CN105618123A - 加氢裂化催化剂及其制备方法 - Google Patents
加氢裂化催化剂及其制备方法 Download PDFInfo
- Publication number
- CN105618123A CN105618123A CN201410603905.8A CN201410603905A CN105618123A CN 105618123 A CN105618123 A CN 105618123A CN 201410603905 A CN201410603905 A CN 201410603905A CN 105618123 A CN105618123 A CN 105618123A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- modified
- catalyst
- catalyst described
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种加氢裂化催化剂及其制备方法,以催化剂总重量计,包括如下组分:含改性Y分子筛的硅铝载体55%~85%,活性金属15%~45%,其中活性金属以金属氧化物计;所述的改性Y分子筛在硅铝载体中的质量百分比为15%~90%,余量为无定形硅铝和/或氧化铝;改性Y分子筛晶胞常数为2.420~2.455nm;分子筛体相硅铝比为9~50,其中表面层SiO2/Al2O3硅铝比30~120,表面层硅铝比高于体相硅铝比;改性Y分子筛比表面积650~900m2/g,孔容0.30~0.50ml/g;红外酸含量0.3~1.0mmol/g;相对结晶度90%~130%;所述的活性金属选自元素周期表中的第VIII族和/或第VIB族金属元素。本发明加氢裂化催化剂具有良好的反应活性及抗氮能力。
Description
技术领域
本发明涉及一种加氢裂化催化剂及其制备方法。
背景技术
加氢裂化技术具有原料适应性强、生产操作和产品方案灵活性大、产品质量好等特点,可以将各种重质劣质进料直接转化为市场急需的优质喷气燃料、柴油、润滑油基础料以及化工石脑油和尾油蒸汽裂解制乙烯原料,已成为现代炼油和石油化学工业最重要的重油深度加工工艺之一,在国内外获得日益广泛的应用。加氢裂化过程的核心是加氢裂化催化剂。加氢裂化催化剂是典型的双功能催化剂,具有加氢和裂化双重功能。其中加氢功能通常有W、Mo、Ni等活性金属的硫化态形式提供,而裂化功能则由分子筛提供,目前,加氢裂化过程使用最为广泛的是改性Y分子筛,但由于分子筛酸性载体的性质使得其对氮化物特别敏感,氮化物容易吸附在分子筛表面而引起分子筛中毒,因此活性大大降低,在工业生产中很难长期稳定运行。并且,随着分子筛上酸密度的增加,催化剂抗氮能力显著下降。对于这一问题,目前常规的方法是通过对Y分子筛进行脱铝或脱铝补硅处理降低分子筛上酸中心数量的方法来加以解决,但该方法处理过程是在整个分子筛内外同时进行脱铝,因此,在提高分子筛的硅铝比的同时,由于酸性中心减少,其活性也大大降低。这样,在提高催化剂抗氮能力与保持加氢裂化活性之间存在着难以解决的矛盾,常规的分子筛改性过程很难同时兼顾这两个问题。
CN200710158784.0公开了一种含Y分子筛的加氢裂化催化剂及其制备方法,该发明中Y型分子筛是用铝盐和酸的混合水溶液处理水热处理后而得,制得的催化剂活性较高,但耐氮能力较差。
CN200810012212.6公开了一种加氢裂化催化剂载体及其制备方法,该发明制备的加氢裂化催化剂具有较高的耐氮能力但是,裂化活性较低。
CN98114489.6公开了一种耐氮型多产中油的加氢裂化催化剂,用于重质馏分油一段串联加氢裂化生产大量中间馏分油,裂化段进料氮含量可达100μg/g,但该催化剂活性较差。
发明内容
针对现有技术的不足,本发明提一种加氢裂化催化剂及其制备方法,本发明加氢裂化催化剂具有良好的反应活性及抗氮能力。
本发明的加氢裂化催化剂,以催化剂总重量计,包括如下组分:含改性Y分子筛的硅铝载体55%~85%,活性金属15%~45%,其中活性金属以金属氧化物计。
所述的改性Y分子筛在硅铝载体中的质量百分比为15%~90%,优选30%~70%,余量为无定形硅铝和/或氧化铝;改性Y分子筛晶胞常数为2.420~2.455nm;分子筛体相硅铝比(本文中所述的硅铝比为SiO2/Al2O3摩尔比)为9~50,其中表面层SiO2/Al2O3硅铝比30~120,优选50~100,表面层硅铝比高于体相硅铝比20~90,其中所述的表面层指分子筛外表面至内部5~400nm的厚度范围,优选10~200nm,更优选50~190nm,表面层原生于改性前的Y分子筛晶粒,与分子筛内部衔接完好,不堵塞分子筛内部孔道;氧化钠质量百分含量小于1.0%,优选小于0.5%;改性Y分子筛比表面积650~900m2/g,孔容0.30~0.50ml/g;红外酸含量0.3~1.0mmol/g,优选0.4~0.8mmol/g;相对结晶度90%~130%。
所述的活性金属选自元素周期表中的第VIII族和/或第VIB族金属元素,第VIII族活性金属可以是Ni和/或Co,第VIB族活性金属可以是W和/或Mo,第VIII族活性金属含量为3%~15%,第VIB族活性金属含量为10%~40%,以金属氧化物计。
所述催化剂的比表面积为200~400m2/g,孔容为0.2~0.5ml/g。
本发明加氢裂化催化剂中,所述的改性Y分子筛的制备方法,包括如下内容:
(1)以NaY沸石为原粉在铵盐水溶液中进行铵盐离子交换;
(2)步骤(1)中得到的铵交换后的Y分子筛进行脱铝补硅处理;
(3)对步骤(2处理后的Y分子筛进行水热处理;
(4)对步骤(3)水热处理后的Y分子筛用铝盐溶液处理;
(5)对步骤(4)所得的Y分子筛干燥处理;
(6)将液态或气态的不饱和烯烃与步骤(5)干燥的Y分子筛充分接触,然后在含氧气氛中进行积炭反应;
(7)将步骤(6)制备的积炭Y分子筛快速高温焙烧处理;
(8)将步骤(7)得到的分子筛进行脱铝补硅处理;
(9)步骤(8)处理后的Y分子筛经过滤、干燥后,进行烧炭处理,得到改性Y分子筛。
步骤(1)中所述铵盐离子交换过程如下:以NaY沸石为原料,其中NaY分子筛中SiO2/Al2O3摩尔比为3~6,氧化钠质量百分含量6%~7%。其中铵盐是氯化铵、硝酸铵、硫酸铵、醋酸铵或草酸铵中的一种或几种,铵盐水溶液浓度0.3~6.0mol/L,优选1.0~3.0mol/L,在60~120℃,优选60~90℃下交换,交换时间为1~3小时,交换次数为1~4次,最终获得交换后的NaY沸石Na2O含量小于3.0%。
步骤(2)中所述的脱铝补硅处理为本领域技术人员熟知的方法,可以采用常规氟硅酸铵脱铝补硅方法,将步骤(1)得到的Y分子筛加水配成液固质量比3:1~6:1的水混样,然后,加入浓度为0.3~1.2mol/L氟硅酸铵水溶液,于50~80℃处理0.5~2小时;其中氟硅酸铵溶液加入量按照每100g分子筛需要纯氟硅酸铵4~10g计;其他如SiCl4气相脱铝补硅也适用。
步骤(3)所述水热处理过程是在自身水蒸气或通入水蒸气的条件下,水热处理条件为:温度为500~600℃,压力为0.01~0.5MPa,处理时间为1.0~6.0小时。
步骤(4)所述的铝盐处理过程所用的铝盐是氯化铝、硫酸铝或硝酸铝中的一种或几种,铝盐浓度为0.05~2mol/L,处理温度为50~120℃,处理时间为0.5~3小时。
步骤(5)所述的干燥温度为90~300℃,干燥时间为2~10小时。
步骤(6)所述的不饱和烯烃是炭原子数为2~10的正构或异构的烯烃、二烯烃;其中所述的不饱和烯烃与分子筛充分接触是指气态或液态不饱和烯烃扩散进入分子筛内部;当使用气态不饱和烯烃时,气态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa;接触时间0.1~2小时;当使用液态不饱和烃时,液态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa,接触时间0.5~4小时,分子筛应完全浸渍于液态烯烃中。所述的烯烃与分子筛充分接触一般在常温下进行,所述的不饱和烃状态相态均为常温下相态。
步骤(6)所述的含氧气氛为空气、氧气与氮气的混合物或氧气与惰性气体的混合物中的一种,氧气在气相中的体积分数为10%~100%,优选为空气;积炭反应条件为:反应温度50~500℃,优选100~400℃,反应时间为1~50小时,优选2~40小时。
步骤(7)所述的快速高温焙烧条件为:焙烧温度为400~600℃,焙烧时间为5~60分钟。一般的处理过程为将积炭的Y分子筛直接加入预先升温至焙烧温度的马弗炉或其他加热设备中进行焙烧。
步骤(8)中所述的脱铝补硅处理为本领域技术人员熟知的方法,可以采用常规氟硅酸铵脱铝补硅方法,即先将步骤(7)得到的Y分子筛加水配成液固比3~6的水混样,然后,加入浓度为0.8~2mol/L氟硅酸铵水溶液于70~100℃处理1~4小时。其他如SiCl4气相脱铝补硅也适用。优选步骤(7)脱铝补硅处理深度高于步骤(2)脱铝补硅处理。
步骤(9)所述的烧炭处理条件为:400~600℃下焙烧2~4小时,脱除分子筛上残留的积炭。
本发明的加氢裂化催化剂的制备方法,包括如下内容:
(1)将改性Y分子筛、无定型硅铝和/或氧化铝按照一定配比混合均匀,加入稀硝酸成浆后挤条成型,干燥、焙烧得到含改性Y分子筛的硅铝载体;其中所述的稀硝酸的浓度为3wt%~30wt%;所述的干燥条件为:在80~120℃下干燥1~5小时;焙烧条件为:在400~700℃下焙烧1~5小时;
(2)采用含活性金属的浸渍液对步骤(1)的载体进行浸渍,浸渍后的载体经干燥、焙烧,得到加氢裂化催化剂;其中浸渍的液固质量比为1.5:1~3:1,采用本领域熟知的饱和浸渍的方式进行,浸渍液中VIB族金属化合物的含量按相应氧化物计为20~60g/100ml,第VIII族金属化合物的含量按相应氧化物计为3~20g/100ml,浸渍液中金属化合物的浓度可以根据产品需要进行相应调整;其中所述的干燥条件为:在90~150℃下干燥2~8小时;焙烧条件为:在400~700℃下焙烧1~5小时。
本发明加氢裂化催化剂可应用于多产柴油、多产化工原料及催化柴油加氢转化等不同的加氢裂化反应过程,一般操作条件为:反应压力6.0~20.0MPa、反应温度350~420℃、进料体积空速0.1~2.0h-1、氢油体积比为500:1~2000:1。
本发明采用透射电镜X射线电子能谱法进行微区成份分析来测定计算分子筛表面层及体相硅铝比。
本发明方法中,对加氢裂化催化剂使用的Y分子筛进行特殊处理,即首先在空气气氛中,加热条件下使吸附于Y分子筛上的烯烃、二烯烃等不饱和烃在分子筛内外充分积炭,然后,通过快速高温焙烧的方法烧掉分子筛表面上沉积的炭,这样分子筛内部的铝位被积炭覆盖保护,因此,后续氟硅酸铵脱铝补硅处理过程中,主要在外表面上进行,氟硅酸铵处理过后,再高温焙烧除掉分子筛内部残留的积炭,恢复分子筛内部的酸性点位。本发明方法通过选择性的对Y分子筛外表面进行脱铝补硅,选择性的提高了Y分子筛外表面的硅铝比,相比于常规方法改性分子筛制备的加氢裂化催化剂可以在保持相近抗氮能力的情况下提高催化剂反应活性或在相同活性的前提下提高加氢裂化催化剂的抗氮能力。
附图说明
图1为实施例3制备的改性Y分子筛的透射电镜(TEM)照片。
具体实施方式
下面通过实施例对本发明进一步说明,但不因此限制本发明。
实施例1
分子筛改性处理过程:
(1)取试验室制备的NaY分子筛原粉200g,用浓度为0.5mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.5%;
(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.5mol/L的氟硅酸铵溶液100ml,60℃处理1.0小时;
(3)对步骤(2)得到的Y分子筛550℃,0.1MPa下水热处理2小时;
(4)步骤(3)所得分子筛按照液固比5:1与蒸馏水搅拌混合,然后升温至80℃,在搅拌的过程中加入0.5mol/L的硫酸铝溶液400ml,恒温反应2小时。
(5)步骤(4)所得分子筛150℃干燥8h;
(6)取步骤(5)所得的分子筛放置于充满丁二烯气氛的密闭容器内,控制压力0.2MPa充分接触30分钟,然后,在空气气氛在150℃加热30小时;
(7)步骤(6)处理后的分子筛直接放入预先加热至450℃的马弗炉中,焙烧10分钟;
(8)步骤(7)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.8mol/L的氟硅酸铵溶液200ml,80℃处理2小时;
(9)经步骤(8)氟硅酸铵处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-1
Y-1分子筛透射电镜能谱分析结果测定其外表面至80nm厚度的硅铝比为58,分子筛体相的硅铝比为15。XRD分析结果表明其晶胞常数为2.436nm,相对结晶度107%。孔容0.36ml/g,比表面积820m2/g,红外分析结果测定Y-1红外酸量为0.70mmol/g。
加氢裂化催化剂制备过程:
(1)配置W-Ni浸渍溶液:取偏钨酸铵430g和硝酸镍440g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为36g/100ml和11g/100ml,溶液编号RY-1;
(2)取Y-160g与40g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-1;
(3)取T-160g加入120mlRY-1浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-1。
实施例2
分子筛改性处理过程:
(1)取试验室制备的NaY分子筛原粉,用浓度为0.8mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.0%。
(2)步骤(1)所得的分子筛按照液固比6:1与蒸馏水混合,然后,加入浓度为0.7mol/L的氟硅酸铵溶液120ml,70℃处理1.0小时;
(3)对步骤(2)得到的Y分子筛580℃,0.1Mpa下水热处理2小时;
(4)步骤(3)所得分子筛按照液固比6:1与蒸馏水搅拌混合,然后升温至90℃,在搅拌的过程中加入0.8mol/L的硫酸铝溶液400ml,恒温反应2小时。
(5)步骤(4)所得分子筛200℃干燥4h;
(6)取庚烯浸泡步骤(5)所得的分子筛4小时,然后,在空气气氛在200℃加热4小时;
(7)步骤(6)处理后的分子筛直接放入预先加热至480℃的马弗炉中,焙烧17分钟;
(8)步骤(7)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为1mol/L的氟硅酸铵溶液300ml,95℃处理2小时;
(9)经步骤(8)氟硅酸铵处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-2。
加氢裂化催化剂制备过程:
(1)配置W-Ni浸渍溶液:取偏钨酸铵480g和硝酸镍480g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为40g/100ml和12g/100ml,溶液编号RY-2;
(2)取Y-230g与70g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-2;
(3)取T-260g加入120mlRY-2浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-2。
Y-2分子筛透射电镜能谱分析结果测定其外表面至160nm厚度,表面层的硅铝比为80,分子筛体相的硅铝比为24。XRD分析结果表明其晶胞常数为2.429nm,相对结晶度102%,孔容0.38ml/g,比表面积790m2/g,红外分析结果测定Y-2红外酸量为0.46mmol/g。
实施例3
分子筛改性处理过程:
(1)取试验室制备的NaY分子筛原粉,用浓度为0.8mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.0%。
(2)步骤(1)所得的分子筛按照液固比6:1与蒸馏水混合,然后,加入浓度为0.6mol/L的氟硅酸铵溶液120ml,80℃处理1.5小时;
(3)对步骤(2)得到的Y分子筛580℃,0.1Mpa下水热处理2小时;
(4)步骤(3)所得分子筛按照液固比6:1与蒸馏水搅拌混合,然后升温至90℃,在搅拌的过程中加入0.8mol/L的硫酸铝溶液400ml,恒温反应2小时。
(5)步骤(4)所得分子筛250℃干燥2h;
(6)取庚烯浸泡步骤(5)所得的分子筛4小时,然后,在空气气氛在200℃加热15小时;
(7)步骤(6)处理后的分子筛直接放入预先加热至550℃的马弗炉中,焙烧27分钟;
(8)步骤(7)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.8mol/L的氟硅酸铵溶液250ml,90℃处理2小时;
(9)经步骤(8)氟硅酸铵处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-3。
加氢裂化催化剂制备过程:
(1)配置W-Ni浸渍溶液:取偏钨酸铵480g和硝酸镍480g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为40g/100ml和12g/100ml,溶液编号RY-3;
(2)取Y-330g与70g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-3;
(3)取T-360g加入120mlRY-3浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-3。
Y-3分子筛透射电镜能谱分析结果测定其外表面至190nm厚度,表面层的的硅铝比为76,分子筛体相的硅铝比为25。XRD分析结果表明其晶胞常数为2.428nm,相对结晶度103%,孔容0.38ml/g,比表面积800m2/g,红外分析结果测定Y-3红外酸量为0.45mmol/g。
实施例4
(1)取试验室制备的NaY分子筛原粉200g,用浓度为0.5mol/L的硝酸铵按照液固比3:1混合,65℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.6%;
(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.5mol/L的氟硅酸铵溶液100ml,60℃处理1.0小时;
(3)对步骤(2)得到的Y分子筛520℃,0.1MPa下水热处理2小时;
(4)步骤(3)所得分子筛按照液固比5:1与蒸馏水搅拌混合,然后升温至80℃,在搅拌的过程中加入0.5mol/L的硫酸铝溶液400ml,恒温反应2小时。
(5)步骤(4)所得分子筛100℃干燥9h;
(6)取步骤(5)所得的分子筛放置于充满丁烯气氛的密闭容器内,控制压力0.2MPa充分接触30分钟,然后,在空气气氛在200℃加热3小时;
(7)步骤(6)处理后的分子筛直接放入预先加热至450℃的马弗炉中,焙烧8分钟;
(8)步骤(7)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.8mol/L的氟硅酸铵溶液150ml,95℃处理2小时;
(9)经步骤(8)氟硅酸铵处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-4
Y-4分子筛透射电镜能谱分析结果测定其外表面至70nm厚度的的硅铝比为62,分子筛体相的硅铝比为14。XRD分析结果表明其晶胞常数为2.437nm,相对结晶度107%,孔容0.36ml/g,比表面积820m2/g,红外分析结果测定Y-4红外酸量为0.72mmol/g。
加氢裂化催化剂制备过程:
(1)配置W-Ni浸渍溶液:取偏钨酸铵430g和硝酸镍440g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为36g/100ml和11g/100ml,溶液编号RY-4;
(2)取Y-460g与40g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-4;
(3)取T-460g加入120mlRY-4浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-4。
比较例1
使用工业广泛应用的一种加氢裂化催化剂,计作BCat-1,其催化剂配方中除改性Y分子筛外,其余组成及催化剂制备方法均与实施例1相同,催化剂BCat-1使用的Y分子筛性质如下:分子筛SiO2/Al2O3摩尔比为15。XRD分析结果表明其晶胞常数为2.438nm,相对结晶度95%,孔容0.33ml/g,比表面积760m2/g,红外酸量为0.66mmol/g。
比较例2
使用工业广泛应用的一种加氢裂化催化剂,计作BCat-2,其催化剂配方中除改性Y分子筛外,其余组成及催化剂制备方法均与实施例2相同,催化剂BCat-2使用的Y分子筛性质如下:分子筛SiO2/Al2O3摩尔比26。XRD分析结果表明其晶胞常数为2.427nm,相对结晶度88%,孔容0.38ml/g,比表面积730m2/g,红外酸量为0.48mmol/g。
实施例5
为了考察实施例及比较例制备催化剂的反应性能,对催化剂在小型装置上进行了评价试验,评价装置采用单段串联一次通过流程,一反装填工业上广泛应用的加氢裂化预处理催化剂FF-36(中国石化抚顺石油化工研究院),二反分别装填按照实施例1~4和比较例1~2制备的加氢裂化催化剂,原料性质、评价条件及评价结果列于表1~表5。
表1原料油性质。
表2评价条件。
表3评价结果。
表4实施例1与比较例1催化剂稳定性对比试验。
表5实施例2与比较例2催化剂稳定性对比试验。
实施例1~2与比较例1~2催化剂在评价装置上的对比试验表明,采用本发明方法制备的催化剂与比较例催化剂产品分布及性质相当,抗氮能力更强,在在精制段生成油氮含量100ppm的条件下运转时,实施例1和实施例2催化剂的反应活性更高,且随着运转时间的延长这种优势更加明显。
Claims (20)
1.一种加氢裂化催化剂,其特征在于:以催化剂总重量计,包括如下组分:含改性Y分子筛的硅铝载体55%~85%,活性金属15%~45%,其中活性金属以金属氧化物计;所述的活性金属选自元素周期表中的第VIII族和/或第VIB族金属元素中的一种或几种;所述的改性Y分子筛在硅铝载体中的质量百分比为15%~90%,余量为无定形硅铝和/或氧化铝;改性Y分子筛晶胞常数为2.420~2.455nm;分子筛体相硅铝比为9~50,其中表面层SiO2/Al2O3硅铝比30~120,表面层硅铝比高于体相硅铝比20~90,其中所述的表面层指分子筛外表面至内部5~400nm的厚度范围,表面层原生于改性前的Y分子筛晶粒;改性Y分子筛比表面积650~900m2/g,孔容0.30~0.50ml/g;红外酸含量0.3~1.0mmol/g;相对结晶度90%~130%。
2.按照权利要求1所述的催化剂,其特征在于:第VIII族活性金属是Ni和/或Co,第VIB族活性金属是W和/或Mo;以金属氧化物计,第VIII族活性金属含量为3%~15%,第VIB族活性金属含量为10%~40%。
3.按照权利要求1所述的催化剂,其特征在于:所述催化剂的比表面积为200~400m2/g,孔容为0.2~0.5ml/g。
4.按照权利要求1所述的催化剂,其特征在于:改性Y分子筛的表面层指分子筛外表面至内部10~200nm厚度范围。
5.按照权利要求1所述的催化剂,其特征在于:改性Y分子筛的表面层指分子筛外表面至内部50~190nm厚度范围。
6.按照权利要求1所述的催化剂,其特征在于:所述的改性Y分子筛的制备方法,包括如下内容:(1)以NaY沸石为原粉在铵盐水溶液中进行铵盐离子交换;(2)步骤(1)中得到的铵交换后的Y分子筛进行脱铝补硅处理;(3)对步骤(2)处理后的Y分子筛进行水热处理;(4)对步骤(3)水热处理后的Y分子筛用铝盐溶液处理;(5)对步骤(4)所得的Y分子筛干燥处理;(6)将液态或气态的不饱和烯烃与步骤(5)干燥的Y分子筛充分接触,然后在含氧气氛中进行积炭反应;(7)将步骤(6)制备的积炭Y分子筛快速高温焙烧处理;(8)将步骤(7)得到的分子筛进行脱铝补硅处理;(9)步骤(8)处理后的Y分子筛经过滤、干燥后,进行烧炭处理,得到改性Y分子筛。
7.按照权利要求6所述的催化剂,其特征在于:步骤(2)所述的脱铝补硅过程为:将步骤(1)得到的Y分子筛加水配成液固质量比3:1~6:1的水混样,然后,加入浓度为0.3~1.2mol/L氟硅酸铵水溶液,于50~80℃处理0.5~2小时;其中氟硅酸铵溶液加入量按照每100g分子筛需要纯氟硅酸铵4~10g计。
8.按照权利要求6所述的催化剂,其特征在于:步骤(3)所述的水热处理条件为:温度为500~600℃,压力为0.01~0.5MPa,处理时间为1.0~6.0小时。
9.按照权利要求6所述的催化剂,其特征在于:步骤(4)所述的铝盐处理过程所用的铝盐是氯化铝、硫酸铝或硝酸铝中的一种或几种;铝盐浓度为0.05~2mol/L;处理温度为50~120℃,处理时间为0.5~3小时。
10.按照权利要求6所述的催化剂,其特征在于:步骤(5)所述的干燥温度为90~300℃,干燥时间为2~10小时。
11.按照权利要求6所述的催化剂,其特征在于:步骤(6)所述的不饱和烯烃是炭原子数为2~10的正构或异构的烯烃、二烯烃。
12.按照权利要求6或11所述的催化剂,其特征在于:步骤(6)所述的气态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa;接触时间0.1~2小时;液态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa,接触时间0.5~4小时,分子筛应完全浸渍于液态烯烃中。
13.按照权利要求6所述的催化剂,其特征在于:步骤(6)所述的含氧气氛为空气、氧气与氮气的混合物或氧气与惰性气体的混合物中的一种,氧气在气相中的体积分数为10%~100%。
14.按照权利要求6所述的催化剂,其特征在于:步骤(6)所述的积炭反应条件为:反应温度50~500℃,反应时间为1~50小时。
15.按照权利要求6所述的催化剂,其特征在于:步骤(7)所述的快速高温焙烧条件为:焙烧温度为400~600℃,焙烧时间为5~60分钟。
16.按照权利要求6所述的催化剂,其特征在于:步骤(8)脱铝补硅过程为:将步骤(6)得到的Y分子筛加水配成液固质量比3:1~6:1的水混样,然后加入浓度为0.8~2.0mol/L氟硅酸铵水溶液,于70~120℃处理1~4小时,其中氟硅酸铵溶液加入量按照每100g分子筛需要存氟硅酸铵9~30g计。
17.按照权利要求6所述的催化剂,其特征在于:步骤(8)脱铝补硅处理深度高于步骤(2)脱铝补硅处理。
18.按照权利要求6所述的催化剂,其特征在于:步骤(9)所述的烧炭处理条件为:400~600℃下焙烧2~4小时。
19.一种权利要求1~6任一权利要求所述的加氢裂化催化剂的制备方法,包括如下内容:(1)将改性Y分子筛、无定型硅铝和/或氧化铝按照一定配比混合均匀,加入稀硝酸成浆后挤条成型,在80~120℃下干燥1~5小时;在400~700℃下焙烧1~5小时,得到含改性Y分子筛的硅铝载体;(2)采用含活性金属的浸渍液对步骤(1)的载体进行浸渍,浸渍后的载体在90~150℃下干燥2~8小时,在400~700℃下焙烧1~5小时,得到加氢裂化催化剂;其中浸渍的液固质量比为1.5:1~3:1。
20.一种权利要求1~6任一权利要求所述的加氢裂化催化剂应用于多产柴油、多产化工原料及催化柴油加氢转化的加氢裂化反应过程,其特征在于:操作条件为:反应压力6.0~20.0MPa,反应温度350~420℃,进料体积空速0.1~2.0h-1,氢油体积比为500:1~2000:1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410603905.8A CN105618123B (zh) | 2014-11-03 | 2014-11-03 | 加氢裂化催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410603905.8A CN105618123B (zh) | 2014-11-03 | 2014-11-03 | 加氢裂化催化剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105618123A true CN105618123A (zh) | 2016-06-01 |
CN105618123B CN105618123B (zh) | 2018-04-10 |
Family
ID=56033696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410603905.8A Active CN105618123B (zh) | 2014-11-03 | 2014-11-03 | 加氢裂化催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105618123B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108620118A (zh) * | 2017-03-24 | 2018-10-09 | 中国石油化工股份有限公司 | 一种加氢改质催化剂及其制备方法 |
CN115725324A (zh) * | 2021-08-31 | 2023-03-03 | 中国石油化工股份有限公司 | 一种柴油加氢裂化方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171474B1 (en) * | 1998-05-06 | 2001-01-09 | Institut Francais Du Petrole | Zeolite Y catalyst containing silicon useful for hydrocracking |
CN1609175A (zh) * | 2003-10-24 | 2005-04-27 | 中国石油化工股份有限公司 | 一种加氢处理催化剂及其制备方法 |
CN101380589A (zh) * | 2007-09-04 | 2009-03-11 | 中国石油化工股份有限公司 | 一种加氢裂化催化剂及其制备方法 |
CN103240114A (zh) * | 2012-02-08 | 2013-08-14 | 中国石油天然气股份有限公司 | 一种加氢裂化催化剂及其制备和应用 |
CN103447073A (zh) * | 2012-06-01 | 2013-12-18 | 中国石油天然气股份有限公司 | 一种包含y型分子筛的加氢裂化催化剂及制备方法 |
-
2014
- 2014-11-03 CN CN201410603905.8A patent/CN105618123B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171474B1 (en) * | 1998-05-06 | 2001-01-09 | Institut Francais Du Petrole | Zeolite Y catalyst containing silicon useful for hydrocracking |
CN1609175A (zh) * | 2003-10-24 | 2005-04-27 | 中国石油化工股份有限公司 | 一种加氢处理催化剂及其制备方法 |
CN101380589A (zh) * | 2007-09-04 | 2009-03-11 | 中国石油化工股份有限公司 | 一种加氢裂化催化剂及其制备方法 |
CN103240114A (zh) * | 2012-02-08 | 2013-08-14 | 中国石油天然气股份有限公司 | 一种加氢裂化催化剂及其制备和应用 |
CN103447073A (zh) * | 2012-06-01 | 2013-12-18 | 中国石油天然气股份有限公司 | 一种包含y型分子筛的加氢裂化催化剂及制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108620118A (zh) * | 2017-03-24 | 2018-10-09 | 中国石油化工股份有限公司 | 一种加氢改质催化剂及其制备方法 |
CN108620118B (zh) * | 2017-03-24 | 2020-03-17 | 中国石油化工股份有限公司 | 一种加氢改质催化剂及其制备方法 |
CN115725324A (zh) * | 2021-08-31 | 2023-03-03 | 中国石油化工股份有限公司 | 一种柴油加氢裂化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105618123B (zh) | 2018-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105621444B (zh) | 一种改性y分子筛及其制备方法 | |
CN105618112A (zh) | 一种含y分子筛的加氢裂化催化剂及其制备方法 | |
CN105618121A (zh) | 一种抗氮加氢裂化催化剂的制备方法 | |
CN106669786B (zh) | 一种催化柴油加氢裂化催化剂及其制备方法 | |
CN105536855B (zh) | 一种含y分子筛的加氢裂化催化剂的制备方法 | |
CN105536854B (zh) | 一种制备含y分子筛的加氢裂化催化剂的方法 | |
CN105289701B (zh) | 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法 | |
CN106669774A (zh) | 一种改性y分子筛的制备方法及应用 | |
CN105618116A (zh) | 一种加氢裂化催化剂的制备方法 | |
CN107304375A (zh) | 一种催化柴油转化过程催化剂级配工艺方法 | |
CN105618113B (zh) | 一种制备加氢裂化催化剂组合物的方法 | |
CN107304373B (zh) | 一种催化柴油加氢转化工艺 | |
CN105618115B (zh) | 改性y分子筛及其制备方法 | |
CN105621431B (zh) | 改性β分子筛及其制备方法 | |
CN105618123A (zh) | 加氢裂化催化剂及其制备方法 | |
CN105621432B (zh) | 一种改性β分子筛及其制备方法 | |
CN105618117B (zh) | 加氢裂化催化剂的制备方法 | |
CN105618122A (zh) | 一种抗氮加氢裂化催化剂及其制备方法 | |
CN105536856B (zh) | 一种加氢裂化催化剂及其制备方法 | |
CN105618120B (zh) | 一种加氢裂化催化剂及其制备方法和应用 | |
CN105582976B (zh) | 一种加氢裂化催化剂组合物及其制备方法 | |
CN105289681B (zh) | 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法 | |
CN106669785A (zh) | 一种加氢裂化催化剂的制备方法 | |
CN105618119A (zh) | 一种制备加氢裂化催化剂的方法 | |
CN105618114B (zh) | 一种加氢裂化催化剂组合物的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |