CN105619406B - 多指机械手片叉的校准方法 - Google Patents

多指机械手片叉的校准方法 Download PDF

Info

Publication number
CN105619406B
CN105619406B CN201511023889.6A CN201511023889A CN105619406B CN 105619406 B CN105619406 B CN 105619406B CN 201511023889 A CN201511023889 A CN 201511023889A CN 105619406 B CN105619406 B CN 105619406B
Authority
CN
China
Prior art keywords
fork
piece
along
distance
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511023889.6A
Other languages
English (en)
Other versions
CN105619406A (zh
Inventor
徐冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Science And Technology Group Ltd By Share Ltd
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing Sevenstar Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sevenstar Electronics Co Ltd filed Critical Beijing Sevenstar Electronics Co Ltd
Priority to CN201511023889.6A priority Critical patent/CN105619406B/zh
Publication of CN105619406A publication Critical patent/CN105619406A/zh
Priority to US15/281,110 priority patent/US10056282B2/en
Application granted granted Critical
Publication of CN105619406B publication Critical patent/CN105619406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator

Abstract

本发明的多指机械手片叉进行校准的方法,当每个片叉的下表面的传感器均能直接进行探测时的校准包括对每个片叉进行单独量测并校准;当部分片叉的下表面被遮挡而不能进行探测时的校准包括首先对未被遮挡的片叉进行校准调整再以该调整校准过的未被遮挡的一个片叉为基准对其余的片叉进行调整校准,通过传感器获取传感器到基准面的距离和倾角,来判断片叉是否在距离阈值范围和倾角阈值范围内,从而及时监测出片叉出现异常的位姿,并对片叉的位置和倾角及时调整校准,确保了对硅片位姿探测的准确性,从而避免了对硅片进行传输时产生碰撞导致硅片或设备受损的问题。

Description

多指机械手片叉的校准方法
技术领域
本发明涉及半导体加工设备技术领域,具体涉及一种多指机械手片叉的校准方法。
背景技术
硅片的安全存取和运输是集成电路大生产线一个非常重要的技术指标;在生产过程中通常要求运输设备自身导致的硅片破片率应小于十万分之一。作为批量式硅片热处理系统,相对于单片式工艺系统,每个生产工艺所需的硅片传输、硅片放置和取片次数更多,因而对硅片传输、硅片放置和取片的安全性和可靠性要求更高。
目前,机械手被广泛应用于半导体集成电路制造技术领域中,机械手是硅片传输系统中的重要设备,用于存取和运输工艺处理前和工艺处理后的硅片,其能够接受指令,精确地定位到三维或二维空间上的某一点进行取放硅片,既可对单枚硅片进行取放作业,也可对多枚硅片进行取放作业。
目前,批量式硅片热处理系统的硅片传取环节的位置参数一般采用离线示教的方式获取并存储在控制器中,同时按周期进行检测和校准。机械手根据存储的离线示教的数据对承载机构上放置的硅片进行取放操作。当机械手在对硅片进行取放作业时,硅片承载机构由于环境温度变化、负载变化以及机械结构变形等因素的影响,机械手按离线存储的位置坐标取放承载机构上的硅片时,存在产生碰撞导致硅片或设备受损的风险,造成不可弥补的损失。同时,由于硅片在热处理过程中产生的受热变形等情况也会使硅片的实际分布状态与离线示教位置参数有不同,使得机械手取放硅片的运动处于非安全状态,
请参阅图1,图1为现有技术中机械手在硅片传输、硅片放置和取片时的位置结构示意图。如图所示,当硅片2在支撑部件3上处于倾斜等异常状态时,机械手1在自动存取硅片2的运动处于非安全工作状态,非常容易造成硅片2及设备(包括机械手1)的损伤。在机械手1完成硅片放置后或准备取片前,需对支撑部件3上硅片组中的硅片2分布状态进行准确的位姿识别,同时对识别出的各种异常状态提供准确应对措施,以实现安全取放片。
因此,在取放片之前,对机械手片叉进行校准是十分重要的,避免在取放片过程中发生碰撞导致硅片或设备受损。
发明内容
为了克服以上问题,本发明旨在提供一种对多指机械手片叉进行校准的方法,通过片叉上的传感器来获取片叉的每个手指与基准点的距离和水平度,从而实现对机械手片叉的每个手指的校准。
为了达到上述目的,本发明提供了一种多指机械手片叉的校准方法,所述机械手连接于基座上,片叉用于承载晶圆,所述机械手具有三个或以上的片叉,所述片叉是可翻转的,硅片放置于支撑部件上,在片叉的上表面和下表面分别具有不在同一个直线上的三个或以上的传感器;在对硅片的位姿进行识别之前,进行每个片叉的校准,包括当每个所述片叉的下表面的传感器均能直接进行探测时的校准,以及当部分所述片叉的下表面被遮挡而不能进行探测时的校准;其中,
当每个所述片叉的下表面的传感器均能直接进行探测时的校准包括对每个所述片叉进行单独量测并校准,具体包括:
步骤101:在基座上设定基准面,设定位于所述基准面上的探测点,并且设定片叉的下表面与所述基准面之间的距离阈值范围和倾角阈值范围;
步骤102:所述片叉的下表面的传感器探测相对于所述探测点的坐标值;
步骤103:根据所述片叉的下表面的每个传感器的坐标值求取所述片叉的下表面到所述基准面的距离,并且求取所述片叉的下表面的平面方程;
步骤104:通过所述平面方程计算所述片叉的下表面相对于所述基准面的倾角;
步骤105:判断所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离值是否在所述距离阈值范围内以及判断所述片叉的下表面相对于所述基准面的倾角是否在所述倾角阈值范围内;若两者至少有一个为否,则执行所述步骤106;若两者均为是,则执行所述步骤107;
步骤106:对所述片叉的位置或倾角进行调整校准;
步骤107:重复循环所述步骤102至所述步骤106,完成所述机械手上的所有片叉的调整校准;
当部分所述片叉的下表面被遮挡而不能进行探测时的校准包括首先对未被遮挡的所述片叉进行校准调整再以该调整校准过的未被遮挡的一个片叉为基准对其余的片叉进行调整校准,具体包括:
步骤201:重复所述步骤101至所述步骤106,完成对未被遮挡的所述片叉的校准调整;未被遮挡的所述片叉为第一片叉,与所述第一片叉相邻的另一个片叉为第二片叉;
步骤202:以所述第一片叉为基准,获取第二片叉上的每个传感器与所述第一片叉上表面的相应位置的坐标值;
步骤203:根据所述第二片叉下表面的每个传感器的坐标值求取所述第二片叉下表面到所述第一片叉上表面的距离,并且求取所述第二片叉下表面的平面方程;
步骤204:通过所述第二片叉下表面的平面方程计算所述第二片叉下表面相对于所述第一片叉上表面的倾角;
步骤205:判断所述第二片叉下表面的每个传感器与所述第一片叉上表面沿Z轴的距离值是否在所述距离阈值范围内以及判断所述第二片叉下表面相对于所述第一片叉上表面的倾角是否在所述倾角阈值范围内;若两者至少有一个为否,则执行所述步骤206;若两者均为是,则执行所述步骤207;
步骤206:对所述第二片叉的位置和/或倾角进行调整校准;
步骤207:按照所述步骤202至206,完成所有所述片叉的调整校准。
优选地,每个片叉上表面分别具有假硅片,假硅片上表面和下表面分别具有具有不在同一个直线上的三个或以上的传感器,假硅片下表面的每个传感器不被所述片叉所遮挡。
优选地,所述机械手执行取片或放片操作时,设定理论示教数据,理论示教数据包括取片过程或放片过程中的指定停止位置,在每个指定停止位置,执行所述步骤101-至所述步骤107,或执行所述步骤201至步骤207。
优选地,所述取片过程的指定停止位置包括:预取片安全位置、预向上取片位置、拾取硅片位置、预退出取片位置以及取片退出安全位置;所述放片过程的指定停止位置包括:预放片安全位置、预向下放片位置、放置硅片位置、预退出放片位置以及放片退出安全位置。
优选地,所述机械手还具有夹持部件,在机械手从所述预退出取片位置向外退出所述硅片承载装置至退出安全位置的过程中,机械手的夹持部件执行对硅片的夹持动作。
优选地,所述步骤106中,所述位置的调整校准为所述片叉下表面到所述基准面的距离调整校准;所述倾角的调整校准为所述片叉下表面与所述基准面之间的倾角调整校准,其中,
所述位置的调整校准过程包括:
步骤1601:所述片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤1602:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤1603:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤1604:将所述片叉在沿Z轴方向上加上所述距离补偿值。
所述倾角的调整过程包括:
步骤1605:根据所述片叉下表面的平面方程和所述基准面的平面方程,计算所述片叉下表面的法线矢量与所述基准面的法线矢量;
步骤1606:根据所述片叉下表面的法线矢量的坐标值与所述基准面的法线矢量之间的坐标值以及所述步骤104中得到的倾角,在直角坐标系中计算所述片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤1607:以所述片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述片叉下表面相对于所述基准面的倾角在所述倾角阈值范围内;
步骤1608:计算调整后的所述片叉下表面的每个传感器探测与所述探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行所述步骤107;如果不是,则按照所述位置的调整过程对所述片叉进行沿Z轴的距离调整;
所述步骤206中,所述位置的调整校准为所述第二片叉下表面到所述第一片叉上表面的距离调整校准;所述倾角的调整校准为所述第二片叉下表面与所述第一片叉上表面之间的倾角调整校准,其中,
所述位置的调整校准过程包括:
步骤2601:所述第二片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述第二片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤2602:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤2603:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤2604:将所述第二片叉在沿Z轴方向上加上所述距离补偿值。
所述倾角的调整过程包括:
步骤2605:根据所述第二片叉下表面的平面方程和所述第一片叉上表面的平面方程,计算所述第二片叉下表面的法线矢量与所述第一片叉上表面的法线矢量;
步骤2606:根据所述第二片叉下表面的法线矢量的坐标值与所述第一片叉上表面的法线矢量之间的坐标值以及所述步骤204中得到的倾角,在直角坐标系中计算所述第二片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤2607:以所述第二片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述第二片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述第二片叉下表面相对于所述第一片叉上表面的倾角在所述倾角阈值范围内;
步骤2608:计算调整后的所述第二片叉下表面的每个传感器探测与所述第一片叉上表面的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行所述步骤207;如果不是,则按照所述位置的调整过程中的所述步骤2601至所述步骤2604对所述第二片叉进行沿Z轴的距离调整。
优选地,所述步骤1606中,包括:求取所述片叉下表面相对于所述基准面的旋转矩阵;然后,根据旋转矩阵乘以所述基准面的法线矢量得到所述片叉下表面的法线矢量,计算出所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿X轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
所述步骤2606中,包括:求取所述第二片叉下表面相对于所述第一片叉上表面的旋转矩阵;然后,根据旋转矩阵乘以所述第一片叉上表面的法线矢量得到所述第二片叉下表面的法线矢量,计算出所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度为所述第二片叉下表面相对于所述第一片叉上表面沿X轴方向的旋转角度,所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度为所述第二片叉下表面相对于所述第一片叉上表面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
优选地,所述距离阈值范围包括第一级距离阈值和第二级距离阈值;所述第一级距离阈值为所述机械手重复定位的精度指标,所述第二级距离阈值为所述机械手实际的安全取放片裕量小于正常的安全取放片裕量的1/2时的距离值;所述安全取放片裕量包括:所述片叉到其上方的支撑部件底部的距离的上安全取放片裕量,所述片叉到其下方的硅片的距离的下安全取放片裕量。
优选地,所述步骤105中,包括:
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离小于所述第一级距离阈值时,并且所述片叉的下表面相对于所述基准面的倾角在所述倾角阈值范围内,则执行所述步骤107;
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离大于所述第一级距离阈值且小于所述第二级距离阈值,或者所述片叉下表面相对于所述基准面的倾角不在所述倾角阈值范围内时,则执行所述步骤106;
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离大于所述第二级距离阈值,且所述片叉的下表面相对于所述基准面的倾角不在所述倾角阈值范围内时,则机械手停止运行,报警并等待处理;
所述步骤205中,包括:
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离小于所述第一级距离阈值时,并且所述第二片叉的下表面相对于所述第一片叉上表面的倾角在所述倾角阈值范围内,则执行所述步骤207;
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离大于所述第一级距离阈值且小于所述第二级距离阈值,或者所述第二片叉下表面相对于所述第一片叉上表面的倾角不在所述倾角阈值范围内时,则执行所述步骤206;
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离大于所述第二级距离阈值,且所述第二片叉的下表面相对于所述第一片叉上表面的倾角不在所述倾角阈值范围内时,则机械手停止运行,报警并等待处理。
优选地,所述传感器为光电传感器。
本发明的多指机械手片叉进行校准的方法,当每个片叉的下表面的传感器均能直接进行探测时的校准包括对每个片叉进行单独量测并校准;当部分片叉的下表面被遮挡而不能进行探测时的校准包括首先对未被遮挡的片叉进行校准调整再以该调整校准过的未被遮挡的一个片叉为基准对其余的片叉进行调整校准,通过传感器获取传感器到基准面的距离和倾角,来判断片叉是否在距离阈值范围和倾角阈值范围内,从而及时监测出片叉出现异常的位姿,并对片叉的位置和倾角及时调整校准,确保了对硅片位姿探测的准确性,从而避免了对硅片进行传输时产生碰撞导致硅片或设备受损的问题。
附图说明
图1为现有技术中机械手在硅片传输、硅片放置和取片时的位置示意图
图2为本发明的一个较佳实施例的半导体设备的硅片承载装置的结构示意图
图3为本发明的一个较佳实施例的硅片传输、取片或放片过程中机械手的片叉和硅片的相对位置关系透视示意图
图4为本发明的一个较佳实施例的传感器组、机械手、硅片和支撑部件的相对位置关系俯视示意图
图5为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及取片路线示意图
图6为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及放片路线示意图
图7为本发明的一个较佳实施例的机械手片叉和假硅片的关系结构示意图
图8为本发明的一个较佳实施例的多指机械手片叉的校准方法的流程示意图
图9为本发明的另一个较佳实施例的多指机械手片叉的校准方法的流程示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明的半导体设备包括用于放置多个硅片的硅片承载装置和用于拾取和运输硅片的机械手,硅片承载装置具有支撑部件,硅片水平放置于支撑部件上,多个硅片在竖直方向上排列,如图2所示,本发明的一个较佳实施例的半导体设备中的硅片承载装置,包括:黑线框内为内部装载有硅片的片盒B和装载硅片进入反应腔室C的硅片硅片承载装置A;半导体设备还具有承载片盒B的片盒硅片承载装置F,片盒硅片承载装置F连接于底座G上;机械手E用于从片盒B中拾取硅片并且放置于硅片硅片承载装置A上,当反应腔室C底部的炉门D打开时,硅片硅片承载装置A携带着硅片进入反应腔室C中,或者当反应结束后,反应腔室C底部的炉门D打开,硅片硅片承载装置A携带着处理后的硅片从反应腔室C底部退出,机械手E从硅片硅片承载装置A上拾取硅片并且放置于片盒B中;图2中的箭头表示各个部件的可移动方向。因此,本发明的取片过程可以但不限于包括从片盒中拾取硅片的过程,也可以包括从硅片硅片承载装置中拾取硅片的过程;同理,本发明的放片过程可以但不限于包括将硅片放置于片盒中,也可以包括将硅片放置于硅片硅片承载装置上。
本发明中,机械手具有片叉,片叉上下表面固定有不在同一条直线上的三个或以上的传感器组,传感器组用于定义一个或多个基准面;片叉上表面的三个传感器用于定义上基准面,片叉下表面的三个传感器用于定义下基准面,上基准面和下基准面可以为同一平面也可以为具有一定间距的平面;本发明的片叉可以在水平面内或竖直面内进行翻转,从而导致片叉可能产生倾斜情况;在半导体领域中,机械手一般具有单只机械爪或多只机械爪,以适应批量化生产的需要。在一些本发明的实施例中,机械手可以具有多只机械爪,在任意一个或多个机械爪的片叉的上表面和下表面三个或多个传感器,下面的实施例仅以一个机械手的一个片叉上表面和下表面分别具有三个传感器为例,其它的实施例原理相同,在此不再赘述。
以下结合附图3-9和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
本实施例的半导体设备中硅片分布状态识别系统包括:设置于机械手片叉上的传感器组、判断装置、控制装置和报警装置。
请参阅图3和图4,本实施例中,支撑部件101上承载有硅片W,支撑部件101均匀分布于一半的硅片W的边缘,机械手100的片叉101为对称V型,机械手100还具有夹持部件;片叉101的对称轴与硅片W的直径重合,片叉101的两个倾斜侧壁最外侧之间的宽度小于硅片W的直径;
本实施例的传感器组(黑实心圆),设置于机械手100的片叉101的上下表面,用于检测片叉101到一个硅片底部的距离测量值以及片叉101到该一个硅片下方相邻硅片的距离测量值;在片叉101的上表面设置有三个传感器S1、S2、S3,其中两个传感器S1和S2分别位于V型片叉101的对称的两个斜壁上且对应于置于片叉101上的硅片W的直径上,所剩的一个传感器S3位于V型片叉101的对称两个斜壁内侧相交的位置上,在该片叉101所在平面建立原点,设置为XOY基准面,传感器S1、S2的连线的中点与的传感器S3的连线垂直且平分传感器S1、S2的连线;因此,将V型片叉斜壁上的两个传感器S1、S2的连线设为X轴,将传感器S1、S2的连线的中点与传感器S3的连线设为Y轴,传感器S1、S2的连线的中点为坐标原点O,以此构成片叉所在XOY平面,这里需要说明的是,在涉及传感器的相对位置关系时,将传感器视为一个点。本实施例中,以片叉101上表面的传感器S1、S2、S3所反馈的测量值来判断硅片W的位姿和取片过程是否能够安全取片,用于计算圆柱面方程、截交线方程、硅片所在平面与片叉所在平面的夹角、截交线与片叉所在平面的最小距离和最大距离;本实施例中,传感器通过光电信号探测距离来实现的,也就是传感器为光电传感器。
本实施例的判断装置,用于判断机械手包括片叉在取片或放片运动过程中是否会触碰到硅片,以及判断硅片是否在所述机械手的片叉上,当可能触碰到硅片时向报警装置发送信号;
控制装置,根据判断装置的判断结果来控制机械手是否停止运动;并且用于控制机械手执行取片操作指令,设置理论示教数据;在取片或放片之前,先对控制装置输入示教数据,然后控制装置按照这些示教数据控制机械手来执行取片操作指令;当判断装置判断机械手可能触碰到硅片时,控制装置使机械手停止运动;请参阅图5,为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及取片路线示意图;硅片W位于支撑部件102上,带箭头的粗虚线表示本实施例的取片过程的路线,细虚线框表示运动中的硅片W’,P1位置为预取片安全位置,P2位置为预向上取片位置,P3为取片过程中机械手的片叉接触到硅片的位置,P4为预退出取片位置,P5为取片过程中机械手的夹持部件夹持晶圆的位置,P6为取片后的退出安全位置;本实施例中,取片过程的路线和放片过程的路线相同,两者的运动方向相反;取片过程的理论示教数据的各个参数值与放片过程的理论示教数据的各个参数值可以相同也可以不相同。图5中显示出理论示教数据各个参数,包括硅片W的厚度d、支撑部件厚度t、相邻硅片W的间距s、预向上取片位置P2上的机械手的片叉底部到片叉下方硅片上表面的距离s2、预退出取片位置P4上的片叉上的硅片顶部到片叉上方相邻的支撑部件底部的距离s1、以及预向上取片位置P2到预退出取片位置P4之间的距离s3;请参阅图6,为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及放片路线示意图;硅片W位于支撑部件102上,带箭头的粗虚线表示本实施例的取片过程或放片过程的路线,细虚线框表示运动中的硅片W’,P’1位置为放片后的退出安全位置,P’2位置为预退出放片位置,P’3为放片过程中机械手的片叉将硅片放置于支撑部件时的位置,P’4为预向下放片位置,P’5为放片过程中机械手的夹持部件取消夹持的位置,P’6为预放片安全位置;图6中显示出理论示教数据各个参数,包括硅片W的厚度d、支撑部件厚度t、相邻硅片W的间距s、退出放片位置P’2上的机械手的片叉底部到片叉下方硅片上表面的距离s2、预向下放片位置P’4上的片叉上的硅片顶部到片叉上方相邻的支撑部件底部的距离s1、以及预向下放片位置P’4到预退出放片位置P’2的距离s3;需要说明的是,本发明中,放片过程的理论示教数据的各个参数值和取片过程的理论示教数据的各个参数值可以相同也可以不同。这里需要说明的是,相邻硅片W的间距s由支撑部件之间的距离来决定,相邻硅片W的间距s等于相邻支撑部件底部的距离。
报警装置,接收判断装置发出的信号,然后发出警报。
硅片的安全传输过程中,利用了在片叉上表面和下表面分别设置的不在同一个直线上的三个或以上的传感器,在对硅片的位姿进行识别之前,进行多个片叉位姿的识别和校准,本实施例中,请参阅图7,以片叉的上表面和下表面分别设置有不在同一直线上的三个传感器为例进行描述,还需要说明的是,下属描述中,距离或距离阈值指的是传感器的坐标值的Z值;本实施例中,采用上述机械多指机械手片叉的校准方法中,采用的机械手连接于基座上,片叉用于承载晶圆,机械手具有五个片叉,片叉是可翻转的,硅片放置于支撑部件上,每个片叉上表面分别具有假硅片,假硅片上表面和下表面分别具有具有不在同一个直线上的三个或以上的传感器,假硅片下表面的每个传感器不被片叉所遮挡;本实施例中,请参阅图7,可以直接把假硅片W’放置于片叉101’上,其它实施例中,采用但不限于粘贴或螺栓固定的方式将假硅片固定于片叉上;本实施例中,假硅片W’上表面嵌入用于发出探测信号的无线收发器S1’、S2’、S3’、对探测信号敏感并将探测信号转换为电信号的触感器(未示出)、以及将电信号转换为数值的转换器(未示出);无线收发器S1’、S2’、S3’设置在避开被片叉101’遮挡的假硅片W’位置,这样,无线收发器S1’、S2’、S3’可以假硅片W’上方或假硅片W’下方向外发出探测信号,而无需考虑从片叉101’向下探测时信号被片叉101’遮挡而无法实现向下的探测。这里,假硅片W’上下表面均安装有三个不在同一直线上的无线收发器,片叉上还具有夹持部件,用于夹持片叉上的晶圆不掉落。无线收发器S1’、S2’、S3’设置于假硅片W’上表面的关系可以呈等腰三角形或等边三角形。本实施例中,采用上述的具有假硅片的片叉,假硅片中的无线收发器通过向上和向下发出探测信号,探测信号返回后发送给触感器,触感器将信号转换为相应的电信号,转换器将电信号转换为相应的距离测量值,从而可以对片叉进行实时监控和修正。
在对硅片的位姿进行识别之前,进行每个片叉的校准,本实施例中的机械手上的每个片叉的下表面的传感器均能直接进行探测和校准,也就是片叉的底部没有被任何遮挡,可以每个片叉均可以直接探测到基准面上的探测点,因此可以对每个片叉进行单独量测并校准,请参阅图8,具体包括以下步骤:
步骤101:在基座上设定基准面,设定位于基准面上的探测点,并且设定片叉的下表面与基准面之间的距离阈值范围和倾角阈值范围;
具体的,通常基座指的是固定机械手的机台本体,由于机台本体具有多个平面,可以利用这些平面作为参考面来检测和调整片叉的位置和角度;设基准面为XOY平面,Z=0,基准面上的探测点为初始位置,探测点可以为一个或多个。探测点的坐标为(0,0,0)。
步骤102:片叉的下表面的传感器探测相对于探测点的坐标值;
具体的,求取片叉下表面的每个传感器的坐标值以及相应的片叉下表面与基准面的距离,然后求取这些距离的平均值作为片叉下表面到基准面的距离。
当探测点为多个时,求取片叉下表面的每个传感器相对于每个探测点的坐标值以及相应的片叉下表面与基准面的距离,然后求取这些距离的平均值作为片叉下表面到基准面的距离。
步骤103:根据片叉的下表面的每个传感器的坐标值求取片叉的下表面到基准面的距离,并且求取片叉的下表面的平面方程;
具体的,位于片叉下表面的不在同一直线上的三个传感器的坐标值分别为(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),根据坐标值计算出片叉下表面的平面方程为AX+BY+CZ+D=0;
其中,A、B、C和D计算式如下:
A=y1z2-y1z3-y2z1+y2z3+y3z1-y3z2
B=-x1z2+x1z3+x2z1-x2z3-x3z1+x3z2
C=x1y2-x1y3-x2y1+x2y3+x3y1-x3y2,
D=-x1y2z3+x1y3z2+x2y1z3-x2y3z1-x3y1z2+x3y2z1。
步骤104:通过平面方程计算片叉的下表面相对于基准面的倾角;
具体的,基准面的平面方程为Z=0,建立片叉下表面的平面方程和基准面的平面方程组,
AX+BY+CZ+D=0
Z=0
它们的法线矢量分别为{A,B,C}和{0,0,1},设这两个法线矢量的夹角为α,那么这两个平面的夹角就是α,于是,
cosα=C/[√(A2+B2+C2)]
α=arc cos(C/[√(A2+B2+C2)])。
步骤105:判断片叉的下表面的每个传感器与探测点的沿Z轴的距离值是否在距离阈值范围内以及判断片叉的下表面相对于基准面的倾角是否在倾角阈值范围内;若两个均为否,则机械手停止运行,并且报警等待处理;若两者有一个为否,则执行步骤106;若两者均为是,则执行步骤107;
具体的,这里,倾角阈值范围为倾角阈值绝对值的正负值[-σ,σ],距离阈值范围为[D1,D2],σ为倾角阈值绝对值,距离阈值包括D1和D2,分别为第一级距离阈值和第二级距离阈值;第一级距离阈值为机械手重复定位的精度指标,第二级距离阈值为机械手实际的安全取放片裕量小于正常的安全取放片裕量的1/2时的距离值;安全取放片裕量包括:机械手片叉到其上方的支撑部件底部的距离的上安全取放片裕量,机械手片叉到其下方的硅片的距离的下安全取放片裕量;需要说明的是,机械手重复定位的精度指标和安全取放片裕量都是根据经验得到的,而且不同的设备具有不同的机械手重复定位的精度指标和安全取放片裕量。
步骤106:对片叉的位置或倾角进行调整校准;
具体的,本步骤106中,包括:
当片叉下表面的每个传感器与探测点的距离小于第一级距离阈值时,并且片叉下表面相对于基准面的倾角在倾角阈值范围内,则不执行本步骤106而直接执行步骤107;
当片叉下表面的每个传感器与探测点的距离大于第一级距离阈值且小于第二级距离阈值,或者片叉下表面相对于基准面的倾角不在倾角阈值范围内时,则执行步骤106;
当片叉下表面的每个传感器与所述探测点的距离大于第二级距离阈值,且片叉下表面相对于基准面的倾角不在倾角阈值范围内时,则机械手停止运行,报警并等待处理。
这里,位置的调整校准为片叉下表面到基准面的距离调整校准,也即是片叉沿Z轴的距离调整校准;倾角的调整校准为片叉下表面与基准面之间的倾角调整校准,其中,
沿Z轴的距离调整校准过程包括:
步骤1601:片叉下表面的每个传感器连续两次探测与探测点的距离,得到片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
具体的,对探测点进行连续两次探测并求取平均值可以增加数值稳定性。设片叉下表面上的三个传感器前后两次探测的坐标值为(x11,y11,z11),(x21,y21,z21),(x31,y31,z31),(x12,y12,z12),(x22,y22,z22),(x32,y32,z32);
步骤1602:求取第一次坐标值的第一平均值和第二次坐标值的第二平均值;
具体的,Z值的平均值为Zave1=Average(z11,z21,z31),Zave2=Average(z12,z22,z32);
步骤1603:计算第一平均值和第二平均值的差值,作为距离补偿值;
具体的,沿Z轴的距离补偿值为Zchange=Zave1-Zave2;
步骤1604:将片叉在沿Z轴方向上加上距离补偿值。
具体的,在片叉的坐标值的Z值上均相应的加上Zchange。
当片叉的水平度不合适时,进行倾角调整校准过程,包括:
步骤1605:根据片叉下表面的平面方程和基准面的平面方程,计算片叉下表面的法线矢量与基准面的法线矢量;
具体的,关于平面方程和基准面方程以及相应的法线矢量的求取可以参考步骤104的描述。
步骤1606:根据片叉下表面的法线矢量的坐标值与基准面的法线矢量之间的坐标值以及步骤104中得到的倾角,在直角坐标系中计算所述片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
具体的,本步骤1606包括:求取片叉下表面相对于基准面的旋转矩阵;
然后,根据旋转矩阵乘以基准面的法线矢量得到片叉下表面的法线矢量,这里,基准面的法线矢量设为片叉下表面的法线矢量设为
则有
片叉按照上述旋转矩阵进行旋转,即可完成相对于基座的水平度调节;具体的,通过上述方程计算出片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿X轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿Y轴方向的旋转角度;
步骤1607:以片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使片叉下表面相对于基准面的倾角在倾角阈值范围内;
步骤1608:计算调整后的片叉下表面的每个传感器探测与探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的距离阈值范围内;如果是,则机械手继续执行所述步骤107;如果不是,则按照位置的调整过程对片叉进行沿Z轴的距离调整。在片叉进行翻转之后,有可能偏离原来的位置或者由于片叉倾斜所检测的距离会不可信,从而需要重新进行距离检测和调整,可以采用上述距离调整过程来进行调整,这里不再赘述。
步骤107:重复循环步骤102至步骤106,完成机械手上的所有片叉的调整校准;
需要说明的是,上述的对每个片叉进行单独量测并校准的过程,可以应用于机械手执行取片或放片过程中,在机械手进行取片或放片操作时,设定理论示教数据,理论示教数据包括取片过程或放片过程中的指定停止位置,在每个指定停止位置,执行步骤101至步骤107;取片过程的指定停止位置包括图5中的:预取片安全位置P1、预向上取片位置P2、拾取硅片位置P3、预退出取片位置P4以及取片退出安全位置P6;放片过程的指定停止位置包括图6中的:预放片安全位置P’6、预向下放片位置P’4、放置硅片位置P’3、预退出放片位置P’2以及放片退出安全位置P’1;较佳的,机械手还具有夹持部件,在机械手从预退出取片位置P4向外退出硅片承载装置至退出安全位置P6的过程中,机械手的夹持部件执行对硅片的夹持动作,因此,取片过程的指定停止位置还包括硅片夹持位置P5,放片过程的指定停止位置还包括取消硅片夹持位置P’5;也即是,在取片过程中的理论示教数据中的指定停止位置包括上述实施例的图5中的P1、P2、P3、P4、P5和P6位置,以及s1、s2、s3和s数据;放片过程中的理论示教数据中的指定停止位置包括上述实施例的图6中的P’1、P’2、P’3、P’4、P’5和P’6位置,以及s1、s2、s3和s数据。
在本发明的另一个实施例中,有些片叉的下表面被遮挡而不能进行探测,此时的校准包括首先对未被遮挡的片叉进行校准调整再以该调整校准过的未被遮挡的一个片叉为基准对其余的片叉进行调整校准,请参阅图9,具体包括:
步骤201:重复上述步骤101至步骤106,完成对未被遮挡的片叉的校准调整;未被遮挡的片叉为第一片叉,与第一片叉相邻的另一个片叉为第二片叉;
具体的,该实施例中,位于最下方的片叉底部没有被遮挡可以直接探测,则首先对该对下方的片叉进行调整校准。对于未被遮挡的片叉的校准调整过程可以参考上述实施例,这里不再赘述。
步骤202:以第一片叉为基准,获取第二片叉上的每个传感器与第一片叉上表面的相应位置的坐标值;
具体的,该实施例中,根据与最下方的片叉相邻的倒数第二个片叉为第二片叉,通过第二片叉底部的每个传感器获取第二片叉底部的每个传感器与第一片叉上表面相应位置的坐标值,这里所说的相应位置指的是传感器所发出的探测光束的到达片叉上表面的位置。
这里,求取第二片叉下表面的每个传感器的坐标值以及相应的第二片叉下表面与第一片叉上表面的距离,然后求取这些距离的平均值作为第二片叉下表面到第一片叉上表面的距离。
步骤203:根据第二片叉下表面的每个传感器的坐标值求取第二片叉下表面到第一片叉上表面的距离,并且求取第二片叉下表面的平面方程;
具体的,位于第二片叉下表面的不在同一直线上的三个传感器的坐标值分别为(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),根据坐标值计算出第二片叉下表面的平面方程为AX+BY+CZ+D=0;
其中,A、B、C和D计算式如下:
A=y1z2-y1z3-y2z1+y2z3+y3z1-y3z2
B=-x1z2+x1z3+x2z1-x2z3-x3z1+x3z2
C=x1y2-x1y3-x2y1+x2y3+x3y1-x3y2,
D=-x1y2z3+x1y3z2+x2y1z3-x2y3z1-x3y1z2+x3y2z1。
步骤204:通过第二片叉下表面的平面方程计算第二片叉下表面相对于第一片叉上表面的倾角;
具体的,设第一片叉上表面的平面方程为Z=0,建立第二片叉下表面的平面方程和第一片叉上表面的平面方程组,
AX+BY+CZ+D=0
Z=0
它们的法线矢量分别为{A,B,C}和{0,0,1},设这两个法线矢量的夹角为α,那么这两个平面的夹角就是α,于是,
cosα=C/[√(A2+B2+C2)]
α=arc cos(C/[√(A2+B2+C2)])。
步骤205:判断第二片叉下表面的每个传感器与沿Z轴的距离值是否在距离阈值范围内以及判断第二片叉下表面相对于第一片叉上表面的倾角是否在倾角阈值范围内;若两者均为否,则机械手停止运行,并且报警等待处理;若两者有一个为否,则执行步骤206;若两者均为是,则执行步骤207;
具体的,这里,倾角阈值范围为倾角阈值绝对值的正负值[-σ,σ],距离阈值范围为[D1,D2],σ为倾角阈值绝对值,距离阈值包括D1和D2,分别为第一级距离阈值和第二级距离阈值;第一级距离阈值为机械手重复定位的精度指标,第二级距离阈值为机械手实际的安全取放片裕量小于正常的安全取放片裕量的1/2时的距离值;安全取放片裕量包括:机械手片叉到其上方的支撑部件底部的距离的上安全取放片裕量,机械手片叉到其下方的硅片的距离的下安全取放片裕量;需要说明的是,机械手重复定位的精度指标和安全取放片裕量都是根据经验得到的,而且不同的设备具有不同的机械手重复定位的精度指标和安全取放片裕量。
步骤206:对第二片叉的位置和/或倾角进行调整校准;
具体的,本步骤206中,包括:
当第二片叉下表面的每个传感器与第一片叉上表面的距离小于第一级距离阈值时,并且第二片叉下表面相对于第一片叉上表面的倾角在倾角阈值范围内,则不执行本步骤206而直接执行步骤207;
当第二片叉下表面的每个传感器与第一片叉上表面的距离大于第一级距离阈值且小于第二级距离阈值,或者第二片叉下表面相对于第一片叉上表面的倾角不在倾角阈值范围内时,则执行步骤206;
当第二片叉下表面的每个传感器与第一片叉上表面的距离大于第二级距离阈值,且第二片叉下表面相对于基准面的倾角不在倾角阈值范围内时,则机械手停止运行,报警并等待处理。
这里,位置的调整校准为第二片叉下表面到第一片叉上表面的距离调整校准,也即是第二片叉沿Z轴的距离调整校准;倾角的调整校准为第二片叉下表面与第一片叉上表面之间的倾角调整校准,其中,
沿Z轴的距离调整校准过程包括:
步骤2601:第二片叉下表面的每个传感器连续两次探测与第一片叉上表面的距离,得到第二片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
具体的,对探测点进行连续两次探测并求取平均值可以增加数值稳定性。设片叉下表面上的三个传感器前后两次探测的坐标值为(x11,y11,z11),(x21,y21,z21),(x31,y31,z31),(x12,y12,z12),(x22,y22,z22),(x32,y32,z32);
步骤2602:求取第一次坐标值的第一平均值和第二次坐标值的第二平均值;
具体的,Z值的平均值为Zave1=Average(z11,z21,z31),Zave2=Average(z12,z22,z32);
步骤2603:计算第一平均值和第二平均值的差值,作为距离补偿值;
具体的,沿Z轴的距离补偿值为Zchange=Zave1-Zave2;
步骤2604:将第二片叉在沿Z轴方向上加上距离补偿值。
具体的,在第二片叉的坐标值的Z值上均相应的加上Zchange。
当片叉的水平度不合适时,进行倾角调整校准过程,包括:
步骤2605:根据第二片叉下表面的平面方程和第一片叉上表面的平面方程,计算第二片叉下表面的法线矢量与第一片叉上表面的法线矢量;
具体的,关于平面方程和基准面方程以及相应的法线矢量的求取可以参考步骤204的描述。
步骤2606:根据第二片叉下表面的法线矢量的坐标值与第一片叉上表面的法线矢量之间的坐标值以及步骤204中得到的倾角,在直角坐标系中计算第二片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
具体的,本步骤2606包括:求取第二片叉下表面相对于第一片叉上表面的旋转矩阵
然后,根据旋转矩阵乘以第一片叉上表面的法线矢量得到第二片叉下表面的法线矢量,
这里,第一片叉上表面的法线矢量设为第二片叉下表面的法线矢量设为
则有
第二片叉按照上述旋转矩阵进行旋转,即可完成相对于第一片叉上表面的水平度调节;具体的,通过上述方程计算出第二片叉下表面的法线矢量相对于第一片叉上表面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,第二片叉下表面的法线矢量相对于第一片叉上表面的法线矢量沿X轴方向的旋转角度为第二片叉下表面相对于第一片叉上表面沿X轴方向的旋转角度,第二片叉下表面的法线矢量相对于第一片叉上表面的法线矢量沿X轴方向的旋转角度为第二片叉下表面相对于第一片叉上表面沿Y轴方向的旋转角度;
步骤2607:以第二片叉下表面的法线矢量沿X轴方向所旋转的角度使第二片叉沿X轴旋转,以第二片叉下表面的法线矢量沿Y轴方向所旋转的角度使第二片叉沿Y轴旋转,从而使第二片叉下表面相对于第一片叉上表面的倾角在倾角阈值范围内;
步骤2608:计算调整后的第二片叉下表面的每个传感器探测与探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的距离阈值范围内;如果是,则机械手继续执行步骤207;如果不是,则按照位置的调整过程对第二片叉进行沿Z轴的距离调整。在第二片叉进行翻转之后,有可能偏离原来的位置或者由于第二片叉倾斜所检测的距离会不可信,从而需要重新进行距离检测和调整,可以采用上述距离调整过程来进行调整,这里不再赘述。
步骤207:按照步骤202至206,完成所有片叉的调整校准。
具体的,对于其余的片叉的调整校准,可以上述校准过的第一片叉或第二片叉为基准根据上述步骤202至206继续进行校准,直至完成机械手上的所有片叉的调整校准。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (10)

1.一种多指机械手片叉的校准方法,所述机械手连接于基座上,片叉用于承载晶圆,所述机械手具有三个或以上的片叉,所述片叉是可翻转的,硅片放置于支撑部件上,其特征在于,在片叉的上表面和下表面分别具有不在同一个直线上的三个或以上的传感器;在对硅片的位姿进行识别之前,进行每个片叉的校准,包括当每个所述片叉的下表面的传感器均能直接进行探测时的校准,以及当部分所述片叉的下表面被遮挡而不能进行探测时的校准;其中,
当每个所述片叉的下表面的传感器均能直接进行探测时的校准包括对每个所述片叉进行单独量测并校准,具体包括:
步骤101:在基座上设定基准面,设定位于所述基准面上的探测点,并且设定片叉的下表面与所述基准面之间的距离阈值范围和倾角阈值范围;
步骤102:所述片叉的下表面的传感器探测相对于所述探测点的坐标值;
步骤103:根据所述片叉的下表面的每个传感器的坐标值求取所述片叉的下表面到所述基准面的距离,并且求取所述片叉的下表面的平面方程;
步骤104:通过所述平面方程计算所述片叉的下表面相对于所述基准面的倾角;
步骤105:判断所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离值是否在所述距离阈值范围内以及判断所述片叉的下表面相对于所述基准面的倾角是否在所述倾角阈值范围内;若两者至少有一个为否,则执行所述步骤106;若两者均为是,则执行所述步骤107;
步骤106:对所述片叉的位置或倾角进行调整校准;
步骤107:重复循环所述步骤102至所述步骤106,完成所述机械手上的所有片叉的调整校准;
当部分所述片叉的下表面被遮挡而不能进行探测时的校准包括首先对未被遮挡的所述片叉进行校准调整再以该调整校准过的未被遮挡的一个片叉为基准对其余的片叉进行调整校准,具体包括:
步骤201:重复所述步骤101至所述步骤106,完成对未被遮挡的所述片叉的校准调整;未被遮挡的所述片叉为第一片叉,与所述第一片叉相邻的另一个片叉为第二片叉;
步骤202:以所述第一片叉为基准,获取第二片叉上的每个传感器与所述第一片叉上表面的相应位置的坐标值;
步骤203:根据所述第二片叉下表面的每个传感器的坐标值求取所述第二片叉下表面到所述第一片叉上表面的距离,并且求取所述第二片叉下表面的平面方程;
步骤204:通过所述第二片叉下表面的平面方程计算所述第二片叉下表面相对于所述第一片叉上表面的倾角;
步骤205:判断所述第二片叉下表面的每个传感器与所述第一片叉上表面沿Z轴的距离值是否在所述距离阈值范围内以及判断所述第二片叉下表面相对于所述第一片叉上表面的倾角是否在所述倾角阈值范围内;若两者至少有一个为否,则执行所述步骤206;若两者均为是,则执行所述步骤207;
步骤206:对所述第二片叉的位置和/或倾角进行调整校准;
步骤207:按照所述步骤202至206,完成所有所述片叉的调整校准。
2.根据权利要求1所述的多指机械手片叉的校准方法,其特征在于,每个片叉上表面分别具有假硅片,假硅片上表面和下表面分别具有不在同一个直线上的三个或以上的传感器,假硅片下表面的每个传感器不被所述片叉所遮挡。
3.根据权利要求1或2所述的多指机械手片叉的校准方法,其特征在于,所述机械手执行取片或放片操作时,设定理论示教数据,理论示教数据包括取片过程或放片过程中的指定停止位置,在每个指定停止位置,执行所述步骤101-至所述步骤107,或执行所述步骤201至步骤207。
4.根据权利要求3所述的多指机械手片叉的校准方法,其特征在于,所述取片过程的指定停止位置包括:预取片安全位置、预向上取片位置、拾取硅片位置、预退出取片位置以及取片退出安全位置;所述放片过程的指定停止位置包括:预放片安全位置、预向下放片位置、放置硅片位置、预退出放片位置以及放片退出安全位置。
5.根据权利要求4所述的多指机械手片叉的校准方法,其特征在于,所述机械手还具有夹持部件,在机械手从所述预退出取片位置向外退出所述硅片承载装置至退出安全位置的过程中,机械手的夹持部件执行对硅片的夹持动作。
6.根据权利要求1所述的多指机械手片叉的校准方法,其特征在于,所述步骤106中,所述位置的调整校准为所述片叉下表面到所述基准面的距离调整校准;所述倾角的调整校准为所述片叉下表面与所述基准面之间的倾角调整校准,其中,
所述位置的调整校准过程包括:
步骤1601:所述片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤1602:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤1603:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤1604:将所述片叉在沿Z轴方向上加上所述距离补偿值;
所述倾角的调整过程包括:
步骤1605:根据所述片叉下表面的平面方程和所述基准面的平面方程,计算所述片叉下表面的法线矢量与所述基准面的法线矢量;
步骤1606:根据所述片叉下表面的法线矢量的坐标值与所述基准面的法线矢量之间的坐标值以及所述步骤104中得到的倾角,在直角坐标系中计算所述片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤1607:以所述片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述片叉下表面相对于所述基准面的倾角在所述倾角阈值范围内;
步骤1608:计算调整后的所述片叉下表面的每个传感器探测与所述探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行所述步骤107;如果不是,则按照所述位置的调整过程对所述片叉进行沿Z轴的距离调整;
所述步骤206中,所述位置的调整校准为所述第二片叉下表面到所述第一片叉上表面的距离调整校准;所述倾角的调整校准为所述第二片叉下表面与所述第一片叉上表面之间的倾角调整校准,其中,
所述位置的调整校准过程包括:
步骤2601:所述第二片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述第二片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤2602:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤2603:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤2604:将所述第二片叉在沿Z轴方向上加上所述距离补偿值;
所述倾角的调整过程包括:
步骤2605:根据所述第二片叉下表面的平面方程和所述第一片叉上表面的平面方程,计算所述第二片叉下表面的法线矢量与所述第一片叉上表面的法线矢量;
步骤2606:根据所述第二片叉下表面的法线矢量的坐标值与所述第一片叉上表面的法线矢量之间的坐标值以及所述步骤204中得到的倾角,在直角坐标系中计算所述第二片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤2607:以所述第二片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述第二片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述第二片叉下表面相对于所述第一片叉上表面的倾角在所述倾角阈值范围内;
步骤2608:计算调整后的所述第二片叉下表面的每个传感器探测与所述第一片叉上表面的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行所述步骤207;如果不是,则按照所述位置的调整过程中的所述步骤2601至所述步骤2604对所述第二片叉进行沿Z轴的距离调整。
7.根据权利要求6所述的多指机械手片叉的校准方法,其特征在于,所述步骤1606中,包括:求取所述片叉下表面相对于所述基准面的旋转矩阵;然后,根据旋转矩阵乘以所述基准面的法线矢量得到所述片叉下表面的法线矢量,计算出所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿X轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
其中,步骤1606中的Lz表示所述片叉下表面相对于所述基准面的旋转矩阵,α表示片叉下表面相对于基准面的倾角;
所述步骤2606中,包括:求取所述第二片叉下表面相对于所述第一片叉上表面的旋转矩阵;然后,根据旋转矩阵乘以所述第一片叉上表面的法线矢量得到所述第二片叉下表面的法线矢量,计算出所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度为所述第二片叉下表面相对于所述第一片叉上表面沿X轴方向的旋转角度,所述第二片叉下表面的法线矢量相对于所述第一片叉上表面的法线矢量沿X轴方向的旋转角度为所述第二片叉下表面相对于所述第一片叉上表面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
其中步骤2606中的Lz表示所述第二片叉下表面相对于所述第一片叉上表面的旋转矩阵,α表示第二片叉下表面相对于第一片叉上表面的倾角。
8.根据权利要求1所述的多指机械手片叉的校准方法,其特征在于,所述距离阈值范围包括第一级距离阈值和第二级距离阈值;所述第一级距离阈值为所述机械手重复定位的精度指标,所述第二级距离阈值为所述机械手实际的安全取放片裕量小于正常的安全取放片裕量的1/2时的距离值;所述安全取放片裕量包括:所述片叉到其上方的支撑部件底部的距离的上安全取放片裕量,所述片叉到其下方的硅片的距离的下安全取放片裕量。
9.根据权利要求8所述的多指机械手片叉的校准方法,其特征在于,所述步骤105中,包括:
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离小于所述第一级距离阈值时,并且所述片叉的下表面相对于所述基准面的倾角在所述倾角阈值范围内,则执行所述步骤107;
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离大于所述第一级距离阈值且小于所述第二级距离阈值,或者所述片叉下表面相对于所述基准面的倾角不在所述倾角阈值范围内时,则执行所述步骤106;
当所述片叉的下表面的每个传感器与所述探测点的沿Z轴的距离大于所述第二级距离阈值,且所述片叉的下表面相对于所述基准面的倾角不在所述倾角阈值范围内时,则机械手停止运行,报警并等待处理;
所述步骤205中,包括:
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离小于所述第一级距离阈值时,并且所述第二片叉的下表面相对于所述第一片叉上表面的倾角在所述倾角阈值范围内,则执行所述步骤207;
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离大于所述第一级距离阈值且小于所述第二级距离阈值,或者所述第二片叉下表面相对于所述第一片叉上表面的倾角不在所述倾角阈值范围内时,则执行所述步骤206;
当所述第二片叉的下表面的每个传感器与所述第一片叉上表面的沿Z轴的距离大于所述第二级距离阈值,且所述第二片叉的下表面相对于所述第一片叉上表面的倾角不在所述倾角阈值范围内时,则机械手停止运行,报警并等待处理。
10.根据权利要求1所述的多指机械手片叉的校准方法,其特征在于,所述传感器为光电传感器。
CN201511023889.6A 2015-12-31 2015-12-31 多指机械手片叉的校准方法 Active CN105619406B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201511023889.6A CN105619406B (zh) 2015-12-31 2015-12-31 多指机械手片叉的校准方法
US15/281,110 US10056282B2 (en) 2015-12-31 2016-09-30 Method and system of robot fork calibration and wafer pick-and-place

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511023889.6A CN105619406B (zh) 2015-12-31 2015-12-31 多指机械手片叉的校准方法

Publications (2)

Publication Number Publication Date
CN105619406A CN105619406A (zh) 2016-06-01
CN105619406B true CN105619406B (zh) 2017-10-17

Family

ID=56034944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511023889.6A Active CN105619406B (zh) 2015-12-31 2015-12-31 多指机械手片叉的校准方法

Country Status (1)

Country Link
CN (1) CN105619406B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035734B (zh) * 2021-02-25 2024-03-08 北京华卓精科科技股份有限公司 一种硅片偏移量确定方法及硅片交接精度检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229950A (ja) * 1994-02-18 1995-08-29 Advantest Corp 半導体試験装置用ハンドラのモータ移動距離の補正方法
JPH10173030A (ja) * 1996-12-10 1998-06-26 Canon Inc 基板搬送装置およびこれを用いた露光装置
IT1308606B1 (it) * 1999-02-12 2002-01-08 Lpe Spa Dispositivo per maneggiare substrati mediante un istema autolivellante a depressione in reattori epistassiali ad induzione con suscettore
US6692219B2 (en) * 2000-11-29 2004-02-17 Tokyo Electron Limited Reduced edge contact wafer handling system and method of retrofitting and using same
JP4993614B2 (ja) * 2008-02-29 2012-08-08 東京エレクトロン株式会社 搬送手段のティーチング方法、記憶媒体及び基板処理装置
CN104952757B (zh) * 2015-06-17 2018-01-26 北京七星华创电子股份有限公司 一种具有分布图像传感单元的硅片分布状态检测方法及装置
CN104916573B (zh) * 2015-06-17 2018-07-06 北京北方华创微电子装备有限公司 半导体设备承载区域的硅片分布状态组合检测方法及装置

Also Published As

Publication number Publication date
CN105619406A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105514010B (zh) 一种硅片安全运输方法
CN105470184B (zh) 一种硅片的安全运输方法
CN105470178B (zh) 优化硅片承载装置维护周期的方法
US9415511B2 (en) Apparatus and method for picking up article randomly piled using robot
CN111300481B (zh) 基于视觉及激光传感器的机器人抓取位姿纠正方法
CN103786153B (zh) 物品取出装置及物品取出方法
US9140598B2 (en) Mass measurement device
US8892242B2 (en) Robot system
CN106493728A (zh) 坐标系设定方法、坐标系设定装置以及机器人系统
CN105514011B (zh) 安全传输硅片的机械手及方法
WO2008051544A1 (en) Improved calibration of a substrate handling robot
US20170194183A1 (en) Method and system of robot fork calibration and wafer pick-and-place
CN105666489B (zh) 用于修正离线示教数据的机械手及方法
CN105632997A (zh) 硅片承载装置中硅片的安全拾取方法及系统
JP5914994B2 (ja) ロボット、およびロボットの制御方法
CN105619406B (zh) 多指机械手片叉的校准方法
KR20110095700A (ko) 작업대상물 픽업을 위한 산업용 로봇 제어방법
JP7188574B2 (ja) 吸着パッド、および変形計測装置
CN111302200A (zh) 一种起吊装置、起吊装置控制方法及装置
CN109916346A (zh) 一种基于视觉系统的工件平整度的检测装置及检测方法
CN105097590B (zh) 一种组合式半导体热处理设备的硅片承载区扫描方法及装置
JP2016078180A (ja) 異常原因推定装置、ピッキング装置及びピッキング装置における異常原因推定方法
JP7180783B2 (ja) コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物
US9978631B2 (en) Wafer pick-and-place method and system
CN105489532B (zh) 硅片承载装置中硅片的安全放置方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100015 No. 1 East Jiuxianqiao Road, Beijing, Chaoyang District

Patentee after: North China Science and technology group Limited by Share Ltd.

Address before: 100016 Jiuxianqiao East Road, Beijing, No. 1, No.

Patentee before: BEIJING SEVENSTAR ELECTRONIC Co.,Ltd.

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20180206

Address after: 100176 No. 8, Wenchang Avenue, Daxing District economic and Technological Development Zone, Beijing

Patentee after: BEIJING NAURA MICROELECTRONICS EQUIPMENT Co.,Ltd.

Address before: 100015 No. 1 East Jiuxianqiao Road, Beijing, Chaoyang District

Patentee before: North China Science and technology group Limited by Share Ltd.

TR01 Transfer of patent right