CN105622108B - 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法 - Google Patents

一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法 Download PDF

Info

Publication number
CN105622108B
CN105622108B CN201510992173.0A CN201510992173A CN105622108B CN 105622108 B CN105622108 B CN 105622108B CN 201510992173 A CN201510992173 A CN 201510992173A CN 105622108 B CN105622108 B CN 105622108B
Authority
CN
China
Prior art keywords
tin
tio
tri compound
compound powders
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510992173.0A
Other languages
English (en)
Other versions
CN105622108A (zh
Inventor
郭伟明
陈珊璐
黄楚云
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201510992173.0A priority Critical patent/CN105622108B/zh
Publication of CN105622108A publication Critical patent/CN105622108A/zh
Application granted granted Critical
Publication of CN105622108B publication Critical patent/CN105622108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明是一种原位合成Si3N4‑Si2N2O‑TiN三元复合粉体的方法。本发明以Si粉、钛酸丁酯为原料,按Si:钛酸丁酯的质量分数比为48~96%:4~52%的配比经混料、干燥,获得Si‑TiO2复合粉体,Si和TiO2的质量分数比为80~99%:1~20%,将复合粉体干压成型,放入气氛炉中进行氮化,氮化温度为1300‑1450℃,时间为0.5~20h,氮化过程气氛为1atm的氮气,通过原位反应合成Si3N4‑Si2N2O‑TiN三元复合粉体,Si3N4:Si2N2O:TiN质量分数比为57~98%:1.5~33%:0.5~10%。本发明加快Si粉的氮化、促进形成高性能Si2N2O相、形成均匀分布且粒径细小TiN相,显著改善Si3N4陶瓷性能。

Description

一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法
技术领域
本发明涉及复合陶瓷材料领域,具体公开了一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法。
背景技术
作为结构陶瓷,Si3N4陶瓷具有高韧性、耐高温、高导热等优异性能,高温稳定性、抗氧化性能和耐磨性能较低。与Si3N4相比,Si2N2O具有较高的高温稳定性和抗氧化性能,TiN具有较高的硬度、耐磨性能和导电性能。因此,将Si2N2O和TiN作为第二相,加入到Si3N4陶瓷,可以显著改善其高温稳定性、耐磨性能、抗热震性能、导电性能。
目前,主要通过在原料加入SiO2相,原位反应生成Si2N2O相;通过直接加入TiN,或者加入TiO2,通过原位反应合成TiN。均存在SiO2和TiO2易团聚和难分散问题,导致Si2N2O和TiN相不能在Si3N4陶瓷中均匀细小分布。
发明内容
本发明的目的在于克服上述缺点而提供一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法。本发明的Si2N2O和TiN相在Si3N4陶瓷中均匀细小分布,粒径细小,显著改善Si3N4陶瓷性能,且制作成本低。
本发明通过以下技术方案予以实现:
本发明的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,包括如下步骤:
(1)以Si粉、钛酸丁酯为原料,按Si:钛酸丁酯的质量分数比为48~96%:4~52%的配比经混料、干燥,获得Si-TiO2复合粉体;
(2)将Si-TiO2复合粉体干压成型,放入气氛炉中进行氮化,通过原位反应合成Si3N4-Si2N2O-TiN三元复合粉体。
上述步骤(1)获得的Si-TiO2复合粉体中,Si和TiO2的质量分数比为80~99%:1~20%
上述步骤(1)的Si粉纯度为95~100%,粒径为<10μm,钛酸丁酯纯度为98~100%。
上述步骤(1)中,以无水乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上球磨4~48h,干燥后过筛得到Si-TiO2复合粉体。
上述步骤(1)中,在行星球磨机上球磨12h。
上述步骤(1)中,Si和TiO2的质量分数比为92%:8%。
上述步骤(2)的氮化工艺为:将Si-TiO2坯体放入石墨坩埚,将温度升至1300~1450℃,并保温,气氛为氮气,获得Si3N4-Si2N2O-TiN三元复合粉体。
上述氮化工艺中,以5-20℃/min的升温速率将温度升至1300~1450℃,并保温0.5~20h,气氛为1atm的氮气,获得Si3N4-Si2N2O-TiN三元复合粉体。
上述氮化工艺中,将Si-TiO2坯体放入石墨坩埚,以10℃/min的升温速率将温度升至1390℃,并保温4h,气氛为1atm的氮气,合成Si3N4-Si2N2O-TiN三元复合粉体。
本发明制备得到的Si3N4-Si2N2O-TiN三元复合粉体中,Si3N4、Si2N2O、TiN的粒径分别为<5μnm、<5μnm、<1μnm,Si3N4:Si2N2O:TiN质量分数比为57~98%:1.5~33%:0.5~10%,并且Si2N2O和TiN均匀分布于Si3N4中。
本发明以Si粉和钛酸丁酯为原料,合成了Si3N4-Si2N2O-TiN三元复合粉体。本发明仅通过一种引入钛酸丁酯液体,就可以同时原位引入Si2N2O和TiN两相,降低成本,避免过度杂质的引入。同时,以液态形式引入原料,可以实现Si2N2O和TiN相更均匀细小分布于Si3N4粉体。与现有技术相比,本发明具有如下有益效果:
(1)本发明以Si粉作为原料,经钛酸丁酯引入的TiO2可以促进Si粉氮化,降低成本;
(2)本发明仅加入一种钛酸丁酯原料,实现了Si2N2O和TiN 两种产物的引入;
(3)本发明通过液态形式引入钛酸丁酯并结合高温原位反应,可以实现Si2N2O和TiN更均匀分布于Si3N4中,显著降低Si2N2O和TiN的粒径。
(4)本发明以钛酸丁酯引入TiO2,展现了三重协同作用:加快Si粉的氮化、促进形成高性能Si2N2O相、形成均匀分布且粒径细小的TiN相,最终显著改善Si3N4陶瓷性能。
附图说明
图1为本发明实施例1制备的Si3N4-Si2N2O-TiN三元复合粉体的XRD图。
图2为本发明实施例1制备的Si3N4-Si2N2O-TiN三元复合粉体的SEM图。
图3为本发明实施例2制备的Si3N4-Si2N2O-TiN三元复合粉体的XRD图。
图4为本发明实施例2制备的Si3N4-Si2N2O-TiN三元复合粉体的SEM图。
图5为本发明实施例3制备的Si3N4-Si2N2O-TiN三元复合粉体的XRD图。
图6为本发明实施例3制备的Si3N4-Si2N2O-TiN三元复合粉体的SEM图。
具体实施方式
下面结合说明书附图和具体实施例对本发明做进一步详细、完整地说明,但决非限制本发明,本发明也并非仅局限于下述实施例的内容,下述所使用的实验方法若无特殊说明,均为本技术领域现有常规的方法,所使用的配料或材料,如无特殊说明,均为通过商业途径可得到的配料或材料。下面给出实施案例:
实施例1
本发明的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,包括如下步骤:
(1)以Si粉、钛酸丁酯为原料,按照Si粉质量分数为73%、钛酸丁酯质量分数为27%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥后,得到混合均匀的Si-TiO2复合粉体,其中Si粉的质量分数为92%、TiO2的质量分数为8%。
(2)将Si-TiO2复合粉体干压成型得到Si-TiO2坯体,将 Si-TiO2坯体放入石墨坩埚,以10℃/min的升温速率将温度升至1400℃,并保温2h,整个过程气氛为1atm的氮气,原位合成Si3N4-Si2N2O-TiN三元复合粉体。
本实施例制备得到的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.5μnm、3.5μnm、0.6μnm,Si3N4:Si2N2O:TiN质量分数比为84%:12%:3%,并且Si2N2O和TiN均匀分布于Si3N4中。
实施例2
本实施例的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,具体如下:
按照Si粉质量分数为82%、钛酸丁酯质量分数为18%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥,获得Si-TiO2复合粉体,其中Si和TiO2的质量分数比为95%:5%,按照实施例1方法原位合成Si3N4-Si2N2O-TiN三元复合粉体,其中将温度升至1400℃保温2h。制备所得的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.7μnm、3.8μnm、0.7μnm,Si3N4:Si2N2O:TiN质量分数比为89.9%:7.7%:2.4%,并且Si2N2O和TiN均匀分布于Si3N4中。
实施例3
本实施例的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,具体如下:
按照Si粉质量分数为92%、钛酸丁酯质量分数为8%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥,获得Si-TiO2复合粉体,其中Si和TiO2的质量分数比为98%:2%,按照实施例1方法原位合成Si3N4-Si2N2O-TiN三元复合粉体,其中将温度升至1400℃保温2h。制备所得的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.1μnm、3μnm、0.5μnm,Si3N4:Si2N2O:TiN质量分数比为96%:3%:1%,并且Si2N2O和TiN均匀分布于Si3N4中。
实施例4
本实施例的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,具体如下:
按照Si粉质量分数为68%、钛酸丁酯质量分数为32%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥,获得Si-TiO2复合粉体,其中Si和TiO2的质量分数比为90%:10%,按照实施例1方法原位合成Si3N4-Si2N2O-TiN三元复合粉体,其中将温度升至1395℃保温4h。制备所得的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.6μnm、3.6μnm、0.7μnm,Si3N4:Si2N2O:TiN质量分数比为79.5%:15.6%:4.9%,并且Si2N2O和TiN均匀分布于Si3N4中。
实施例5
本实施例的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,具体如下:
按照Si粉质量分数为63%、钛酸丁酯质量分数为37%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥,获得Si-TiO2复合粉体,其中Si和TiO2的质量分数比为88%:12%,按照实施例1方法原位合成Si3N4-Si2N2O-TiN三元复合粉体,其中将温度升至1370℃保温4.5h。制备所得的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.4μnm、3.2μnm、0.6μnm,Si3N4:Si2N2O:TiN质量分数比为75%:19%:6%,并且Si2N2O和TiN均匀分布于Si3N4中。
实施例6
本实施例的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,具体如下:
按照Si粉质量分数为59%、钛酸丁酯质量分数为41%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合12h,经混料、干燥,获得Si-TiO2复合粉体,其中Si和TiO2的质量分数比为86%:14%,按照实施例1方法原位合成Si3N4-Si2N2O-TiN三元复合粉体,其中将温度升至1365℃保温5h。制备所得的Si3N4-Si2N2O-TiN三元复合粉体,Si3N4、Si2N2O、TiN粒径分别为3.1μnm、2.8μnm、0.5μnm,Si3N4:Si2N2O:TiN质量分数比为70.8%:22.3%:6.9%,并且Si2N2O和TiN均匀分布于Si3N4中。

Claims (5)

1.一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,其特征在于,包括如下步骤:
(1)以Si粉、钛酸丁酯为原料,按Si:钛酸丁酯的质量分数比为48~96%:4~52%的配比经混料、干燥,获得Si-TiO2复合粉体;
(2)将Si-TiO2复合粉体干压成型,放入气氛炉中进行氮化,通过原位反应合成Si3N4-Si2N2O-TiN三元复合粉体;
上述步骤(1)获得的Si-TiO2复合粉体中,Si和TiO2的质量分数比为80~99%:1~20%;
上述步骤(1)的Si粉纯度为95~100%,粒径为<10μm,钛酸丁酯纯度为98~100%;
上述步骤(1)中,以无水乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上球磨4~48h,干燥后过筛得到Si-TiO2复合粉体;
上述步骤(2)的氮化工艺为:将Si-TiO2坯体放入石墨坩埚,以5-20℃/min的升温速率将温度升至1300~1450℃,并保温0.5~20h,气氛为1atm的氮气,获得Si3N4-Si2N2O-TiN三元复合粉体。
2.根据权利要求1所述的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,其特征在于上述步骤(1)中,在行星球磨机上球磨12h。
3.根据权利要求1所述的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,其特征在于上述步骤(1)中,Si和TiO2的质量分数比为92%:8%。
4.根据权利要求1所述的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,其特征在于上述氮化工艺中,将Si-TiO2坯体放入石墨坩埚,以10℃/min的升温速率将温度升至1390℃,并保温4h,气氛为1atm的氮气,合成Si3N4-Si2N2O-TiN三元复合粉体。
5.根据权利要求1至4任一项所述的原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法,其特征在于制备得到的Si3N4-Si2N2O-TiN三元复合粉体中,Si3N4、Si2N2O、TiN的粒径分别为<5μm、<5μm、<1μm,Si3N4:Si2N2O:TiN质量分数比为57~98%:1.5~33%:0.5~10%,并且Si2N2O和TiN均匀分布于Si3N4中。
CN201510992173.0A 2015-12-23 2015-12-23 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法 Active CN105622108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510992173.0A CN105622108B (zh) 2015-12-23 2015-12-23 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510992173.0A CN105622108B (zh) 2015-12-23 2015-12-23 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法

Publications (2)

Publication Number Publication Date
CN105622108A CN105622108A (zh) 2016-06-01
CN105622108B true CN105622108B (zh) 2018-11-09

Family

ID=56037505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510992173.0A Active CN105622108B (zh) 2015-12-23 2015-12-23 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法

Country Status (1)

Country Link
CN (1) CN105622108B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750351A (zh) * 2018-05-31 2019-05-14 河北高富氮化硅材料有限公司 一种多晶硅铸锭用高效Si3N4粉
CN116693303A (zh) * 2023-03-31 2023-09-05 江苏东浦精细陶瓷科技股份有限公司 一种TiN-Si3N4复合材料的近净成形方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926317A (zh) * 2015-06-01 2015-09-23 广东工业大学 一种高韧性Si3N4陶瓷的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926317A (zh) * 2015-06-01 2015-09-23 广东工业大学 一种高韧性Si3N4陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation and properties of TiN–Si3N4 composites;Lian Gao et al.;《Journal of the European Ceramic Society》;20041231;第24卷;第381~386页 *
Thermal stability of in situ formed Si3N4–Si2N2O–TiN composites;Ren-Guan Duan et al.;《Journal of the European Ceramic Society》;20021231;第22卷;第2527~2535页 *

Also Published As

Publication number Publication date
CN105622108A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
AU2014403693B2 (en) Preparation method for high-density hexagonal boron nitride ceramic material
Ni et al. Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide
TWI724259B (zh) 六方晶氮化硼粉末及其製造方法
CN110156468A (zh) 一种ZrC-ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN102730690A (zh) 一种Al4SiC4材料的合成方法
CN105692641A (zh) 一种硼化钨的制备方法及应用
CN104291829B (zh) 一种高α相氮化硅的制备方法
Bagchi et al. Nanocrystalline mullite synthesis at a low temperature: effect of copper ions
CN105622108B (zh) 一种原位合成Si3N4-Si2N2O-TiN三元复合粉体的方法
CN108383530A (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN102515725B (zh) 含碳化硼和氮化硅的熔融石英陶瓷材料的制备方法
KR101323322B1 (ko) 복합재료 강화재용 탄소나노튜브의 제조방법
TW200930687A (en) High resistivity silicon carbide
Jamshidi et al. Application of the statistical Taguchi method to optimize X-SiAlON and mullite formation in composite powders prepared by the SRN process
CN105777162A (zh) 一种掺杂Y2O3的BaZrO3耐火材料
He et al. Study of rare-earth oxide sintering additive systems for Spark Plasma Sintering AlN ceramics
CN105948761B (zh) 一种等轴状β-Si3N4+TiN+O′-Sialon复相陶瓷材料及其制备方法
TW201233780A (en) Method for preparing β SiAlON compound
CN103466646A (zh) 一种陶瓷硅酸镱粉体的固相反应制备方法
KR101355542B1 (ko) 세라믹 복합재료 및 그의 제조방법
Lee et al. Hexagonal plate‐like ternary carbide particulates synthesized by a carbothermal reduction process: processing parameters and synthesis mechanism
CN105837224A (zh) 一种以氟化铵为添加剂的氮化铝陶瓷的制备方法
CN102731109B (zh) 一种AlON材料的合成方法
CN103936421B (zh) 一种TiC0.6/TiC0.6-Al2O3复合陶瓷的制备方法
Maqsood Phase transformations in Ho2Si2O7 ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210916

Address after: 130000 building F2, phase 2-1, Beihu science and Technology Industrial Park, Beihu science and Technology Development Zone, Changchun City, Jilin Province

Patentee after: JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 510006 No. 100 West Ring Road, Guangzhou University, Guangzhou, Guangdong, Panyu District

Patentee before: GUANGDONG University OF TECHNOLOGY