工艺制备染料敏化太阳能电池的方法
CN101694819A (zh) * 2009-10-21 2010-04-14 华东师范大学 一种高功率染料敏化太阳能电池
CN102122579A (zh) * 2010-12-08 2011-07-13 天津理工大学 一种碳纳米管阵列光阴极材料及其制备方法和应用
CN102831753A (zh) * 2012-08-16 2012-12-19 上海霖睿自控设备有限公司 太阳能气体检测报警系统
CN103063707A (zh) * 2012-12-26 2013-04-24 天津大学 一种复合结构气敏材料的制备方法
CN203350214U (zh) * 2013-07-24 2013-12-18 天津大学 一种室温工作的高性能氮氧化物气敏元件
CN103512924A (zh) * 2013-10-21 2014-01-15 天津大学 一种低温检测氮氧化物气敏元件的制备方法
CN103630572A (zh) * 2013-10-21 2014-03-12 天津大学 用于气敏材料的多孔硅/氧化钨纳米线复合结构的制备方法
CN104237314A (zh) * 2014-08-12 2014-12-24 天津大学 一种高灵敏度室温二氧化氮气敏材料的制备方法
CN204906581U (zh) * 2015-08-24 2015-12-23 石家庄辉腾商贸有限公司 一种易燃易爆气体视频监测仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邹小平等: "《纳米材料与敏化太阳电池》", 31 December 2014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105976729A (zh) * 2016-06-29 2016-09-28 潘燕 一种太阳能影像显示系统

Similar Documents

Publication Publication Date Title
CN105529191A (zh) 一种基于高转化效率太阳能电池的停车场车牌识别设备
TW558842B (en) Solar cell
CN102549835B (zh) 色素敏化型太阳能电池
CN105489385A (zh) 一种基于自供能检测功能的电动汽车充电站
CN101419179A (zh) 纳米硅气敏材料及气敏元件
CN105466973B (zh) 一种具有快速检测功能的安全护栏
CN105673377A (zh) 一种基于高效率太阳能电池的计量加油泵
CN105655137A (zh) 一种基于自供能检测的户外通信设备
CN105674192A (zh) 一种具有高灵敏检测功能的太阳能路灯
CN105489386B (zh) 一种具有快速检测气体功能的太阳能电池边框
CN102645463A (zh) 一种高灵敏度电流型葡萄糖传感器制备方法
CN105679545A (zh) 一种基于快速气体识别功能的窗帘
CN105527322A (zh) 一种高灵敏自供能的汽车尾气检测装置
CN105699436A (zh) 一种基于高转化率太阳能电池的废气检测装置
CN105513810A (zh) 一种具有高重复性检测功能的加油站油罐
CN105680250A (zh) 一种带有高灵敏识别功能的户外安全插座
CN105466974B (zh) 一种能够实现快速气体识别功能的高压电源
CN105679537A (zh) 一种基于自供能气体检测的电源操作门板
CN105674603A (zh) 一种具有自动气体检测功能的太阳能集热器
CN105466052B (zh) 一种具有高重复性检测功能的太阳能热水器
CN105429596B (zh) 一种基于高效率太阳能电池的产品户外展示设备
CN105471364A (zh) 一种基于气体识别功能的光伏发电设备
CN105529190B (zh) 一种带有自供能气体检测功能的停车场道闸
CN105486820B (zh) 一种带有气体检测功能的户外视频监控设备
CN105513811A (zh) 一种具有高重复性气体检测的露营帐篷

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160608

RJ01 Rejection of invention patent application after publication