CN105647273B - 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用 - Google Patents

一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用 Download PDF

Info

Publication number
CN105647273B
CN105647273B CN201610021393.3A CN201610021393A CN105647273B CN 105647273 B CN105647273 B CN 105647273B CN 201610021393 A CN201610021393 A CN 201610021393A CN 105647273 B CN105647273 B CN 105647273B
Authority
CN
China
Prior art keywords
silicate
ato
nano
solution
add
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610021393.3A
Other languages
English (en)
Other versions
CN105647273A (zh
Inventor
曹发斌
王平
刘伟明
吴照金
朱建华
申星梅
武杏荣
李辽沙
吕辉鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201610021393.3A priority Critical patent/CN105647273B/zh
Publication of CN105647273A publication Critical patent/CN105647273A/zh
Application granted granted Critical
Publication of CN105647273B publication Critical patent/CN105647273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种核壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料及其应用,属于纳米功能涂料技术领域。该复合材料包括93~97wt%硅酸盐纳米微球复合材料和3~7wt%ATO纳米粒子。本发明以钢渣为主要原料,制备硅酸盐微球,粒径范围纳米级,再以ATO纳米粒子修饰硅酸盐纳米微球。在研究过程中以其实际功能应用为导向进行设计、制备和组装纳米复合功能材料,实验设备及工艺方法简单,经济成本低。本发明所制备的纳米复合材料粒子分散性好、反射能力强、防水、阻燃、稳定性良好的特性,可制备环境友好型隔热、保温、防水和阻燃涂层,广泛应用于建筑物内、外墙、门窗等隔热保温材料。

Description

一种核壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料 及应用
技术领域
本发明属于纳米功能涂料技术领域,具体涉及一种环境友好型隔热、保温、防水和阻燃涂料用纳米微球无机复合材料的制备方法。
背景技术
随着人们对建筑物美学要求越来越高,玻璃体建筑材料使用率也越来越高。当前石英玻璃具有优良的物理性能和化学性能,其具有极强的耐热冲击能力,热膨胀系数低,高温下工作稳定性好,但对紫外到红外的波长范围内的光具有较高的透过率,尤其对红外光透过率更高,散热缓慢,易造成建筑物内持续高温,困扰用户和科研人员。专利CN1563231A公开了纳米锑掺杂的二氧化锡(antimony doped tin oxide,简称ATO)和ITO等组成的涂料,附着力强、透明、能屏蔽红外线隔热;专利CN 103351757A使用FZO和AZO等功能粒子,其对红外光阻隔率只有60%、可见光透过率为70%;刘成楼的纳米ATO透明隔热涂料,以纳米级粉体填充、并以ATO有机硅乳液改性丙烯酸树脂成膜,应用于玻璃隔热。但这些隔热涂料往往都具有较高的红外阻隔率和可见光透过率,表面硬度较差,严重影响了其实际应用效果。因此在不影响隔热涂料光学性能的前提下、充分提高其硬度使其耐刮,已成为新型隔热保温材料的关键。专利CN200410048047.1通过加入空心陶瓷来降低导热效率,使用了对环境有害的二甲苯溶剂;专利CN03147361.X以高岭土作为填料提高其硬度,其隔热效率较差。
发明内容
为克服现有技术的不足,本发明要解决的技术问题是提供一种核/壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料,以期该材料具有分散性好、反射能力强、防水、阻燃、稳定性良好的特性,可用于制备环境友好型隔热、保温、防水和阻燃涂层。
为了解决以上技术问题,本发明是通过以下技术方案予以实现的。
本发明一种核/壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料,以质量百分比计,包括:93~97%硅酸盐纳米微球,3~7%ATO纳米粒子,其制备方法如下:
(1)按质量比1:1.05~1.5称取钢渣和98%工业硫酸,将钢渣溶于硫酸,控制溶液pH值在1.0~2.8;以质量份计,取上清液1份,加入20~200份去离子水中,并逐渐加入7~70份乙醇,加入氢氧化钠溶液控制溶液酸碱度pH至3.0~4.5,直至硅酸盐球形纳米粒子完全析出,反应体系于2000~4000rpm离心分离后,用去离子水或乙醇清洗,于60℃下烘干2h,得硅酸盐纳米微球备用,粒径分布50~600nm;
(2)配置Sn4+离子和Sb5+乙醇溶液,控制Sn4+离子在30~500mM、掺杂Sb5+离子浓度为0.5~1mM,加入去离子水和NaOH溶液,使反应体系呈中性至碱性,加入30wt%过氧化氢、并控制溶液过氧化氢浓度为8~30wt%,简单震荡即得ATO纳米粒子溶液备用,粒径分布3~20nm;
(3)将步骤(2)得到的ATO纳米粒子的溶液和步骤(1)得到的硅酸盐纳米微球混均,所述ATO纳米粒子和硅酸盐纳米微球的质量份比为1︰20~100,再加入50~200份乙醇中,混均反应10~20min,反应体系在1000~3000rpm离心分离,于60℃下烘干2h,得到目标产物:核/壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料。
上述核/壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料可应用于制备隔热、保温、防水和阻燃涂层。
本发明(Ca,Fe,Mg,Mn)硅酸盐微纳米球形粒子形成原理:钢渣与酸发生酸解反应,部分Ca2+、Mg2+、Fe3+/2+、Mn4+/2+和Si4+/Al3+离子进入溶液;随着溶液碱性化,Si以[H4SiO4-OH]n -存在溶液中,与溶液中阳离子Ca2+、Mg2+、Fe3+/2+、Mn4+/2+产生作用(静电引力),发生团聚,形成纳米微球粒子。粒子大小可调控溶液pH值(3.0~4.5),来调控[H4SiO4-OH]-缩合度。
与现有技术相比,本发明具有以下技术效果:
1、ATO纳米粒子修饰的(Ca,Fe,Mg,Mn)硅酸盐纳米微球复合涂层在可见光内有良好的透过性能(透过率可达90%以上)及在红外区域有优异的热反射性能(发射率可达95%左右)。
2、ATO纳米粒子修饰的(Ca,Fe,Mg,Mn)硅酸盐纳米微球复合涂层较好的硬度(4H)、附着性能(1级)、耐冲击性能(50)、耐热性能(300)及良好的防水性能(95)。
3、ATO纳米粒子修饰的(Ca,Fe,Mg,Mn)硅酸盐纳米微球复合涂层具有良好的阻燃性能(1000℃以上仍稳定存在)。
4、本发明以钢渣为主要原料,制备(Ca,Fe,Mg,Mn)硅酸盐微球,粒径范围纳米级,再以ATO纳米粒子修饰(Ca,Fe,Mg,Mn)硅酸盐纳米微球。在研究过程中以其实际功能应用为导向进行设计、制备和组装纳米复合功能材料,实验设备及工艺方法简单,经济成本低。
5、整个反应条件温和。回收滤液,通过简单物理过程处理,回收废醇、废酸、ATO纳米粒子和(Ca,Fe,Mg,Mn)硅酸盐微球,均可循环使用。
附图说明
图1为(Ca,Fe,Mg,Mn)硅酸盐微球的扫描电镜图(放大比例100K×)。
图2为ATO纳米粒子修饰的(Ca,Fe,Mg,Mn)硅酸盐微球扫描电镜图(放大比例100K×)。
图3为ATO纳米粒子修饰的(Ca,Fe,Mg,Mn)硅酸盐微球扫描电镜图(放大比例400K×)。
具体实施方式
以下结合具体实施例详述本发明,但本发明不局限于下述实施例。
实施例1
(1)空心(Ca,Fe,Mg,Mn)硅酸盐微纳米微球制备
称取10.0钢渣,加入98%工业硫酸300mL溶液中,静止12h取上清溶液1份(为质量份,下同),加入30份去离子水中,并逐渐加入10份乙醇,并加入适量的NaOH溶液调控溶液的酸碱度(pH=4.5),直到(Ca,Fe,Mg,Mn)硅酸盐球纳米微球完全析出,反应体系在2000rpm下离心,用去离子水清洗4次,在60℃下干燥1h,得空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球形粒子,粒径分布400~500nm。
(2)ATO纳米粒子溶液制备
制备100mM的Sn4+离子碱性溶液,掺杂Sb5+离子浓度为1mM乙醇溶液,加入适量的去离子水和NaOH溶液,加入适量的30wt%过氧化氢、并控制溶液浓度在10wt%,简单震荡即得澄清的ATO纳米粒子溶液。
(3)ATO纳米粒子修饰空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球
将20份空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球加入ATO纳米粒子溶液(含1份ATO纳米粒子),震荡后超声分散10min后,在60份乙醇溶液中反应10min,反应体系在2000rpm离心分离后,于60℃下烘干2h,得ATO纳米粒子修饰(Ca,Fe,Mg,Mn)硅酸盐微球。
实施例2
(1)实心(Ca,Fe,Mg,Mn)硅酸盐微纳米微球制备
称取10.0钢渣,加入98%工业硫酸300mL溶液中,静止12h取上清溶液1份,加入60份去离子水中,并逐渐加入20份乙醇,并加入适量的NaOH溶液调控溶液的酸碱度(pH=3.0),直到(Ca,Fe,Mg,Mn)硅酸盐球纳米微球完全析出,反应体系在4000rpm下离心,用废醇清洗4次,在60℃下干燥1h,得实心(Ca,Fe,Mg,Mn)硅酸盐微纳米球形粒子,粒径分布50~100nm。
(2)ATO纳米粒子溶液制备
制备100mM的Sn4+离子碱性溶液,掺杂Sb5+离子浓度为0.5mM乙醇溶液,加入适量的去离子水和NaOH溶液,加入适量的30wt%过氧化氢、并控制溶液过氧化氢浓度在20wt%,简单震荡即得澄清的ATO纳米粒子溶液。
(3)ATO纳米粒子修饰实心(Ca,Fe,Mg,Mn)硅酸盐微纳米球
将50份实心(Ca,Fe,Mg,Mn)硅酸盐微纳米球加入ATO纳米粒子溶液(含1份ATO纳米粒子),震荡后超声分散10min后,在60份乙醇溶液中反应10min,反应体系在4000rpm离心分离后,于60℃下烘干2h,得ATO纳米粒子修饰(Ca,Fe,Mg,Mn)硅酸盐微球。
实施例3
(1)空心(Ca,Fe,Mg,Mn)硅酸盐微纳米微球制备
称取10.0钢渣,加入98%工业硫酸300mL溶液中,静止12h取上清溶液1份,加入150份去离子水中,并逐渐加入50份乙醇,并加入适量的NaOH溶液调控溶液的酸碱度(pH=3.5),直到(Ca,Fe,Mg,Mn)硅酸盐球纳米微球完全析出,反应体系在3000rpm下离心,用去离子水清洗4次,在60℃下干燥1h,得空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球形粒子,粒径分布200~300nm。
(2)ATO纳米粒子溶液制备
制备300mM的Sn4+离子碱性溶液,掺杂Sb5+离子浓度为1mM乙醇溶液,加入适量的去离子水和NaOH溶液,加入适量的30wt%过氧化氢、并控制溶液过氧化氢浓度在10wt%,简单震荡即得澄清的ATO纳米粒子溶液。
(3)ATO纳米粒子修饰空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球
将100份空心(Ca,Fe,Mg,Mn)硅酸盐微纳米球加入ATO纳米粒子溶液(含1份ATO纳米粒子),震荡后超声分散10min后,在60份乙醇溶液中反应10min,反应体系在3000rpm离心分离后,于60℃下烘干2h,得ATO纳米粒子修饰(Ca,Fe,Mg,Mn)硅酸盐微球。
实施例4
(1)ATO包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米球片浆料的制备
在10g去离子水和100g乙醇混合液中加入实施例2制备的ATO包裹实心的(Ca,Fe,Mg,Mn)硅酸盐微纳米球或实施例3制备的ATO包裹空心的(Ca,Fe,Mg,Mn)硅酸盐微纳米球粉体、分散剂、润湿剂、增稠剂、搅拌均匀,超声分散,分别制备了40wt%ATO纳米包裹云母浆料。
(2)ATO纳米包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米微球涂料的调制
将制备的两种ATO修饰的硅酸盐纳米微球(实施例2试样:ATO修饰实心硅酸盐纳米微球;实施例3试样:ATO修饰空心硅酸盐纳米微球)按m(硅树脂溶液BS43N)∶m(纯丙烯酸溶液SF-018)=1∶1.12的配比,分别加入0.5%硅氧烷偶联剂,搅拌混合均匀,制备硅树脂改性丙烯酸乳液成膜物;按m(成膜物)∶m(ATO纳米包裹(Ca,Fe,Mg,Mn)硅酸盐纳米微球浆料)=3∶2搅拌混合,然后加入消泡剂、流平剂、杀菌剂,搅拌混合均匀,制备成ATO纳米包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米球隔热涂料,制备的涂层主要性能指标见表1。
表1涂料层主要性能指标
(3)涂料隔热保温性能实验
将制得的保温隔热涂料,用30μm、40μm、50μm线棒涂布器分别涂布于150mm×200mm×3mm规格的6块载玻片上,分别标记为1号、2号、3号、4号、5号和6号样(1号、2号、3号使用实例2样品,4号、5号和6号使用实例3样品),分别在60℃烘箱中干燥2h,制得不同厚度的透明隔热涂膜试样,做隔热性能测试,同时取相同规格尺寸的平板玻璃片以同样方法涂布复合基料树脂作为对照备用。涂料层的在可见光和红外光中的反射率指标见表2(反射率由其反射光谱获得)。
表2涂料层反射性能指标
采用上述制作涂膜方法,将制作的薄膜,分别标记为1号、2号、3号、4号、实例3样品,基片为25mm×75mm×0.5mm规格),在同样高度放置2个碘钨灯作光源,将测试玻璃样板和空白玻璃对照样板放入2个相同的空心盒子上,并置于光源下。放置2支温度计,分别测量盒子内的空气温度和底板温度,观察温度随时间的变化,具体见表3和表4。
表3涂膜基板与裸基板在碘钨灯照射下温度变化(℃)
表4盒内空气在碘钨灯照射下温度变化(℃)
(4)涂料层阻燃性能实验
将所制备的ATO纳米粒子包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米微球涂料薄膜涂抹于可燃物上进行加热,在加热到1000℃以上仍能稳定存在。因为ATO包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米微球复合材料在加热过程中产生大量活性较高的ATO包裹(Ca,Fe,Mg,Mn)硅酸盐微纳米球粒子,易吸附于可燃物表面,阻断可燃物与空气的接触,达到阻燃的目的。

Claims (2)

1.一种核壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料,其特征在于:以质量百分比计,该复合材料包括:93~97%硅酸盐纳米微球,3~7%ATO纳米粒子,其制备方法如下:
(1)按质量比1:1.05~1.5称取钢渣和98%工业硫酸,将钢渣溶于硫酸,控制溶液pH值在1.0~2.8;以质量份计,取上清液1份,加入20~200份去离子水中,并逐渐加入7~70份乙醇,加入氢氧化钠溶液控制溶液酸碱度pH至3.0~4.5,直至硅酸盐球形纳米粒子完全析出,反应体系于2000~4000rpm离心分离后,用去离子水或乙醇清洗,于60℃下烘干2h,得硅酸盐纳米微球备用,粒径分布50~600nm;
(2)配置Sn4+离子和Sb5+乙醇溶液,控制Sn4+离子浓度为30~500mM、掺杂Sb5+离子浓度为0.5~1mM,加入去离子水和NaOH溶液,使反应体系呈中性至碱性,加入30wt%过氧化氢、并控制溶液过氧化氢浓度为8~30wt%,简单震荡即得ATO纳米粒子溶液备用,粒径分布3~20nm;
(3)将步骤(2)得到的ATO纳米粒子的溶液和步骤(1)得到的硅酸盐纳米微球混均,所述ATO纳米粒子和硅酸盐纳米微球的质量份比为1︰20~100,再加入50~200份乙醇中,混均反应10~20min,将反应体系在1000~3000rpm转速下离心分离,于60℃下烘干2h,得到目标产物:核/壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料。
2.如权利要求1所述的一种核壳结构ATO纳米粒子包裹的硅酸盐纳米微球复合材料在制备隔热、保温、防水和阻燃涂层中的应用。
CN201610021393.3A 2016-01-11 2016-01-11 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用 Active CN105647273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610021393.3A CN105647273B (zh) 2016-01-11 2016-01-11 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610021393.3A CN105647273B (zh) 2016-01-11 2016-01-11 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用

Publications (2)

Publication Number Publication Date
CN105647273A CN105647273A (zh) 2016-06-08
CN105647273B true CN105647273B (zh) 2018-03-20

Family

ID=56487471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610021393.3A Active CN105647273B (zh) 2016-01-11 2016-01-11 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用

Country Status (1)

Country Link
CN (1) CN105647273B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265817A (ja) * 2001-03-09 2002-09-18 Shigeki Iida コーティング組成物およびその製造方法
JP2007154152A (ja) * 2005-11-11 2007-06-21 Mitsubishi Materials Corp 熱線カット組成物およびその用途
CN101265374A (zh) * 2008-01-24 2008-09-17 复旦大学 一种智能隔热保温膜及其制备方法
EP2890745B1 (en) * 2012-08-29 2021-09-01 Hempel A/S Anti-corrosive zinc primer coating compositions comprising hollow glass spheres and a conductive pigment
CN104004387B (zh) * 2014-06-17 2016-04-13 安徽工业大学 一种ato纳米粒子包裹的硅酸盐粉体及其应用
CN104449277A (zh) * 2014-10-23 2015-03-25 安徽省实防新型玻璃科技有限公司 一种新型隔热保温玻璃门用水性涂料及其制备方法

Also Published As

Publication number Publication date
CN105647273A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
US10481301B2 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
CN108587447B (zh) 一种适应多种基底的耐久性透明超疏水涂层的制备方法
Rahman et al. Synthesis of silica nanoparticles by sol‐gel: size‐dependent properties, surface modification, and applications in silica‐polymer nanocomposites—a review
KR101424089B1 (ko) 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
CN102153291B (zh) 无后化学修饰法制备减反射防雾耐磨涂层的方法
Yang et al. Geopolymer‐based sub‐ambient daytime radiative cooling coating
Huang et al. Synthesis of monodispersed ZnO@ SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites
CN105838115B (zh) 一种石墨烯基导电珠光颜料的制备方法
Hu et al. TiO2/antimony-doped tin oxide: Highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property
Wang et al. Transparent aqueous Mg (OH) 2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property
Nagao et al. Fabrication of highly refractive, transparent BaTiO3/poly (methyl methacrylate) composite films with high permittivities
Shi et al. Bioinspired lotus-like self-illuminous coating
CN101230182A (zh) 剥离型三聚氰胺-甲醛/层状硅酸盐纳米复合材料及其制备方法和用途
KR101311876B1 (ko) 유리용 전도성 코팅액 조성물 및 이의 제조방법
Hano et al. Monodisperse surface-charge-controlled black nanoparticles for near-infrared shielding
Jlassi et al. Efficient photoinduced In situ preparation of clay/poly (glycidyl methacrylate) nanocomposites using hydrogen‐donor silane
Zhang et al. Preparation and characterization of polymer/silica nanocomposites via double in situ miniemulsion polymerization
CN1996506A (zh) 一种含掺锑氧化锡的透明导电材料的制备方法
Tan et al. Process and performance of palmitic acid@ silica phase‐change microcapsules using chemical precipitation method
Ren et al. Infrared stealth coating with tunable structural color based on ZnO spheres
Zhao et al. Modification of hollow expanded microspheres with superior thermal insulation properties and their applications
Ke et al. Facile construction of transparent and heat-insulating coatings with ATO nanoparticles and silane-modified polyacrylate latex by redox initiation
Ananthapadmanabhan et al. Corrosion-resistant hydrophobic thermal barrier composite coating on metal strip: a new dimension to steel strips for roofing segment
CN105647273B (zh) 一种核壳结构ato纳米粒子包裹的硅酸盐纳米微球复合材料及应用
Gong et al. Synthesis and applications of MANs/poly (MMA-co-BA) nanocomposite latex by miniemulsion polymerization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant