CN105641968B - 一种具有在线光谱监测功能的超临界流体络合反应装置 - Google Patents

一种具有在线光谱监测功能的超临界流体络合反应装置 Download PDF

Info

Publication number
CN105641968B
CN105641968B CN201610008573.8A CN201610008573A CN105641968B CN 105641968 B CN105641968 B CN 105641968B CN 201610008573 A CN201610008573 A CN 201610008573A CN 105641968 B CN105641968 B CN 105641968B
Authority
CN
China
Prior art keywords
kettle
supercritical fluid
window
valve
kettle cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610008573.8A
Other languages
English (en)
Other versions
CN105641968A (zh
Inventor
朱礼洋
王壮飞
何辉
唐洪彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201610008573.8A priority Critical patent/CN105641968B/zh
Publication of CN105641968A publication Critical patent/CN105641968A/zh
Application granted granted Critical
Publication of CN105641968B publication Critical patent/CN105641968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于超临界流体萃取分离锕系、镧系元素研究领域。为解决现有超临界流体络合反应装置存在的不足,本发明提供了一种具有在线光谱监测功能的超临界流体络合反应装置,该装置包括CO2储瓶、致冷机、气泵、反应釜、磁力搅拌器、恒温箱、温度传感器、光源、光谱仪、数据处理系统、试剂瓶、计量泵和接收瓶;所述反应釜包括釜体、釜盖和釜盖压帽。本发明的超临界流体络合反应装置具有超临界络合反应速度快,能够快速获得高质量光谱监测数据,便于物料的精确加入和温度的精确控制,可靠性高等优点,较好的满足了超临界CO2萃取分离锕系、镧系元素的应用研究。

Description

一种具有在线光谱监测功能的超临界流体络合反应装置
技术领域
本发明属于超临界流体萃取分离锕系、镧系元素研究领域,特别涉及一种具有在线光谱监测功能的超临界流体络合反应装置。
背景技术
超临界CO2无毒、不燃,辐照与化学性质稳定,是一种备受关注的用于替代有机溶剂的绿色溶剂。含络合剂的超临界CO2可以从水溶液、固体基质、离子液体、固体氧化物中萃取锕系和镧系元素,并能够极大减少放射性二次废液的体积。
研究超临界CO2中锕系与镧系元素,以及锕系元素之间的分离,对于该技术的推广应用具有重要意义。为了在线监测超临界CO2中锕系和镧系元素的有关络合反应,特别是在加入络合剂、反萃取剂或改变其他条件时相应锕系和镧系元素浓度的变化,需要建立一套具有在线光谱监测功能的超临界流体络合反应装置。
目前,国外已经对采用超临界CO2从辐照后燃料中萃取锕系元素进行了较多研究,并建成中间试验工厂,用于从灰份中回收锕系元素。国内也有关于在线监测超临界体系光谱装置的公开报道。然而,对于具有在线光谱监测功能的超临界流体络合反应装置的具体设计,要么没有详细公开,要么仍存在诸多设计上的缺陷。
基于已经公开的设计结构,现有的具有在线光谱监测功能的超临界流体络合反应装置主要存在以下不足。第一,反应釜体积小,主要用于研究络合产物的光谱,难以适用于常量固体硝酸盐与络合剂等反应的研究。第二,反应釜釜体采用法兰方式密封,该密封方式对四周螺栓拧紧程度的均衡性要求较高,因此釜体的打开与密封均较为不便,密封可靠性较低。第三,反应釜釜体的加热多采用电加热套或者电热带,存在加热温度不均匀问题,而超临界CO2体系对温度的敏感度较高,因此较难满足控温要求。第四,反应釜内部结构不合理,不利于络合反应的快速进行。第五,存在固体盐类反应物附着导致的窗口材料沾污问题,影响光谱监测;若通过增加入射窗口和出射窗口之间距离的方式缓解窗口材料沾污问题,由于光谱仪的限制,仅能实现低浓度反应的监测,而对高浓度反应的监测则无能为力。
基于上述情况,为了克服现有具有在线光谱监测功能的超临界流体络合反应装置存在的不足,较好满足超临界CO2萃取分离锕系、镧系元素的应用研究,就应当开发一种适用的超临界流体络合反应装置。
发明内容
为解决现有超临界流体络合反应装置存在的上述不足,本发明提供了一种具有在线光谱监测功能的超临界流体络合反应装置。
该装置包括CO2储瓶、致冷机、气泵、反应釜、磁力搅拌器、恒温箱、温度传感器、光源、光谱仪、数据处理系统、试剂瓶、计量泵和接收瓶;所述CO2储瓶设有储瓶阀,储瓶阀与设在所述致冷机内的冷却管路进口端相连接;所述冷却管路出口端设有致冷出口阀;所述气泵设有气泵阀;所述致冷机出口阀和气泵阀均通过管路与带有进气阀的进气管路的同一端相连通,所述进气管路的另一端与反应釜的CO2进口相连接;所述进气阀与反应釜之间的进气管路上还设有单向气阀;所述磁力搅拌器位于反应釜下部;所述反应釜位于恒温箱内;所述光谱仪与数据处理系统相连接;所述试剂瓶通过管路与计量泵进口端相连接,计量泵出口端通过带有进液阀的进液管路与反应釜的进液口相连接;所述接收瓶通过带有排放阀的排放管路与反应釜的排放口相连接;
所述反应釜包括釜体、釜盖和釜盖压帽;所述进液口和排放口均位于釜体侧壁上,进液口和排放口均采用螺纹接口,釜体侧壁上还设有测温盲孔,所述温度传感器的感温探头位于测温盲孔内,釜体内底部为向下凹陷的弧形;所述CO2进口位于釜盖顶部,CO2进口采用螺纹接口,所述CO2进口通过中央通道与釜盖底部贯通;所述釜盖侧壁上设有与中央通道相连通的入射窗口和出射窗口,入射窗口与出射窗口分别设有入射窗和出射窗,所述入射窗、出射窗与釜盖之间均采用窗口密封圈密封,入射窗和出射窗分别采用入射窗压帽和出射窗压帽固定在釜盖上;所述入射窗压帽和出射窗压帽的轴心上分别设有入射光纤接口和出射光纤接口,所述入射光纤接口和出射光纤接口均采用螺纹接口,所述光源通过光纤与入射光纤接口相连接,所述光谱仪通过光纤与出射光纤接口相连接;所述釜盖上还设有用于与釜体连接的釜盖压帽,釜盖与釜体之间设有釜盖密封圈。
所述光源优选为氘灯、卤灯双光源。
所述进气阀与反应釜之间的进气管路上还设有安全阀为优选,用于过压保护。
所述进气阀与反应釜之间的进气管路上还设有压力传感器为优选,以便压力的监测。
所述入射窗和出射窗的窗体材料优选为石英玻璃。
所述入射窗两侧设有环氧树脂垫圈为优选,所述出射窗两侧设有环氧树脂垫圈为优选,以对入射窗和出射窗形成保护。
所述窗口密封圈优选为橡胶圈。
所述窗口密封圈两侧设有聚四氟乙烯垫圈为优选,以对密封圈形成保护。
所述釜盖压帽的顶部与釜盖之间设有卡箍为优选,从而对釜盖压帽形成限位作用。
所述釜盖压帽的外壁上还设有插槽为优选,以便通过向插槽内插入杠杆,实现釜盖压帽的旋紧和旋开。
本发明的超临界流体络合反应装置主要由络合反应系统、加压系统、恒温系统、光谱测量系统构成,其设计结构容易实现釜体的大型化;反应釜与其它部件之间采用螺纹接口,避免了法兰密封的缺陷;反应釜的加热采用恒温箱,能够准确均匀的控制温度,较好满足了超临界CO2体系的高温度敏感性要求;釜体内底部采用向下凹陷的弧形设计,使得固体反应物在搅拌时能够始终保持在磁子的搅拌范围内,而不会被磁子推向边缘而失去搅拌效果,从而确保了络合反应的快速进行;将用于光谱监测的入射窗口和出射窗口设置于釜盖上,一定程度上远离了固体反应物的扩散范围,避免了窗口材料沾污问题的发生;入射窗和出射窗之间的距离不受限制,能够实现对各种浓度反应的监测。
综上所述,本发明的具有在线光谱监测功能的超临界流体络合反应装置通过采用合理的设计结构,解决了现有同类装置存在的反应釜体积小、密封方式效果较差、加热温度不均匀、络合反应速度较慢、光谱监测受到影响和限制等缺陷,具有超临界络合反应速度快,能够快速获得高质量光谱监测数据,便于物料的精确加入和温度的精确控制,可靠性高等优点,较好的满足了超临界CO2萃取分离锕系、镧系元素的应用研究。
附图说明
图1本发明的具有在线光谱监测功能的超临界流体络合反应装置示意图。
图2本发明的反应釜示意图。
图3本发明实施例1的络合反应光谱图。
附图标记:1.CO2储瓶,2.储瓶阀,3.致冷机,4.致冷出口阀,5.气泵,6.气泵阀,7.进气阀,8.单向气阀,9.安全阀,10.压力传感器,11.反应釜,12.磁力搅拌器,13.恒温箱,14.温度传感器,15.光源,16.光谱仪,17.数据处理系统,18.试剂瓶,19.计量泵,20.进液阀,21.排放阀,22.接收瓶,23.釜体,24.釜盖,25.釜盖压帽,26.进液口,27.排放口,28.测温盲孔,29.CO2进口,30.入射窗,31.出射窗,32.窗口密封圈,33.入射窗压帽,34.出射窗压帽,35.入射光纤接口,36.出射光纤接口,37.釜盖密封圈,38.环氧树脂垫圈,39.聚四氟乙烯垫圈,40.卡箍,41.插槽,42.磁子。
具体实施方式
下面结合附图对本发明的实施方式做进一步的说明。
实施例1
采用本发明的超临界流体络合反应装置(装置具体结构如附图1-2所示)对超临界CO2中固体硝酸钕与磷酸三丁酯(TBP)的络合反应进行在线光谱监测,其主要监测步骤如下:
(一)向反应釜釜体内加入固体硝酸钕和磁子,旋紧釜盖压帽,使釜盖与釜体密封连接;连接好装置的其余部分,关闭所有阀门;
(二)依次开启储瓶阀、致冷出口阀、进气阀、排放阀,利用CO2排出反应釜和相关管路内部的空气;
(三)关闭储瓶阀、致冷出口阀、进气阀、排放阀,开启恒温箱使反应釜达到所需反应温度,恒温;
(四)依次开启储瓶阀、致冷出口阀、气泵阀,令CO2冷却并汇集在气泵的腔体内;然后,开启进气阀,冷却的CO2逐渐进入反应釜中,待CO2的进入量满足需求后,关闭致冷出口阀;
(五)开启气泵,将气泵腔体内的冷CO2压缩进反应釜;待反应釜内部达到所需压力后,关闭进气阀;
(六)开启光源、光谱仪和数据处理系统,采集参比光谱;
(七)开启磁力搅拌器、进液阀和计量泵,向反应釜中逐步加入磷酸三丁酯络合剂,待磷酸三丁酯加入量符合需求时,关闭进液阀和计量泵;
(八)继续搅拌,待光谱恒定不变后,采集光谱数据,完成一次光谱监测;
(九)改变固体硝酸钕与磷酸三丁酯的配比,按照上述步骤(七)至(八)再完成五次光谱监测;
(十)开启排放阀,将反应釜中的物料排放至接收瓶。
上述光谱监测所得谱图示于附图3,由图中可以看出:络合反应的特征峰与络合剂加入量之间具有良好的线性关系,表明监测结果准确可靠。
实施例2
采用本发明的超临界流体络合反应装置(装置具体结构如附图1-2所示)对超临界CO2中不同固体镧系硝酸盐混合物与某络合剂的络合反应进行在线光谱监测,其主要监测步骤如下:
(一)向反应釜釜体内加入固体镧系硝酸盐混合物和磁子,旋紧釜盖压帽,使釜盖与釜体密封连接;连接好装置的其余部分,关闭所有阀门;
(二)依次开启储瓶阀、致冷出口阀、进气阀、排放阀,利用CO2排出反应釜和相关管路内部的空气;
(三)关闭储瓶阀、致冷出口阀、进气阀、排放阀,开启恒温箱使反应釜达到所需反应温度,恒温;
(四)依次开启储瓶阀、致冷出口阀、气泵阀,令CO2冷却并汇集在气泵的腔体内;然后,开启进气阀,冷却的CO2逐渐进入反应釜中,待CO2的进入量满足需求后,关闭致冷出口阀;
(五)开启气泵,将气泵腔体内的冷CO2压缩进反应釜;待反应釜内部达到所需压力后,关闭进气阀;
(六)开启光源、光谱仪和数据处理系统,采集参比光谱;
(七)开启磁力搅拌器、进液阀和计量泵,向反应釜中逐步加入络合剂,待络合剂加入量符合需求时,关闭进液阀和计量泵;
(八)继续搅拌,待光谱恒定不变后,采集光谱数据,完成一次光谱监测;
(九)改变固体镧系硝酸盐混合物与络合剂的配比,按照上述步骤(七)至(八)再完成若干次光谱监测;
(十)开启排放阀,将反应釜中的物料排放至接收瓶。
实施例3
采用本发明的超临界流体络合反应装置(装置具体结构如附图1-2所示)对超临界CO2中固体镧系与锕系硝酸盐混合物与某络合剂的络合反应进行在线光谱监测,其主要监测步骤如下:
(一)向反应釜釜体内加入固体镧系与锕系硝酸盐混合物和磁子,旋紧釜盖压帽,使釜盖与釜体密封连接;连接好装置的其余部分,关闭所有阀门;
(二)依次开启储瓶阀、致冷出口阀、进气阀、排放阀,利用CO2排出反应釜和相关管路内部的空气;
(三)关闭储瓶阀、致冷出口阀、进气阀、排放阀,开启恒温箱使反应釜达到所需反应温度,恒温;
(四)依次开启储瓶阀、致冷出口阀、气泵阀,令CO2冷却并汇集在气泵的腔体内;然后,开启进气阀,冷却的CO2逐渐进入反应釜中,待CO2的进入量满足需求后,关闭致冷出口阀;
(五)开启气泵,将气泵腔体内的冷CO2压缩进反应釜;待反应釜内部达到所需压力后,关闭进气阀;
(六)开启光源、光谱仪和数据处理系统,采集参比光谱;
(七)开启磁力搅拌器、进液阀和计量泵,向反应釜中逐步加入络合剂,待络合剂加入量符合需求时,关闭进液阀和计量泵;
(八)继续搅拌,待光谱恒定不变后,采集光谱数据,完成一次光谱监测;
(九)改变固体镧系与锕系硝酸盐混合物与络合剂的配比,按照上述步骤(七)至(八)再完成若干次光谱监测;
(十)开启排放阀,将反应釜中的物料排放至接收瓶。

Claims (10)

1.一种具有在线光谱监测功能的超临界流体络合反应装置,该装置包括反应釜、磁力搅拌器、温度传感器、光源、光谱仪、数据处理系统和计量泵,所述磁力搅拌器位于反应釜下部,所述光谱仪与数据处理系统相连接,釜体侧壁上还设有测温盲孔,所述温度传感器的感温探头位于测温盲孔内,其特征在于:该装置还包括CO2储瓶、致冷机、气泵、恒温箱、试剂瓶和接收瓶;所述CO2储瓶设有储瓶阀,储瓶阀与设在所述致冷机内的冷却管路进口端相连接;所述冷却管路出口端设有致冷出口阀;所述气泵设有气泵阀;所述致冷机出口阀和气泵阀均通过管路与带有进气阀的进气管路的同一端相连通,所述进气管路的另一端与反应釜的CO2进口相连接;所述进气阀与反应釜之间的进气管路上还设有单向气阀;所述反应釜位于恒温箱内;所述试剂瓶通过管路与计量泵进口端相连接,计量泵出口端通过带有进液阀的进液管路与反应釜的进液口相连接;所述接收瓶通过带有排放阀的排放管路与反应釜的排放口相连接;
所述反应釜包括釜体、釜盖和釜盖压帽;所述进液口和排放口均位于釜体侧壁上,进液口和排放口均采用螺纹接口,釜体内底部为向下凹陷的弧形;所述CO2进口位于釜盖顶部,CO2进口采用螺纹接口,所述CO2进口通过中央通道与釜盖底部贯通;所述釜盖侧壁上设有与中央通道相连通的入射窗口和出射窗口,入射窗口与出射窗口分别设有入射窗和出射窗,所述入射窗、出射窗与釜盖之间均采用窗口密封圈密封,入射窗和出射窗分别采用入射窗压帽和出射窗压帽固定在釜盖上;所述入射窗压帽和出射窗压帽的轴心上分别设有入射光纤接口和出射光纤接口,所述入射光纤接口和出射光纤接口均采用螺纹接口,所述光源通过光纤与入射光纤接口相连接,所述光谱仪通过光纤与出射光纤接口相连接;所述釜盖上还设有用于与釜体连接的釜盖压帽,釜盖与釜体之间设有釜盖密封圈。
2.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述光源为氘灯、卤灯双光源。
3.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述进气阀与反应釜之间的进气管路上还设有安全阀。
4.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述进气阀与反应釜之间的进气管路上还设有压力传感器。
5.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述入射窗和出射窗的窗体材料为石英玻璃。
6.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述入射窗两侧设有环氧树脂垫圈,所述出射窗两侧设有环氧树脂垫圈。
7.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述窗口密封圈为橡胶圈。
8.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述窗口密封圈两侧设有聚四氟乙烯垫圈。
9.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述釜盖压帽的顶部与釜盖之间设有卡箍。
10.如权利要求1所述的具有在线光谱监测功能的超临界流体络合反应装置,其特征在于:所述釜盖压帽的外壁上还设有插槽。
CN201610008573.8A 2016-01-07 2016-01-07 一种具有在线光谱监测功能的超临界流体络合反应装置 Active CN105641968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610008573.8A CN105641968B (zh) 2016-01-07 2016-01-07 一种具有在线光谱监测功能的超临界流体络合反应装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610008573.8A CN105641968B (zh) 2016-01-07 2016-01-07 一种具有在线光谱监测功能的超临界流体络合反应装置

Publications (2)

Publication Number Publication Date
CN105641968A CN105641968A (zh) 2016-06-08
CN105641968B true CN105641968B (zh) 2018-04-17

Family

ID=56490614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610008573.8A Active CN105641968B (zh) 2016-01-07 2016-01-07 一种具有在线光谱监测功能的超临界流体络合反应装置

Country Status (1)

Country Link
CN (1) CN105641968B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975381A (zh) * 2006-12-22 2007-06-06 浙江工业大学 分散染料在超临界co2中溶解度的在线测定方法及设备
CN101671356A (zh) * 2009-07-23 2010-03-17 杭州师范大学 一种室温离子液体/超临界co2介质中铑络合物催化烯烃的硅氢加成反应
CN102172503A (zh) * 2011-02-15 2011-09-07 中国科学院过程工程研究所 离子液体-超临界流体中传递-反应原位研究装置
CN102435573A (zh) * 2011-08-31 2012-05-02 陕西师范大学 在线监测超临界体系的高压原位红外光谱装置
CN102706812A (zh) * 2012-05-31 2012-10-03 上海交通大学 一种超临界水反应釜的测控方法
CN102892813A (zh) * 2010-03-12 2013-01-23 株式会社理光 颗粒及其制造方法
CN103712931A (zh) * 2013-12-31 2014-04-09 陕西师范大学 在线监测超临界体系的高压紫外可见近红外光谱装置
CN204064903U (zh) * 2014-09-30 2014-12-31 中山大学惠州研究院 一种原位高压紫外光谱的测量装置
CN105012270A (zh) * 2015-07-28 2015-11-04 大连大学 一种应用超临界渗透过程制备PLA/Fe3O4载药微粒的方法
WO2016055696A1 (en) * 2014-10-06 2016-04-14 Nanoform Finland Oy A method and a device for producing nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689311B2 (en) * 2000-11-13 2004-02-10 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacturing sinter, method for measuring concentration of plasticizer, evaluation method, and evaluation apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975381A (zh) * 2006-12-22 2007-06-06 浙江工业大学 分散染料在超临界co2中溶解度的在线测定方法及设备
CN101671356A (zh) * 2009-07-23 2010-03-17 杭州师范大学 一种室温离子液体/超临界co2介质中铑络合物催化烯烃的硅氢加成反应
CN102892813A (zh) * 2010-03-12 2013-01-23 株式会社理光 颗粒及其制造方法
CN102172503A (zh) * 2011-02-15 2011-09-07 中国科学院过程工程研究所 离子液体-超临界流体中传递-反应原位研究装置
CN102435573A (zh) * 2011-08-31 2012-05-02 陕西师范大学 在线监测超临界体系的高压原位红外光谱装置
CN102706812A (zh) * 2012-05-31 2012-10-03 上海交通大学 一种超临界水反应釜的测控方法
CN103712931A (zh) * 2013-12-31 2014-04-09 陕西师范大学 在线监测超临界体系的高压紫外可见近红外光谱装置
CN204064903U (zh) * 2014-09-30 2014-12-31 中山大学惠州研究院 一种原位高压紫外光谱的测量装置
WO2016055696A1 (en) * 2014-10-06 2016-04-14 Nanoform Finland Oy A method and a device for producing nanoparticles
CN105012270A (zh) * 2015-07-28 2015-11-04 大连大学 一种应用超临界渗透过程制备PLA/Fe3O4载药微粒的方法

Also Published As

Publication number Publication date
CN105641968A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN203299130U (zh) 一种可调检测位置的高温消解比色装置
CN103234778B (zh) 一种地下水半挥发性有机物富集装置
CN104977266B (zh) 一种快速定量测定中药材中二氧化硫残留量的装置及方法
CN108519492B (zh) 一种连续式水氡自动测量方法
CN204855218U (zh) 一种在线气体采样器
CN208308473U (zh) 一种海水中总氮、总磷的快速消解冷却装置
CN203414406U (zh) 一种中药提取过程在线紫外光谱检测系统
CN105641968B (zh) 一种具有在线光谱监测功能的超临界流体络合反应装置
CN106334337B (zh) 一种具有近红外在线检测功能的中药提取、浓缩罐
CN209055394U (zh) 一种联合消解总磷总氮的装置
CN207020077U (zh) 六氟化硫气体中矿物油含量测定装置
CN110208562A (zh) 温室气体自动进样系统
CN210376250U (zh) 一种具有监测堵塞情况的气相色谱仪
CN106932227B (zh) 一种六氟化铀液化分样装置
CN100392375C (zh) 可置于紫外-可见谱仪中的有窗口的高压反应器
CN207923763U (zh) 一种氟化氢的密闭取样及水分检测装置
CN208505993U (zh) 气相色谱仪测定气体组分进样装置
CN102980789A (zh) 水体石油污染物在线富集装置
CN208621583U (zh) 一种分体式挥发性有机物采样装置
CN108226364A (zh) 一种液相色谱的恒温系统及操作方法
CN208367024U (zh) 可控进样体积的手动进样器和水质多参量检测设备
CN206696172U (zh) 一种比色法在线余氯分析仪
CN206235557U (zh) 一种四氯化钛红外光谱仪样品检测装置
CN110470856A (zh) 可控进样体积的手动进样器和进样方法及其应用
CN204758450U (zh) 一种化学液体渗透性能试验仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant