CN105612643A - 用于核-壳催化剂处理的方法和系统 - Google Patents
用于核-壳催化剂处理的方法和系统 Download PDFInfo
- Publication number
- CN105612643A CN105612643A CN201380078331.0A CN201380078331A CN105612643A CN 105612643 A CN105612643 A CN 105612643A CN 201380078331 A CN201380078331 A CN 201380078331A CN 105612643 A CN105612643 A CN 105612643A
- Authority
- CN
- China
- Prior art keywords
- porous electrode
- particle
- nuclear
- nuclear particle
- metal level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/54—Contact plating, i.e. electroless electrochemical plating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/16—Apparatus for electrolytic coating of small objects in bulk
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/006—Nanoparticles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8853—Electrodeposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
根据一实施例,一种处理催化剂的材料的方法包括在多孔电极上建立电势。核粒子被指引通过所述多孔电极。当所述粒子穿过所述多孔电极时,金属层被沉积在所述核粒子上。根据一实施例,一种用于处理催化剂的材料的示例组装件包括箱体,其建立粒子移动通过所述箱体的通道。多孔电极处于所述箱体内以便允许核粒子移动通过所述多孔电极。当所述粒子穿过所述多孔电极时,金属层能够被沉积在所述核粒子上。
Description
背景技术
燃料电池具有基于电化学反应来产生电能的用途。与大规模地实现燃料电池关联的挑战之一是通常与燃料电池组件关联的费用。例如,催化剂层通常包括昂贵的材料,例如铂。已经存在用于减少所要求铂的量从而减少与燃料电池关联的成本的各种提议。
一个提议是使用包括贵金属核的核-壳(core-shell)催化剂,其中所述贵金属核具有沉积在核上的铂壳。此类核-壳催化剂被认为对于例如低温燃料电池是有前途的。根据一些提议,合成核-壳催化剂包括在钯(或其它贵金属)核上建立铜单层以及随后以单层铂替换所述铜。在这点上,与提议的技术关联的一些挑战包括在所述沉积过程期间避免铂簇形成从而获得具有所希望的特性的铂单层。控制铂沉积过程所需的该类型约束倾向于限制批量大小并且那可以有损于与利用核-壳催化剂关联的任何经济效益。
发明内容
根据一实施例,一种处理催化剂的材料的方法包括在多孔电极上建立电势。核粒子被指引通过所述多孔电极。当所述粒子穿过所述多孔电极时,金属层被沉积在所述核粒子上。
根据一实施例,一种用于处理催化剂的材料的示例组装件包括箱体(housing),其建立粒子移动通过所述箱体的通道。多孔电极处于所述箱体内以便允许核粒子的分散以移动通过所述多孔电极。当所述粒子穿过所述多孔电极时,金属层能够被沉积在所述核粒子上。
从以下详细说明,至少一个所公开实施例的各种特征和优点对于本领域技术人员将变得显而易见。伴随详细说明的附图能够被简要描述如下。
附图说明
图1示意地示出根据本发明的实施例的配置用于实行处理催化剂的材料的方法的系统。
图2示意地示出根据本发明的实施例的包括多孔电极的示例反应器。
具体实施方式
图1示意地示出系统20,其配置用于实行处理催化剂的材料的方法。系统20具有实现核-壳催化剂的用途,所述核-壳催化剂包括贵金属(比如钯)的壳上的铂单层。系统20包括储存器22,其包括核粒子、硫酸铜和硫酸(CuSO4+H2SO4)的溶液。储存器22内的溶液还包括选择的贵金属(比如钯)的核粒子。在一个示例中,储存器22内的溶液包括浓度0.05M的硫酸铜和0.05M的硫酸。
在一些示例中,核粒子包括钯或者选择的贵金属。在一个实施例中,核粒子包括支撑在碳粒子上的钯纳米粒子。
泵24指引溶液从储存器22至反应器26,在那里铜单层沉积在核粒子上。一旦铜单层已经被沉积在核粒子上,它们就被指引至替换腔28,在那里用铂单层代替铜单层。
示出的示例中用铂单层代替铜单层的反应以通常已知的方式发生。例如,在30提供的溶液包括K2PtCl4+H2SO4加添加剂,比如柠檬酸和柠檬酸盐。在一个示例中,K2PtCl4具有浓度0.001M,H2SO4具有浓度0.05M以及添加剂浓度大于K2PtCl4的浓度的10倍。替换腔28内的反应可以被总结为Cu+Pt2+=Cu2++Pt。
反应器26被配置成促进增大规模的在核-壳催化剂上获得铂单层的过程。如图2中所示,反应器26包括箱体40,比如玻璃管。多孔工作电极42被充电以及与导电的导线44关联。多孔电极42处于箱体40内。在此示例中,多孔电极42包括碳矩阵或晶格结构。得益于本说明书的本领域技术人员将认识到如何配置多孔碳矩阵,其允许当溶液移动通过反应器26时包括核粒子的溶液穿过多孔工作电极42。
另一个多孔管46处于箱体40内。多孔管46服务作为与导电的导线48关联的对电极。本示例中提供参考电极50。这些电极便于在核粒子上沉积单层铜。当包括核粒子的溶液移动通过多孔工作电极42时,多孔碳矩阵与粒子之间的接触提供电势以便将铜沉积到粒子上。在一个示例中,核粒子包括碳,其具有支撑在碳上的钯。如在60示意地示出的,包括核粒子的溶液流过反应器26。多孔电极42具有沿流过反应器26的方向的长度,其便于在核粒子上建立铜的均匀的单层。
示出的示例包括排水道62,从而便于除去来自反应器26的任何流体(如可能要求的)。
多孔工作电极42的一个特征是它便于以大批量数量在核粒子上获得铜单层。在用于给催化剂核粒子镀以单层铜的先前提议的置配可以已经产出按克计量的结果时,示出的反应器26产出按千克计量的结果。换言之,多孔电极反应器配置使得增加生产量1000倍是可能的,这可以是使用其它铜沉积设备或者技术所已经期望的。
所公开的示例反应器配置增强与利用核-壳催化剂材料关联的经济效果。实现大规模生产的能力致使核-壳催化剂成为更有前途的对于纯铂的替代物,以用于制造在燃料电池或者其它基于电化学的能量产生装置中使用的催化剂。
前述说明实质上是说明性的而不是限制的。对于本领域技术人员,对所公开示例的变化和修改可以变得显而易见,而不一定脱离由所公开的示例提供的对本领域的贡献的本质。提供给本发明的法律保护的范围仅能够通过学习随附权利要求来确定。
Claims (14)
1.一种处理催化剂的材料的方法,包括以下步骤:
在多孔电极上建立电势;
指引核粒子通过所述多孔电极;以及
当所述粒子穿过所述多孔电极时,在所述核粒子上沉积金属层。
2.如权利要求1所述的方法,其中所述核粒子与所述多孔电极之间的接触便于所述沉积。
3.如权利要求1所述的方法,其中
所述多孔电极具有沿当所述核粒子穿过所述多孔电极时所述核粒子行进的方向的长度;以及
选择所述长度来便于在所述核粒子上沉积所述金属的均匀的单层。
4.如权利要求1所述的方法,其中
所述核粒子包括钯;以及
所述金属层包括铜。
5.如权利要求4所述的方法,其中所述核粒子包括支撑在碳粒子上的钯纳米粒子。
6.如权利要求1所述的方法,其中所述金属层包括单层铜。
7.如权利要求1所述的方法,其中所述多孔电极包括碳。
8.如权利要求1所述的方法,包括
将具有所沉积的金属层的所述核粒子与包括铂的溶液混合;以及
用铂代替所沉积的金属层,从而在所述核粒子上建立铂单层。
9.一种用于处理催化剂的材料的组装件,所述组装件包括:
箱体,其建立粒子移动通过所述箱体的通道;以及
多孔电极,其处于所述箱体内以便允许核粒子移动通过所述多孔电极,由此当所述粒子穿过所述多孔电极时,金属层能够被沉积在所述核粒子上。
10.如权利要求9所述的组装件,其中
所述多孔电极具有沿当所述核粒子穿过所述多孔电极时所述核粒子行进的方向的长度;以及
选择所述长度来便于在所述核粒子上沉积所述金属的均匀的单层。
11.如权利要求9所述的组装件,其中
所述核粒子包括钯;以及
所述金属层包括铜。
12.如权利要求11所述的组装件,其中所述核粒子包括支撑在碳粒子上的钯纳米粒子。
13.如权利要求9所述的组装件,其中所述多孔电极包括碳。
14.如权利要求9所述的组装件,其中所述金属层包括单层铜。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2013/051200 WO2015009311A1 (en) | 2013-07-19 | 2013-07-19 | Method and system for core-shell catalyst processing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105612643A true CN105612643A (zh) | 2016-05-25 |
CN105612643B CN105612643B (zh) | 2018-06-26 |
Family
ID=52346598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380078331.0A Active CN105612643B (zh) | 2013-07-19 | 2013-07-19 | 用于核-壳催化剂处理的方法和系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10541425B2 (zh) |
EP (1) | EP3022788B1 (zh) |
JP (1) | JP6295323B2 (zh) |
KR (1) | KR102058931B1 (zh) |
CN (1) | CN105612643B (zh) |
WO (1) | WO2015009311A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0171478A2 (en) * | 1984-07-16 | 1986-02-19 | CHLORINE ENGINEERS CORP., Ltd. | Electrolyzing process and electrolytic cell employing fluidized bed |
JP2002069689A (ja) * | 2000-08-28 | 2002-03-08 | Yuken Industry Co Ltd | 粉末の電気めっき方法 |
JP2008297574A (ja) * | 2007-05-29 | 2008-12-11 | Nitto Denko Corp | 電解めっき膜形成微細物の製造方法およびそれに用いる製造装置 |
US20120245017A1 (en) * | 2011-03-23 | 2012-09-27 | Brookhaven Science Associates, Llc | Method and Electrochemical Cell for Synthesis and Treatment of Metal Monolayer Electrocatalysts Metal, Carbon, and Oxide Nanoparticles Ion Batch, or in Continuous Fashion |
WO2013024305A2 (en) * | 2011-08-18 | 2013-02-21 | Nexeon Ltd | Method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63162896A (ja) | 1986-12-25 | 1988-07-06 | Nisso Kinzoku Kagaku Kk | 電気めつき装置 |
EP1266687A1 (de) | 2001-05-23 | 2002-12-18 | OMG AG & Co. KG | Verfahren zur Herstellung eines Anodenkatalysators für PEM-Brennstoffzellen und damit hergestellter Anodenkatalysator |
US7691780B2 (en) | 2004-12-22 | 2010-04-06 | Brookhaven Science Associates, Llc | Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof |
EP1919703B1 (en) | 2005-08-12 | 2013-04-24 | Modumetal, LLC | Compositionally modulated composite materials and methods for making the same |
DE102005057696A1 (de) | 2005-12-02 | 2007-08-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung |
US7601668B2 (en) | 2006-09-29 | 2009-10-13 | Headwaters Technology Innovation, Llc | Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure |
AR065023A1 (es) | 2007-01-30 | 2009-05-13 | Shell Int Research | Un catalizador de deshidrogenacion, su proceso de preparacion y su metodo de uso |
US9099253B2 (en) * | 2008-10-21 | 2015-08-04 | Brookhaven Science Associates, Llc | Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports |
EP2308596B1 (en) | 2009-10-07 | 2016-09-21 | Ford Global Technologies, LLC | Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof |
WO2011075127A1 (en) * | 2009-12-17 | 2011-06-23 | United Technologies Corporation | Method for treating a supported catalyst |
US20120329642A1 (en) * | 2009-12-28 | 2012-12-27 | Utc Power Corporation | Platinum-palladium catalyst with intermediate layer |
WO2011099957A1 (en) | 2010-02-12 | 2011-08-18 | Utc Power Corporation | Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making |
EP2550380A1 (en) * | 2010-03-24 | 2013-01-30 | Brookhaven Science Associates, Llc | Apparatus and method for the synthesis and treatment of metal monolayer electrocatalyst particles in batch or continuous fashion |
JP5573438B2 (ja) * | 2010-07-09 | 2014-08-20 | トヨタ自動車株式会社 | コアシェル型触媒微粒子の製造方法 |
US8248801B2 (en) * | 2010-07-28 | 2012-08-21 | International Business Machines Corporation | Thermoelectric-enhanced, liquid-cooling apparatus and method for facilitating dissipation of heat |
EP2678105B1 (en) * | 2011-02-22 | 2019-06-12 | Audi AG | Method of forming a catalyst with an atomic layer of platinum atoms |
US9484580B2 (en) * | 2012-06-22 | 2016-11-01 | Audi Ag | Platinum monolayer for fuel cell |
JP2014128756A (ja) | 2012-12-28 | 2014-07-10 | Toyota Motor Corp | 反応装置、及び化学反応生成物の製造方法 |
KR101965029B1 (ko) | 2013-01-08 | 2019-04-02 | 아우디 아게 | 연료 전지 촉매 처리법 |
-
2013
- 2013-07-19 WO PCT/US2013/051200 patent/WO2015009311A1/en active Application Filing
- 2013-07-19 CN CN201380078331.0A patent/CN105612643B/zh active Active
- 2013-07-19 EP EP13889666.7A patent/EP3022788B1/en active Active
- 2013-07-19 US US14/904,679 patent/US10541425B2/en active Active
- 2013-07-19 JP JP2016527982A patent/JP6295323B2/ja active Active
- 2013-07-19 KR KR1020167000983A patent/KR102058931B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0171478A2 (en) * | 1984-07-16 | 1986-02-19 | CHLORINE ENGINEERS CORP., Ltd. | Electrolyzing process and electrolytic cell employing fluidized bed |
JP2002069689A (ja) * | 2000-08-28 | 2002-03-08 | Yuken Industry Co Ltd | 粉末の電気めっき方法 |
JP2008297574A (ja) * | 2007-05-29 | 2008-12-11 | Nitto Denko Corp | 電解めっき膜形成微細物の製造方法およびそれに用いる製造装置 |
US20120245017A1 (en) * | 2011-03-23 | 2012-09-27 | Brookhaven Science Associates, Llc | Method and Electrochemical Cell for Synthesis and Treatment of Metal Monolayer Electrocatalysts Metal, Carbon, and Oxide Nanoparticles Ion Batch, or in Continuous Fashion |
WO2013024305A2 (en) * | 2011-08-18 | 2013-02-21 | Nexeon Ltd | Method |
Also Published As
Publication number | Publication date |
---|---|
JP6295323B2 (ja) | 2018-03-14 |
WO2015009311A1 (en) | 2015-01-22 |
EP3022788A4 (en) | 2017-03-22 |
JP2016525444A (ja) | 2016-08-25 |
EP3022788A1 (en) | 2016-05-25 |
KR102058931B1 (ko) | 2019-12-24 |
CN105612643B (zh) | 2018-06-26 |
KR20160032104A (ko) | 2016-03-23 |
EP3022788B1 (en) | 2019-07-03 |
WO2015009311A8 (en) | 2015-03-26 |
US10541425B2 (en) | 2020-01-21 |
US20160172685A1 (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction | |
Ge et al. | Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles | |
Ma et al. | Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity | |
Yuan et al. | Ultrathin Pd–Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction | |
Lu et al. | Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction | |
Qiao et al. | Tunable MoS2/SnO2 P–N heterojunctions for an efficient trimethylamine gas sensor and 4-nitrophenol reduction catalyst | |
Sun et al. | Earth‐rich transition metal phosphide for energy conversion and storage | |
Fan et al. | Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles | |
Luo et al. | Shape and composition effects on photocatalytic hydrogen production for Pt–Pd alloy cocatalysts | |
Sneed et al. | Shaped Pd–Ni–Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations | |
JP5573438B2 (ja) | コアシェル型触媒微粒子の製造方法 | |
Ye et al. | Pd nanoparticle/CoP nanosheet hybrids: highly electroactive and durable catalysts for ethanol electrooxidation | |
Wang et al. | Structural and electronic stabilization of PtNi concave octahedral nanoparticles by P doping for oxygen reduction reaction in alkaline electrolytes | |
EP3375908B1 (en) | Electrochemical reaction device | |
Zhang et al. | Engineering spiny PtFePd@ PtFe/Pt core@ multishell nanowires with enhanced performance for alcohol electrooxidation | |
Yu et al. | Highly efficient silver–cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction | |
JP6783815B2 (ja) | 酸化電極とそれを用いた電気化学反応装置 | |
Cai et al. | Controlled synthesis of Au-island-covered Pd nanotubes with abundant heterojunction interfaces for enhanced electrooxidation of alcohol | |
Wang et al. | Construction of an advanced NiFe-LDH/MoS2–Ni3S2/NF heterostructure catalyst toward efficient electrocatalytic overall water splitting | |
Chalgin et al. | Manipulation of electron transfer between Pd and TiO2 for improved electrocatalytic hydrogen evolution reaction performance | |
Xu et al. | Interface engineering of Fe2O3@ Co3O4 nanocubes for enhanced triethylamine sensing performance | |
Huang et al. | Self-standing three-dimensional PdAu nanoflowers for plasma-enhanced photo-electrocatalytic methanol oxidation with a CO-free dominant mechanism | |
Mu et al. | Electrocatalytic reduction of carbon dioxide on nanosized fluorine doped tin oxide in the solution of extremely low supporting electrolyte concentration: low reduction potentials | |
Yang et al. | Bimetallic Face-Centered Cubic Pd–Ag Nano-dendritic Alloys Catalysts Boost Ethanol Electrooxidation | |
Liu et al. | Coaxial Nanofiber IrO x@ SbSnO x as an Efficient Electrocatalyst for Proton Exchange Membrane Dehumidifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |