CN105624657A - 一种高效化学沉积铂或钯单原子层到金基底的方法 - Google Patents

一种高效化学沉积铂或钯单原子层到金基底的方法 Download PDF

Info

Publication number
CN105624657A
CN105624657A CN201511008748.7A CN201511008748A CN105624657A CN 105624657 A CN105624657 A CN 105624657A CN 201511008748 A CN201511008748 A CN 201511008748A CN 105624657 A CN105624657 A CN 105624657A
Authority
CN
China
Prior art keywords
palladium
platinum
gold
solution
gold substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511008748.7A
Other languages
English (en)
Inventor
蔡文斌
王寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201511008748.7A priority Critical patent/CN105624657A/zh
Publication of CN105624657A publication Critical patent/CN105624657A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新型材料技术领域,具体为一种化学沉积铂、钯单原子层到金基底的方法。本发明利用一氧化碳对亚铂酸与氯钯酸中二价铂、钯的强络合与还原性,在溶液相中大批量的迅速可控地沉积单层铂、钯原子到金基底上。具体步骤为:首先对二价铂盐或二价钯盐溶液通入一氧化碳气体至饱和;然后将金基底分散或浸入上述溶液,经过1-10分钟,即得到单层铂或钯覆盖的金材料。本发明方法简单易行,与其它电沉积单原子层的方法相比,更适宜于批量生产。所制备的金核铂壳、金核钯壳纳米材料具有极佳的乙醇电氧化活性,有效提升单位质量贵金属催化活性,并可能应用于其它异相催化反应。

Description

一种高效化学沉积铂或钯单原子层到金基底的方法
技术领域
本发明属于新型材料技术领域,具体涉及一种沉积铂、钯单原子层到金基底的方法。
背景技术
以铂、钯为代表的铂族元素是化学、化工、能源转化等产业中广泛使用的难以替代的催化剂材料。然而其高昂的价格限制了铂、钯基催化剂更广泛的应用,更重要的是,两者在地壳的储量极其有限,且提取困难,使得二者年产量仅为30吨与24吨,而同时期黄金的年产量为1400吨。
在当今各国争相发展新能源产业的大趋势下,燃料电池作为一种新型、高效的能源转化装置具有极佳的发展前景。其基本原理是在铂、钯基催化材料的作用下,将燃料分子的化学能直接转化为电能的装置,具有能量转化效率高、无噪音、几乎无有害气体排放等优点,是继水力、核能发电之后的新一代能源技术,也是各国新能源发展战略中的重点之一。
在常见的燃料中,乙醇具有最高的能量密度(8.01kWh/kg),而甲醇及甲酸的能量密度分别为6.09和1.72kWh/kg。同时,甲醇对肝脏具有强烈的毒性及甲酸作为挥发性有机强酸使得其大规模应用受到了限制,而乙醇作为部分饮品的主要成分之一,对人体几乎无毒副作用并且可通过生物质发酵等方式进行批量生产。基于以上优势,直接乙醇燃料电池成为现阶段相关领域研究的热点之一。
近年来,直接乙醇燃料电池催化剂的研究主要集中于通过合金或替代品的方式减少贵金属铂的用量,以降低燃料电池装置的成本。合金类催化剂在制备过程中往往需要添加大量的有机物作为保护剂,不仅会对环境带来负面影响,制备后催化剂的表面清洁往往需要在高温下进行烧结,进一步加剧了能源的消耗。相较于合金类的催化剂而言,核壳结构的催化剂通过将铂原子外延生长于异种材料纳米颗粒基底上,可以有效地减少昂贵的铂的用量,从而提高单位铂金属的催化效率。其中,通过实现单层铂原子的金属-铂单层核壳结构纳米材料,可以实现铂的100%的利用率,同时,核材料与铂壳层的作用能够显著地改变铂催化的效果,从而提供了有效调制铂单位质量活性的方法。基于此,在金属基底可控沉积铂单层的方法受到广泛的关注,并发展了诸如以铜为损耗层的欠电位沉积技术(Cu-UPD)以及利用较负电位下,氢原子在铂上的吸附位阻效应阻碍铂的多层沉积等方法。然而以上方法均需要对沉积基底的电位进行外加的调控,使得大批量,工业化规模的催化剂材料生产效率受到限制。
基于上述情况,发展低铂、钯,高性能的催化材料是当前电化学新能源领域的重点。
发明内容
本发明的目的在于提供一种简单高效化学沉积铂、钯单原子层到金基底的方法。
本发明提供的高效沉化学积铂、钯单原子层到金基底的方法,是利用一氧化碳对亚铂酸与氯钯酸中二价铂、钯的强络合与还原性,在溶液相中大批量的迅速可控地沉积单层铂、钯原子到金基底上。具体步骤为:
首先,对二价铂盐或二价钯盐溶液通入一氧化碳气体至饱和;
然后,将金基底分散或浸入上述溶液,经过1-10分钟,即可得到单层铂或钯覆盖的金材料。
本发明中,所述金基底为金膜,负载或非负载型金纳米颗粒等。
本发明中,铂原子或钯原子在金基底表面具有高覆盖度(大于80%)。
本发明中,二价铂盐溶液为:0.00005-0.0001M氯亚铂酸钾水溶液。
本发明中,二价钯盐溶液为:0.00005-0.0001M氯钯酸钠水溶液。
本发明制备获得的金铂核壳、金钯核壳纳米材料,于X射线衍射测试与高分辨场发射投射电镜测试中,观察不到多层生长铂或钯的特征响应。
本发明制备的金核铂壳、金核钯壳纳米材料具有极佳的乙醇电氧化活性,有效提升单位质量贵金属催化活性(乙醇电氧化性能比商业化的碳载铂有着六至十倍的提升),并可能应用于其它异相催化反应。
本发明方法有如下优点:本发明通过一氧化碳的辅助,可控地沉积铂或钯单原子层到金膜与纳米金上。操作简单,重复性好,反应迅速,避免了有机物的引入,无需外加电压,可短时间大批量制备。所得催化剂材料性能优异。本发明方法避免了有机配合物或金属损耗层的参与,所得材料可直接使用,无需后续表面处理,从而避免了制备过程中对环境的污染,同时纳米材料可方便地进行大批量生产,极其适宜于商业化规模的制备。
附图说明
图1是X射线衍射表征铂沉积前后变化对比图。
图2是透射电子显微镜表征金铂核壳、金钯核壳材料形貌图。
图3是透射电子显微镜-能量色散谱表征得到的金铂核壳纳米颗粒的元素分布图。
图4碱性环境中乙醇电氧化表征金铂核壳纳米材料。
图5是金膜上沉积单层铂前后的红外反射光谱图。
具体实施方式
下面结合附图和具体实施实例对本制备方法的实施进一步说明
实施例1:向6mL0.0001M氯亚铂酸钾、或氯钯酸钠水溶液中通入一氧化碳气体至饱和,之后将预先超声分散于1ML水溶液的1mg约5nm平均粒径的商业化碳载金纳米材料注入该溶液中,并持续超声保持分散,5分钟后,离心分离,并在50摄氏度下真空干燥。所加入的物料中金、铂原子比例为1:0.4,比5nm金颗粒覆盖满单层铂、钯原子比例(约1:0.3)过量30%,故所加入的铂、钯前驱体含量本身不足以实现多层沉积。
图1是商业化碳载金在沉积铂、钯前后的X射线衍射图,表明沉积后并未观察到明显的铂、钯的体相沉积。图2是碳载金铂核壳、金钯核壳材料的高分辨投射电子显微镜图,图中亦未观察到明显的金与铂、金与钯分相的情况,说明铂、钯壳生长均匀且保持近单层。图3是对单个金核铂壳纳米粒子的元素面扫测试图,观察到金上均匀分布的铂壳层。图4是在1M氢氧化钠和1M乙醇溶液中,碳载金铂核壳、金钯核壳材料与现行商业化碳载铂的性能对比,其结果表明,金铂核壳材料的单位铂质量活性比商业化产品提升了10倍以上,金钯核壳材料亦具有约6倍的性能提升。
实施例2:本实例将例1反应量增加10倍,以验证放大制备量的有效性。于120mL0.00005M氯亚铂酸钾水溶液中通入一氧化碳气体至饱和,之后将预先超声分散于5ML水溶液的10mg约5nm平均粒径的商业化碳载金纳米材料注入该溶液中,并持续超声保持分散,5分钟后,离心分离,并在50摄氏度下真空干燥。所加入的物料中金、铂原子比例与例1相同,即1:0.4。例2所得AuPt-ML/C催化剂与例1相比在碱性溶液中乙醇电氧化活性无差别。
实施例3:本实例测试本反应条件与原理在金膜材料上的适用性。于30ML0.0001M氯亚铂酸钾水溶液中通入一氧化碳气体至饱和,之后将新鲜沉积的约10mm直径的金电膜电极浸入此溶液并保持一氧化碳气体的持续通入。约10分钟后,取出电极并以超纯水冲洗。图5是金膜电极上沉积铂前后,以CO为探针分子的红外光谱图,在铂沉积后,金上CO吸附的强度降低到沉积前的12%,表明较高覆盖度的表层铂导致金的暴露大幅度减小,从而使得金上CO的吸附强度降低。

Claims (4)

1.一种高效化学沉积铂、钯单原子层到金基底的方法,其特征在于,利用一氧化碳对亚铂酸与氯钯酸中二价铂、钯的强络合与还原性,在溶液相中大批量的迅速可控地沉积单层铂、钯原子到金基底上;具体步骤为:
首先,对二价铂盐或二价钯盐溶液通入一氧化碳气体至饱和;
然后,将金基底分散或浸入上述溶液,经过1-10分钟,即可得到单层铂或钯覆盖的金材料。
2.根据权利要求1所述的方法,其特征在于,所述金基底为金膜,负载或非负载型金纳米颗粒。
3.根据权利要求1所述的方法,其特征在于,所述二价铂盐溶液为:0.00005-0.0001M氯亚铂酸钾水溶液;所述二价钯盐溶液为:0.00005-0.0001M氯钯酸钠水溶液。
4.根据权利要求1所述的方法,其特征在于,铂原子或钯原子在金基底表面覆盖度大于80%。
CN201511008748.7A 2015-12-30 2015-12-30 一种高效化学沉积铂或钯单原子层到金基底的方法 Pending CN105624657A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511008748.7A CN105624657A (zh) 2015-12-30 2015-12-30 一种高效化学沉积铂或钯单原子层到金基底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511008748.7A CN105624657A (zh) 2015-12-30 2015-12-30 一种高效化学沉积铂或钯单原子层到金基底的方法

Publications (1)

Publication Number Publication Date
CN105624657A true CN105624657A (zh) 2016-06-01

Family

ID=56039992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511008748.7A Pending CN105624657A (zh) 2015-12-30 2015-12-30 一种高效化学沉积铂或钯单原子层到金基底的方法

Country Status (1)

Country Link
CN (1) CN105624657A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771202A (zh) * 2018-10-02 2021-05-07 国立研究开发法人科学技术振兴机构 异质外延结构及其制造方法,包括异质外延结构的金属叠层体及其制造方法,纳米间隙电极及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829563A (zh) * 2010-05-14 2010-09-15 中国科学技术大学 乙烯还原制备纳米钯催化剂的方法
TW201121981A (en) * 2009-12-31 2011-07-01 Univ Nat Cheng Kung Platinum complex and methods for making platinum complex and platinum catalyst therethrough

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201121981A (en) * 2009-12-31 2011-07-01 Univ Nat Cheng Kung Platinum complex and methods for making platinum complex and platinum catalyst therethrough
CN101829563A (zh) * 2010-05-14 2010-09-15 中国科学技术大学 乙烯还原制备纳米钯催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEICHENG LIAO 等: "Carbon Monoxide Promoted Deposition of Ordered Pt Adlayer on Au(111) and Its Electrocatalytic Properties", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771202A (zh) * 2018-10-02 2021-05-07 国立研究开发法人科学技术振兴机构 异质外延结构及其制造方法,包括异质外延结构的金属叠层体及其制造方法,纳米间隙电极及其制造方法
CN112771202B (zh) * 2018-10-02 2023-02-24 国立研究开发法人科学技术振兴机构 异质外延结构,包含异质外延结构的金属叠层体,纳米间隙电极,及其制造方法

Similar Documents

Publication Publication Date Title
Liu et al. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis
Zhou et al. Strain-induced in situ formation of NiOOH species on CoCo bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production
CN101623762B (zh) 金核/银铂合金壳结构的岛状多孔三金属纳米棒及其制法
CN108499585B (zh) 含磷复合物及其制备与应用
CN101667644B (zh) 用于甲醇燃料电池的高性能低铂催化剂及其制备方法
CN103638925A (zh) 一种燃料电池用核壳结构催化剂及其脉冲电沉积制备方法
Fuku et al. Single step synthesis of bio-inspired NiO/C as Pd support catalyst for dual application: Alkaline direct ethanol fuel cell and CO2 electro-reduction
CN105702973B (zh) 一种燃料电池用催化剂表面改性的方法
CN107342427B (zh) 一种直接乙醇燃料电池用Pd/Ag纳米合金催化剂的制备方法
CN105727993A (zh) 一种fct相FePtCu三元合金纳米颗粒催化剂及其合成方法
CN103586484B (zh) 钯钌合金纳米颗粒及其制备和用途
CN104368357A (zh) 一种Pd@PtNi/C金属纳米催化剂及其制备方法和用途
Luo et al. Synthesis and electrochemical properties of graphene supported PtNi nanodendrites
CN103165914B (zh) 一种Pt/Au/PdCo/C催化剂及其制备和应用
CN106784900A (zh) 铂基纳米颗粒包覆二氧化锡覆盖的碳纳米管及其制备方法
CN107961793A (zh) 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料
Chang et al. Strongly coupled N-doped graphene quantum dots/Ni (Fe) OxHy electrocatalysts with accelerated reaction kinetics for water oxidation
CN106207205B (zh) 一种燃料电池用PtPd电催化剂及其制备方法
CN108155392A (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
CN106972181A (zh) 一种车载燃料电池用Pt基纳米线阴极催化剂及其制备方法
Zhu et al. Poorly crystallized nickel hydroxide carbonate loading with Fe3+ ions as improved electrocatalysts for oxygen evolution
Zou et al. One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation
Cai et al. CuxO nanorod arrays shelled with CoNi layered double hydroxide nanosheets for enhanced oxygen evolution reaction under alkaline conditions
Chen et al. Multi-metal electrocatalyst with crystalline/amorphous structure for enhanced alkaline water/seawater hydrogen evolution
CN113718270A (zh) 一种碳载NiO/NiFe2O4尖晶石型固溶体电解水析氧催化剂的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601