CN105651684B - 后张预应力混凝土结构摩擦损失和锚固损失的检测方法 - Google Patents

后张预应力混凝土结构摩擦损失和锚固损失的检测方法 Download PDF

Info

Publication number
CN105651684B
CN105651684B CN201610225436.XA CN201610225436A CN105651684B CN 105651684 B CN105651684 B CN 105651684B CN 201610225436 A CN201610225436 A CN 201610225436A CN 105651684 B CN105651684 B CN 105651684B
Authority
CN
China
Prior art keywords
loss
stretching
anchorage
presstressed reinforcing
reinforcing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610225436.XA
Other languages
English (en)
Other versions
CN105651684A (zh
Inventor
徐高东
薛俏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Zhenhai Yaosen Civil Engineering Technology Services Co Ltd
Original Assignee
Ningbo Zhenhai Yaosen Civil Engineering Technology Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Zhenhai Yaosen Civil Engineering Technology Services Co Ltd filed Critical Ningbo Zhenhai Yaosen Civil Engineering Technology Services Co Ltd
Priority to CN201610225436.XA priority Critical patent/CN105651684B/zh
Publication of CN105651684A publication Critical patent/CN105651684A/zh
Application granted granted Critical
Publication of CN105651684B publication Critical patent/CN105651684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • G01N33/383Concrete, cement

Abstract

本发明公开了一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法,不但能检测出规范要求的摩擦损失和锚固损失这两种预应力损失指标,而且不管对于一端张拉施工工艺还是两端张拉施工工艺,均能测出其预应力筋的摩擦损失;本发明方法具有较高的检测精度和稳定性,能够克服传统的传感器法检测应力损失的所有不足,且能对预应力施工全过程进行有效检测、监测。本发明方法可广泛应用于以无粘结预应力筋、缓粘结预应力筋、钢棒、钢索、碳纤维筋等预应力用高强材料作为预应力筋的后张预应力混凝土结构在预应力张拉施工时的摩擦损失和锚固损失的检测。

Description

后张预应力混凝土结构摩擦损失和锚固损失的检测方法
技术领域
本发明属于建设工程中后张预应力混凝土结构预应力张拉施工时的施工检测、监测领域,具体涉及一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法。
背景技术
后张预应力混凝土结构现场张拉施工时,预应力损失主要包括摩擦损失和锚固损失。摩擦损失指的是预应力筋张拉时,张拉端锚口摩擦损失和预应力筋与孔道壁之间的摩擦损失之和;锚固损失指的是放张后,张拉端锚具变形和预应力筋内缩引起的预应力损失。目前常采用锚具下或锚具前后安装传感器的传感器法来检测预应力的摩擦损失和锚固损失。
采用锚下埋设传感器或锚具前后安装传感器的方法检测预应力损失,常存在以下几个问题:一、传感器法检测预应力摩擦损失,只能用于两端张拉的预应力孔道,不适用于一端张拉的预应力孔道,因此无法测出一端张拉的预应力摩擦损失,这是因为传感器法检测预应力摩擦损失,张拉施工时需要在孔道两端锚具下面各安装一个传感器,由于一端张拉的固定端浇入混凝土内,因此张拉时不能安装传感器,只能在张拉端锚具下面安装一个传感器,导致一端张拉时,没法测出摩擦损失值;二、传感器若对中不好或者不均匀偏心受压,易造成传感器显示不准,在张拉测试时如果发现传感器显示不准确,需要重新安装,费工费时;三、测试孔道摩阻时需反复张拉3次,这容易造成工具锚处钢绞线断丝;四、测试锚固损失后,锚具需要退锚取出传感器,这给施工带来不便,而如果不取出传感器,成本又较高;五、有些施工现场条件较差,尤其是暗锚设计时,传感器安装很不方便,往往造成安装偏位。
发明内容
本发明所要解决的技术问题是:针对传统传感器法检测预应力损失的不足,提供一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法,不但能够检测出摩擦损失和锚固损失这两种预应力损失指标,而且不论一端张拉还是两端张拉,均能测出预应力筋的摩擦损失,同时能够对预应力施工全过程进行检测、监测,且检测精度高、稳定性好。
本发明解决上述技术问题所采用的技术方案为:一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法,由以下步骤组成:
1)材料进场阶段测定:
材料进场后按规定抽样,在实验室测定的抽样材料参数包括:单根钢绞线的公称面积Ap和弹性模量Ep以及锚具锚口损失比例系数p1和锚具预应力筋回缩量δL2
2)现场铺筋阶段测定:
根据实际工程中预应力梁上的预应力孔道的布孔情况,确定需取样的孔道位置及该孔道施工所用钢绞线束,将该钢绞线束作为抽检的预应力束,该钢绞线束由n根钢绞线组成,该n根钢绞线即代表n根预应力筋,随机选取n根钢绞线中的一根钢绞线作为定位预应力筋,并在定位预应力筋的两端表面做好标记,测定该定位预应力筋的下料长度L并进行书面记录;
3)现场张拉阶段测定:
3.1)张拉前的施工准备:
在预应力梁的预应力孔道上安装设计所需数量的波纹管,每个预应力孔道安装一根波纹管,在每根波纹管内穿好一束钢绞线,每束钢绞线的两端分别自一根波纹管的两端伸出,安装在所述的需取样的孔道位置处的波纹管内的一束钢绞线即为所述的预应力束;在装设有所述的预应力束的波纹管的一端或两端安装与该波纹管的端口同心的喇叭口;在波纹管的一端安装喇叭口时属于一端张拉施工工艺,所述的预应力束的一端自喇叭口伸出,确定所述的预应力束的自喇叭口伸出的一端作为张拉端,将所述的预应力束的另一端埋入混凝土内作为固定端;在波纹管的两端安装喇叭口时属于两端张拉施工工艺,所述的预应力束的两端分别自两个喇叭口伸出,选取所述的预应力束的自任意一个喇叭口伸出的一端作为张拉端,将所述的预应力束的另一端作为固定端;然后浇筑预应力梁的混凝土,养护到龄期后,在每个喇叭口的外露表面安装好锚具,等待张拉;
3.2)预应力束初应力的统一:
将第一穿心式千斤顶安装在所述的张拉端,对所述的n根钢绞线进行逐根张拉,以所述的预应力梁设计的张拉控制应力值的5-10%作为应力值换算的张拉力作为标准,统一预应力束的初应力,使构成预应力束的n根钢绞线初应力均匀;
预应力束的初应力统一完成后,卸下第一穿心式千斤顶;
3.3)预应力束的二级分级张拉:
3.3.1)二级预应力张拉力的计算
起点张拉力,即第一级张拉力N1的计算:
N1=m×n×(1+p2)×σcon×Ap (1)
终点张拉力,即第二级张拉力N2的计算:
N2=n×(1+p2)×σcon×Ap (2)
式(1)和式(2)中,m为经验值,0<m<1;n为预应力束中钢绞线的根数;p2为实际超张拉系数,令p2=p1;σcon为锚下张拉力,即设计的张拉控制应力;Ap为单根钢绞线的公称面积;
3.3.2)分级张拉:
张拉前,先安装整体张拉装置和检测装置;所述的整体张拉装置由限位板、第二穿心式千斤顶、工具锚和张拉油泵组成,在所述的张拉端的锚具上卡入式安装所述的限位板,在所述的限位板的后侧卡入式安装所述的第二穿心式千斤顶,在所述的第二穿心式千斤顶的后侧卡入式安装所述的工具锚,所述的第二穿心式千斤顶连接所述的张拉油泵;所述的检测装置由位移传感器和液压数显仪组成,所述的位移传感器安装在所述的第二穿心式千斤顶上,所述的液压数显仪连接在所述的张拉油泵上;
所述的张拉端的预应力束先后穿过锚具、限位板、第二穿心式千斤顶和工具锚穿出;
通过第二穿心式千斤顶对张拉端进行整束分级张拉,张拉过程中通过所述的液压数显仪适时读取张拉力的变化,当张拉力大小达到第一级张拉力N1时,记录所述的位移传感器的读数s1,此时:测量所述的定位预应力筋在张拉端自工具锚伸出部分的长度,记为L1;测量位于工具锚与同侧喇叭口面之间的定位预应力筋的长度,记为L2;测量定位预应力筋在固定端外露于预应力梁的长度,记为L3,如果是一端张拉施工工艺,则需在步骤3.1)中浇筑预应力梁的混凝土之前预先测量出L3并进行书面记录;测量第二穿心式千斤顶内定位预应力筋的长度L4;然后计算定位预应力筋在预应力梁内的实际长度L0,L0即为当张拉力等于N1时,预应力梁孔道内定位预应力筋的长度,
L0=L-L1-L2-L3 (3)
继续张拉,当张拉力大小达到第二级张拉力N2时,记录此时所述的位移传感器的读数s2,s2与s1的差值即为分级张拉后定位预应力筋的伸长值,即测试伸长值δL1
δL1=s2-s1 (4)
4)摩擦损失σ摩擦损失和锚固损失σ锚固损失的计算:
4.1)摩擦损失σ摩擦损失的计算:
σ摩擦损失=(1+p2)×σconeff (5)
σeff=Ep×εp (6)
其中,σeff为定位预应力筋的有效预应力,εp为定位预应力筋的应变,
张拉端孔道摩擦起点损失大小为零,固定端的孔道摩擦损失大小为:
σ固定端损失=2(σ摩擦损失-p2×(1+p2)×σcon) (8)
4.2)锚固损失σ锚固损失的计算:
张拉力为零时,张拉端到固定端的距离,即初应力为零时,孔道内定位预应力筋的长度Leff计算:
由管道摩擦引起的定位预应力筋的单位长度预应力损失
其中,σL为固定端有效应力,σL=σcon固定端损失 (11)
因此
记由锚具变形和预应力筋内缩引起的反向摩擦影响长度为lf
当lf≦Leff时,锚固损失:σ锚固损失=2×Δσd×lf (14)
当lf>Leff时,锚固损失:
结合计算得出的摩擦损失σ摩擦损失和锚固损失σ锚固损失,加上预应力筋的应力松弛损失和预应力梁混凝土的收缩徐变损失,即可判定后张预应力混凝土结构预应力总损失值及损失分布。
进一步地,所述的第一穿心式千斤顶的吨位在25吨以下,所述的第二穿心式千斤顶的吨位大于25吨。
与现有技术相比,本发明的优点在于:本发明公开的后张预应力混凝土结构摩擦损失和锚固损失的检测方法不但能检测出规范要求的摩擦损失和锚固损失这两种预应力损失指标,而且不管对于一端张拉施工工艺还是两端张拉施工工艺,均能测出其预应力筋的摩擦损失。本发明方法具有较高的检测精度和稳定性,能够克服传统的传感器法检测应力损失的所有不足,且能对预应力施工全过程进行有效检测、监测。本发明方法可广泛应用于以无粘结预应力筋、缓粘结预应力筋、钢棒、钢索、碳纤维筋等预应力用高强材料作为预应力筋的后张预应力混凝土结构在预应力张拉施工时的摩擦损失和锚固损失的检测。
附图说明
图1为两端张拉施工工艺下预应力束安装后效果图;
图2为一端张拉施工工艺下预应力束安装后效果图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本部分以某工程25.7米跨预应力梁为例,检测其两端张拉施工工艺下的摩擦损失和锚固损失。
该预应力梁的设计参数如下:
①有粘结预应力梁,混凝土强度C40,配筋2-9Φs15.2,采用fptk=1860MPa的低松弛钢绞线,采用壁厚不小于0.3mm的金属波纹管,锚具采用群锚体系。
②预应力梁轴线跨25.7米,柱子处,固定端直线段0.5m,张拉端直线段0.3m,左矢高1500mm,右矢高1200mm,张拉控制应力σcon=0.7fptk=0.7×1860=1302Mpa,设计超张拉系数为3%,预应力张拉时混凝土强度要求达到100%。
③设计要求施工确保预应力损失总量不超过30%,否则应在预应力损失较大部位补强。
上述25.7米跨预应力梁的摩擦损失和锚固损失的检测方法,由以下步骤组成:
1)材料进场阶段测定:
材料进场后按规定抽样,在实验室测定的抽样材料参数包括:单根钢绞线的公称面积Ap和弹性模量Ep以及锚具锚口损失比例系数p1和锚具预应力筋回缩量δL2,测得:Ap=139mm2,Ep=193000MPa,p1=3.8%(实测3套锚具),锚具预应力筋回缩量δL2=6.8mm;
2)现场铺筋阶段测定:
根据该25.7米跨预应力梁上的预应力孔道的布孔情况,确定需取样的孔道位置及该孔道施工所用钢绞线束,将该钢绞线束作为抽检的预应力束,该钢绞线束由9根钢绞线组成,该9根钢绞线即代表9根预应力筋,随机选取9根钢绞线中的一根钢绞线作为定位预应力筋,并在定位预应力筋的两端表面做好标记,测定该定位预应力筋的下料长度L=28753mm并进行书面记录;
3.1)张拉前的施工准备:
如图1所示,在预应力梁1的预应力孔道上安装设计所需数量的波纹管(图1中仅示出了装设有需检测的预应力束的波纹管2),每个预应力孔道安装一根波纹管,在每根波纹管内穿好一束钢绞线,每束钢绞线的两端分别自一根波纹管的两端伸出,安装在所述的需取样的孔道位置处的波纹管2内的一束钢绞线即为所述的预应力束3;在装设有所述的预应力束3的波纹管2的两端安装与该波纹管2的端口同心的喇叭口4,所述的预应力束3的两端分别自两个喇叭口4伸出,选取所述的预应力束3的自左侧喇叭口4伸出的一端作为张拉端,将所述的预应力束3的另一端作为固定端;采用明锚设计,令喇叭口面与梁侧混凝土面平齐;然后浇筑预应力梁的混凝土,养护到龄期后,在两端喇叭口的外露表面安装好锚具5,等待张拉;
3.2)预应力束初应力的统一:
采用张拉吨位为25吨的第一穿心式千斤顶在所述的张拉端对所述的9根钢绞线进行逐根张拉,以所述的预应力梁设计的张拉控制应力值的10%作为应力值换算的张拉力作为标准,统一预应力束的初应力,使构成预应力束的9根钢绞线初应力均匀;
预应力束的初应力统一完成后,卸下第一穿心式千斤顶;
3.3)预应力束的二级分级张拉:
3.3.1)二级预应力张拉力的计算
起点张拉力,即第一级张拉力N1的计算:
N1=m×n×(1+p2)×σcon×Ap
终点张拉力,即第二级张拉力N2的计算:
N2=n×(1+p2)×σcon×Ap
其中,m为经验值,取m=0.4;n为预应力束中钢绞线的根数,n=9;p2为实际超张拉系数,令p2=p1=3.8%;σcon为锚下张拉力,即设计的张拉控制应力,σcon=0.7fptk=0.7×1860=1302Mpa;Ap为单根钢绞线的公称面积,Ap=139mm2
计算得到:
N1=m×n×(1+p2)×σcon×Ap=0.4×9×(1+0.038)×1302×139=676279N;
N2=n×(1+p2)×σcon×Ap=9×(1+0.038)×1302×139=1690696N;
3.3.2)分级张拉:
如图1所示,张拉前,先安装整体张拉装置和检测装置;整体张拉装置由限位板6、张拉吨位为350吨的第二穿心式千斤顶8、工具锚7和张拉油泵(图中未示出)组成,在张拉端的锚具5上卡入式安装限位板6,在限位板6的后侧卡入式安装第二穿心式千斤顶8,在第二穿心式千斤顶8的后侧卡入式安装工具锚7,第二穿心式千斤顶8连接张拉油泵;检测装置由位移传感器9和液压数显仪(图中未示出)组成,位移传感器9安装在第二穿心式千斤顶8上,液压数显仪连接在张拉油泵上;
张拉端的预应力束3先后穿过锚具5、限位板6、第二穿心式千斤顶8和工具锚7穿出;
图2为一端张拉施工工艺下预应力束安装后效果图,与图1的区别在于,其固定端埋入混凝土内,且图2中,L3即为浇筑长度,L3需在步骤3.1)中浇筑预应力梁的混凝土之前预先测量出并进行书面记录;
通过第二穿心式千斤顶对张拉端进行整束分级张拉,张拉过程中通过所述的液压数显仪适时读取张拉力的变化,当张拉力大小达到第一级张拉力N1(即676279N)时,记录位移传感器的读数s1=237.8mm,此时:测量所述的定位预应力筋在张拉端自工具锚伸出部分的长度,记为L1=578mm;测量位于工具锚与同侧喇叭口面之间的定位预应力筋的长度,记为L2=483mm;测量定位预应力筋在固定端外露于预应力梁的长度,记为L3=1052mm;测量第二穿心式千斤顶内定位预应力筋的长度L4=386.6mm;然后计算定位预应力筋在预应力梁内的实际长度L0,L0即为当张拉力等于N1时,预应力梁孔道内定位预应力筋的长度,
L0=L-L1-L2-L3=28753-578-483-1052=26640m;
继续张拉,当张拉力大小达到第二级张拉力N2(即1690696N)时,记录此时位移传感器的读数s2,s2=332.5mm,s2与s1的差值即为分级张拉后定位预应力筋的伸长值,即测试伸长值δL1
δL1=s2-s1=332.5-237.8=94.7mm;
4)摩擦损失σ摩擦损失和锚固损失σ锚固损失的计算:
4.1)摩擦损失σ摩擦损失的计算:
σ摩擦损失=(1+p2)×σconeff
σeff=Ep×εp
其中,σeff为定位预应力筋的有效预应力,εp为定位预应力筋的应变,
计算得到:
σeff=Ep×εp=193000×5.8231e-3=1123.8MPa;
σ摩擦损失=(1+p2)×σconeff=(1+0.038)×1302-1123.8=227.68MPa;
张拉端孔道摩擦起点损失大小为零,固定端的孔道摩擦损失大小为:
σ固定端损失=2(σ摩擦损失-p2×(1+p2)×σcon)=2×(227.68-0.038×1.038×1302)=352.64MPaσ固定端损失占张拉控制应力σcon的比例为352.64/(0.7×1860)=0.271;
4.2)锚固损失σ锚固损失的计算:
张拉力为零时,张拉端到固定端的距离,即初应力为零时,孔道内定位预应力筋的长度Leff计算:
由管道摩擦引起的定位预应力筋的单位长度预应力损失
其中,σL为固定端有效应力,σL=σcon固定端损失
因此
记由锚具变形和预应力筋内缩引起的反向摩擦影响长度为lf
可见,lf≦Leff,锚固损失:σ锚固损失=2×Δσd×lf=2×0.0132×9971=263.2MPa,占张拉控制应力的比例为:263.2/1302=0.202。
结合计算得出的摩擦损失σ摩擦损失和锚固损失σ锚固损失,加上预应力筋的应力松弛损失和预应力梁混凝土的收缩徐变损失,即可判定该预应力梁预应力总损失值及损失分布。
本发明方法的应用不局限于上述实施例,本发明方法可广泛应用于以无粘结预应力筋、缓粘结预应力筋、钢棒、钢索、碳纤维筋等预应力用高强材料作为预应力筋的后张预应力混凝土结构在预应力张拉施工时的摩擦损失和锚固损失的检测。

Claims (2)

1.一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法,其特征在于由以下步骤组成:
1)材料进场阶段测定:
材料进场后按规定抽样,在实验室测定的抽样材料参数包括:单根钢绞线的公称面积Ap和弹性模量Ep以及锚具锚口损失比例系数p1和锚具预应力筋回缩量δL2
2)现场铺筋阶段测定:
根据实际工程中预应力梁上的预应力孔道的布孔情况,确定需取样的孔道位置及该孔道施工所用钢绞线束,将该钢绞线束作为抽检的预应力束,该钢绞线束由n根钢绞线组成,该n根钢绞线即代表n根预应力筋,随机选取n根钢绞线中的一根钢绞线作为定位预应力筋,并在定位预应力筋的两端表面做好标记,测定该定位预应力筋的下料长度L并进行书面记录;
3)现场张拉阶段测定:
3.1)张拉前的施工准备:
在预应力梁的预应力孔道上安装设计所需数量的波纹管,每个预应力孔道安装一根波纹管,在每根波纹管内穿好一束钢绞线,每束钢绞线的两端分别自一根波纹管的两端伸出,安装在所述的需取样的孔道位置处的波纹管内的一束钢绞线即为所述的预应力束;在装设有所述的预应力束的波纹管的一端或两端安装与该波纹管的端口同心的喇叭口;在波纹管的一端安装喇叭口时属于一端张拉施工工艺,所述的预应力束的一端自喇叭口伸出,确定所述的预应力束的自喇叭口伸出的一端作为张拉端,将所述的预应力束的另一端埋入混凝土内作为固定端;在波纹管的两端安装喇叭口时属于两端张拉施工工艺,所述的预应力束的两端分别自两个喇叭口伸出,选取所述的预应力束的自任意一个喇叭口伸出的一端作为张拉端,将所述的预应力束的另一端作为固定端;然后浇筑预应力梁的混凝土,养护到龄期后,在每个喇叭口的外露表面安装好锚具,等待张拉;
3.2)预应力束初应力的统一:
将第一穿心式千斤顶安装在所述的张拉端,对所述的n根钢绞线进行逐根张拉,以所述的预应力梁设计的张拉控制应力值的5-10%作为应力值换算的张拉力作为标准,统一预应力束的初应力,使构成预应力束的n根钢绞线初应力均匀;
预应力束的初应力统一完成后,卸下第一穿心式千斤顶;
3.3)预应力束的二级分级张拉:
3.3.1)二级预应力张拉力的计算:
起点张拉力,即第一级张拉力N1的计算:
N1=m×n×(1+p2)×σcon×Ap (1)
终点张拉力,即第二级张拉力N2的计算:
N2=n×(1+p2)×σcon×Ap (2)
式(1)和式(2)中,m为经验值,0<m<1;n为预应力束中钢绞线的根数;p2为实际超张拉系数,令p2=p1;σcon为锚下张拉力,即设计的张拉控制应力;Ap为单根钢绞线的公称面积;
3.3.2)分级张拉:
张拉前,先安装整体张拉装置和检测装置;所述的整体张拉装置由限位板、第二穿心式千斤顶、工具锚和张拉油泵组成,在所述的张拉端的锚具上卡入式安装所述的限位板,在所述的限位板的后侧卡入式安装所述的第二穿心式千斤顶,在所述的第二穿心式千斤顶的后侧卡入式安装所述的工具锚,所述的第二穿心式千斤顶连接所述的张拉油泵;所述的检测装置由位移传感器和液压数显仪组成,所述的位移传感器安装在所述的第二穿心式千斤顶上,所述的液压数显仪连接在所述的张拉油泵上;
所述的张拉端的预应力束先后穿过锚具、限位板、第二穿心式千斤顶和工具锚穿出;
通过第二穿心式千斤顶对张拉端进行整束分级张拉,张拉过程中通过所述的液压数显仪适时读取张拉力的变化,当张拉力大小达到第一级张拉力N1时,记录所述的位移传感器的读数s1,此时:测量所述的定位预应力筋在张拉端自工具锚伸出部分的长度,记为L1;测量位于工具锚与同侧喇叭口面之间的定位预应力筋的长度,记为L2;测量定位预应力筋在固定端外露于预应力梁的长度,记为L3,如果是一端张拉施工工艺,则需在步骤3.1)中浇筑预应力梁的混凝土之前预先测量出L3并进行书面记录;测量第二穿心式千斤顶内定位预应力筋的长度L4;然后计算定位预应力筋在预应力梁内的实际长度L0,L0即为当张拉力等于N1时,预应力梁孔道内定位预应力筋的长度,
L0=L-L1-L2-L3 (3)
继续张拉,当张拉力大小达到第二级张拉力N2时,记录此时所述的位移传感器的读数s2,s2与s1的差值即为分级张拉后定位预应力筋的伸长值,即测试伸长值δL1
δL1=s2-s1 (4)
4)摩擦损失σ摩擦损失和锚固损失σ锚固损失的计算:
4.1)摩擦损失σ摩擦损失的计算:
σ摩擦损失=(1+p2)×σconeff (5)
σeff=Ep×εp (6)
其中,σeff为定位预应力筋的有效预应力,εp为定位预应力筋的应变,
张拉端孔道摩擦起点损失大小为零,固定端的孔道摩擦损失大小为:
σ固定端损失=2(σ摩擦损失-p2×(1+p2)×σcon) (8)
4.2)锚固损失σ锚固损失的计算:
张拉力为零时,张拉端到固定端的距离,即初应力为零时,孔道内定位预应力筋的长度Leff计算:
由管道摩擦引起的定位预应力筋的单位长度预应力损失
其中,σL为固定端有效应力,σL=σcon固定端损失 (11)
因此
记由锚具变形和预应力筋内缩引起的反向摩擦影响长度为lf
当lf≦Leff时,锚固损失:σ锚固损失=2×Δσd×lf (14)
当lf>Leff时,锚固损失:
2.根据权利要求1所述的一种后张预应力混凝土结构摩擦损失和锚固损失的检测方法,其特征在于所述的第一穿心式千斤顶的吨位在25吨以下,所述的第二穿心式千斤顶的吨位大于25吨。
CN201610225436.XA 2016-04-12 2016-04-12 后张预应力混凝土结构摩擦损失和锚固损失的检测方法 Active CN105651684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610225436.XA CN105651684B (zh) 2016-04-12 2016-04-12 后张预应力混凝土结构摩擦损失和锚固损失的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610225436.XA CN105651684B (zh) 2016-04-12 2016-04-12 后张预应力混凝土结构摩擦损失和锚固损失的检测方法

Publications (2)

Publication Number Publication Date
CN105651684A CN105651684A (zh) 2016-06-08
CN105651684B true CN105651684B (zh) 2018-09-21

Family

ID=56497182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610225436.XA Active CN105651684B (zh) 2016-04-12 2016-04-12 后张预应力混凝土结构摩擦损失和锚固损失的检测方法

Country Status (1)

Country Link
CN (1) CN105651684B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815345C1 (ru) * 2023-11-21 2024-03-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" Способ контроля прочности бетона

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10417524B2 (en) 2017-02-16 2019-09-17 Mitsubishi Electric Research Laboratories, Inc. Deep active learning method for civil infrastructure defect detection
CN107290091B (zh) * 2017-06-22 2023-06-02 广西大学 一种用于预应力钢绞线的张拉力测量系统及其测量方法
CN107631705B (zh) * 2017-08-28 2019-12-24 山东大学 一种夹片式锚具钢筋回缩量测试装置及方法
CN109750599B (zh) * 2017-11-07 2021-11-19 上海同吉建筑工程设计有限公司 缓粘结低回缩预应力短索体系及计算、张拉方法
CN108152139A (zh) * 2017-12-14 2018-06-12 上海应用技术大学 一种锚下单根钢筋有效预应力快速检测方法
CN108614919B (zh) * 2018-03-30 2019-07-23 中交路桥北方工程有限公司 桥梁预应力分析方法及系统
CN109343591B (zh) * 2018-09-15 2022-08-19 北京市建筑工程研究院有限责任公司 基于智能钢绞线的后张预应力张拉精细化控制装置及方法
CN110411728B (zh) * 2019-08-05 2024-03-29 中国铁道科学研究院集团有限公司铁道建筑研究所 一种梁端反摩阻效应测试装置及方法
CN110514582A (zh) * 2019-08-27 2019-11-29 湖南联智桥隧技术有限公司 一种预应力管道分段摩阻损失检测系统及检测方法
CN112065439A (zh) * 2020-08-19 2020-12-11 中铁五局集团有限公司 基于溶洞暗河环境的连续梁喇叭口摩阻损失测试方法
CN112014310A (zh) * 2020-09-07 2020-12-01 广西大学 一种预应力管道摩阻损失试验及计算方法
CN112900882B (zh) * 2021-01-22 2022-10-18 中国建筑第八工程局有限公司 穿过后浇筑区域的缓粘结预应力筋的施工方法
TWI786611B (zh) * 2021-04-26 2022-12-11 佳彧機械工程有限公司 高拉力鋼棒強度安全檢測裝置及其操作方法
CN114329851B (zh) * 2022-03-14 2022-05-17 四川交达预应力工程检测科技有限公司 张拉限位空间的确定方法、系统及计算机可读存储介质
CN116804580B (zh) * 2023-06-07 2024-02-02 中冶检测认证有限公司 一种基于光纤光栅技术的核电安全壳预应力钢束的监测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005001150U1 (de) * 2005-01-24 2006-06-01 Hofmeister, Eckard Vorrichtung zur Befestigung eines Gegenstandes an einer Tragschicht
CN100523402C (zh) * 2007-02-06 2009-08-05 同济大学 大跨预应力梁采用有粘结与无粘结混合配筋设计方法
JP5946385B2 (ja) * 2011-12-05 2016-07-06 日本電波工業株式会社 共振子
CN204920236U (zh) * 2015-08-17 2015-12-30 长沙理工大学 一种预应力筋二次张拉与放张装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815345C1 (ru) * 2023-11-21 2024-03-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" Способ контроля прочности бетона

Also Published As

Publication number Publication date
CN105651684A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105651684B (zh) 后张预应力混凝土结构摩擦损失和锚固损失的检测方法
CN103089018B (zh) 一种精确建立张拉力的预应力钢结构张拉施工方法
CN106596287B (zh) 工具式砌体抗弯强度试验侧向加载装置
CN109060555B (zh) 一种基于四点弯曲加载的混凝土徐变测试装置与分析方法
CN103267724B (zh) 纤维增强复合筋材与混凝土粘接强度的梁式试验装置
CN106758820A (zh) 一种小半径连续现浇梁预应力束张拉施工方法
CN112131641A (zh) 轻质超高性能混凝土梁抗弯承载力确定方法
CN212007614U (zh) 一种基于反拉法的竖向有效预应力检测装置
KR100856734B1 (ko) 현수 시스템의 케이블 장력 측정을 위한 표준 실험 장치
CN105784243A (zh) 一种锚塞回缩引起的预应力损失计算方法
CN107271648B (zh) 考虑混凝土徐变影响的收缩应力测量装置
CN204959834U (zh) 一种大吨位静载试验的位移测量装置
US6880412B1 (en) Device and method for testing the tension in stressed cables of concrete structure
CN109100232B (zh) 用于检测桥塔爬锥竖向承载力的试验装置及使用方法
CN214794180U (zh) 一种测量水下锚筋承载力的简易装置
CN205981524U (zh) 一种用于土木工程预应力剪切力检测装置
CN203231963U (zh) 纤维增强复合筋材与混凝土粘接强度的梁式试验装置
CN110082019B (zh) 一种钢混组合梁桥面板应力长期监测方法
CN114136769A (zh) 基于图像处理的可进行应变检测的碳纤维板及使用方法
Braimah et al. Long-term behavior of CFRP prestressed concrete beams
CN105045944B (zh) 一种工程用预应力技术使用状态评估方法
CN211292909U (zh) 一种新型监测混凝土内氯离子渗透状态的装置
CN206916632U (zh) 悬臂t型刚构线型监测点安装结构
CN105116133A (zh) 一种用于监测混凝土应力的装置及方法
CN211121852U (zh) 相对位移测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant